Functional Imaging in Hodgkin Lymphoma

  • Andrea GallaminiEmail author
  • Martin Hutchings
  • Anna Borra
Part of the Hematologic Malignancies book series (HEMATOLOGIC)


Hodgkin lymphoma (HL) has become a curable malignancy with more than 90 % of patients alive and 80 % considered cured after a minimum follow-up of 6 years. These results have been obtained by a combination of factors influencing treatment outcome in different ways. These can be briefly summarised: (a) a high chemo- and radiosensitivity of the tumour, (b) an increasing accuracy of staging procedures, and (c) different treatment strategies tailored to well-defined categories of patients with a different risk of treatment failure.


Standardise Uptake Value Hodgkin Lymphoma Metabolic Tumour Volume Brentuximab Vedotin Hodgkin Lymphoma Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Diehl V, Stein H, Hummel M, Zollinger R, Connors JM (2003) Hodgkin’s lymphoma: biology and treatment strategies for primary, refractory, and relapsed disease. Hematology Am Soc Hematol Educ Program 1;225–247Google Scholar
  2. 2.
    Gospodarowicz MK (2009) Hodgkin’s lymphoma–patient’s assessment and staging. Cancer J 15(2):138–142PubMedGoogle Scholar
  3. 3.
    Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J et al (2006) FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107(1):52–59PubMedGoogle Scholar
  4. 4.
    Canellos GP (1988) Residual mass in lymphoma may not be residual disease. J Clin Oncol 6(6):931–933PubMedGoogle Scholar
  5. 5.
    Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE et al (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113(25):6392–6402PubMedCentralPubMedGoogle Scholar
  6. 6.
    Weihrauch MR, Manzke O, Beyer M, Haverkamp H, Diehl V, Bohlen H et al (2005) Elevated serum levels of CC thymus and activation-related chemokine (TARC) in primary Hodgkin’s disease: potential for a prognostic factor. Cancer Res 65(13):5516–5519PubMedGoogle Scholar
  7. 7.
    Terasawa T, Lau J, Bardet S, Couturier O, Hotta T, Hutchings M et al (2009) Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin’s lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol 27(11):1906–1914PubMedGoogle Scholar
  8. 8.
    Hutchings M, Barrington SF (2009) PET/CT for therapy response assessment in lymphoma. J Nucl Med 50(Suppl 1):21S–30SPubMedGoogle Scholar
  9. 9.
    Johnston GS, Go MF, Benua RS, Larson SM, Andrews AG, Karl F, Hubner KF (1977) Gdllium-67 citrate imaging in Hodgkin’s disease: final report of cooperative group. J Nucl Med 18:692–698PubMedGoogle Scholar
  10. 10.
    Andrews GA, Hubner KF, Greenlawf RH (1978) Ga-67 citrate imaging in malignant lymphoma: final report of cooperative group. J Nucl Med 19:1013–1019PubMedGoogle Scholar
  11. 11.
    Hagemeister FB, Fesus SM, Lamki LM, Haynie TP (1990) Role of the Gallium scan in Hodgkin’s disease. Cancer 65:1090–1096PubMedGoogle Scholar
  12. 12.
    Radford JA, Cowan RA, Flanagan M, Dunn G, Crowther D, Johnson RJ, Eddleston B (1988) The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin’s disease. J Clin Oncol 6:940–946PubMedGoogle Scholar
  13. 13.
    Kostakoglu L, Yeh SDJ, Portlock C, Heelan R, Yao TJ, Niedzwiecki D, Larson SM (1992) Validation of Gallium-67-Citrate single-photon emission computed tomography in biopsy-confirmed residual Hodgkin’s disease in the mediastinum. J Nucl Med 33:345–350PubMedGoogle Scholar
  14. 14.
    Israel O, Front D, Lam M, Ben Aim S, Kleinhaus U, Ben-Shachat M, Robinson E, Kolodny GM (1988) Gallium 67 imaging in monitoring lymphoma response to treatment. Cancer 61:2439–2443PubMedGoogle Scholar
  15. 15.
    Weeks JC, Yeap BY, Canellos GP, Shipp MA (1991) Value of follow-up procedures in patients with large-cell lymphoma who achieve a complete remission. J Clin Oncol 9(7):1196–1203PubMedGoogle Scholar
  16. 16.
    Front D, Bar-Shalom R, Epelbaum R, Haim N, Ben Arush MW, Ben Shahar M et al (1993) Early detection of lymphoma recurrence with gallium-67 scintigraphy. J Nucl Med 34(12):2101–2104PubMedGoogle Scholar
  17. 17.
    Front D, Bar-Shalom R, Mor M, Haim N, Epelbaum R, Frenkel A et al (1999) Hodgkin disease: prediction of outcome with 67Ga scintigraphy after one cycle of chemotherapy. Radiology 210(2):487–491PubMedGoogle Scholar
  18. 18.
    Thompson CJ (2002) Instrumentation. In: Wahl RL (ed) Principles and practice of positron emission tomography. Lippincott Williams & Wilkins, Philadelphia, pp 48–64Google Scholar
  19. 19.
    Finn RD, Schlyer DJ (2002) Production of radionuclides for PET. In: Wahl RL (ed) Principles and practice of positron emission tomography. Lippincott Williams & Wilkins, Philadelphia, pp 1–15Google Scholar
  20. 20.
    Fowler JS, Ding Y (2002) Chemistry. In: Wahl RL (ed) Principles and practice of positron emission tomography. Lippincott Williams & Wilkins, Philadelphia, pp 16–47Google Scholar
  21. 21.
    Ell PJ, von Schulthess GK (2002) PET/CT: a new road map. Eur J Nucl Med Mol Imaging 29(6):719–720PubMedGoogle Scholar
  22. 22.
    Warburg O (1926) Über den Stoffwechsel der Tumoren: arbeiten aus dem Kaiser Wilhelm-Institut für Biologie, Berlin-Dahlem. Springer, BerlinGoogle Scholar
  23. 23.
    Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N et al (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170(1):223–230PubMedGoogle Scholar
  24. 24.
    Brown RS, Wahl RL (1993) Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72(10):2979–2985PubMedGoogle Scholar
  25. 25.
    Au KK, Liong E, Li JY, Li PS, Liew CC, Kwok TT et al (1997) Increases in mRNA levels of glucose transporters types 1 and 3 in Ehrlich ascites tumor cells during tumor development. J Cell Biochem 67(1):131–135PubMedGoogle Scholar
  26. 26.
    Aloj L, Caraco C, Jagoda E, Eckelman WC, Neumann RD (1999) Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Res 59(18):4709–4714PubMedGoogle Scholar
  27. 27.
    Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34(3):414–419PubMedGoogle Scholar
  28. 28.
    Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1996) Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 37(6):1042–1047PubMedGoogle Scholar
  29. 29.
    Wahl RL, Henry CA, Ethier SP (1992) Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology 183(3):643–647PubMedGoogle Scholar
  30. 30.
    Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36(9):1625–1632PubMedGoogle Scholar
  31. 31.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33(11):1972–1980PubMedGoogle Scholar
  32. 32.
    Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1995) Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma: I. Are inflammatory cells important? J Nucl Med 36(10):1854–1861PubMedGoogle Scholar
  33. 33.
    Higashi K, Clavo AC, Wahl RL (1993) In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 34(5):773–779PubMedGoogle Scholar
  34. 34.
    Spaepen K, Stroobants S, Dupont P, Bormans G, Balzarini J, Verhoef G et al (2003) [(18)F]FDG PET monitoring of tumour response to chemotherapy: does [(18)F]FDG uptake correlate with the viable tumour cell fraction? Eur J Nucl Med Mol Imaging 30(5):682–688PubMedGoogle Scholar
  35. 35.
    Paul R (1987) Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med 28(3):288–292PubMedGoogle Scholar
  36. 36.
    Moog F, Bangerter M, Diederichs CG, Guhlmann A, Kotzerke J, Merkle E et al (1997) Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. Radiology 203(3):795–800PubMedGoogle Scholar
  37. 37.
    Bangerter M, Kotzerke J, Griesshammer M, Elsner K, Reske SN, Bergmann L (1999) Positron emission tomography with 18-fluorodeoxyglucose in the staging and follow-up of lymphoma in the chest. Acta Oncol 38(6):799–804PubMedGoogle Scholar
  38. 38.
    Buchmann I, Reinhardt M, Elsner K, Bunjes D, Altehoefer C, Finke J et al (2001) 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer 91(5):889–899PubMedGoogle Scholar
  39. 39.
    Schoder H, Meta J, Yap C, Ariannejad M, Rao J, Phelps ME et al (2001) Effect of whole-body (18)F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med 42(8):1139–1143PubMedGoogle Scholar
  40. 40.
    Sasaki M, Kuwabara Y, Koga H, Nakagawa M, Chen T, Kaneko K et al (2002) Clinical impact of whole body FDG-PET on the staging and therapeutic decision making for malignant lymphoma. Ann Nucl Med 16(5):337–345PubMedGoogle Scholar
  41. 41.
    Delbeke D, Martin WH, Morgan DS, Kinney MC, Feurer I, Kovalsky E et al (2002) 2-deoxy-2-[F-18]fluoro-D-glucose imaging with positron emission tomography for initial staging of Hodgkin’s disease and lymphoma. Mol Imaging Biol 4(1):105–114PubMedGoogle Scholar
  42. 42.
    Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N et al (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206(2):475–481PubMedGoogle Scholar
  43. 43.
    Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK (1998) Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 25(7):721–728PubMedGoogle Scholar
  44. 44.
    Hoh CK, Glaspy J, Rosen P, Dahlbom M, Lee SJ, Kunkel L et al (1997) Whole-body FDG-PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med 38(3):343–348PubMedGoogle Scholar
  45. 45.
    Jerusalem G, Warland V, Najjar F, Paulus P, Fassotte MF, Fillet G et al (1999) Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl Med Commun 20(1):13–20PubMedGoogle Scholar
  46. 46.
    Shah N, Hoskin P, McMillan A, Gibson P, Lowe J, Wong WL (2000) The impact of FDG positron emission tomography imaging on the management of lymphomas. Br J Radiol 73(869):482–487PubMedGoogle Scholar
  47. 47.
    Wiedmann E, Baican B, Hertel A, Baum RP, Chow KU, Knupp B et al (1999) Positron emission tomography (PET) for staging and evaluation of response to treatment in patients with Hodgkin’s disease. Leuk Lymphoma 34(5–6):545–551PubMedGoogle Scholar
  48. 48.
    Partridge S, Timothy A, O’Doherty MJ, Hain SF, Rankin S, Mikhaeel G (2000) 2-Fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann Oncol 11(10):1273–1279PubMedGoogle Scholar
  49. 49.
    Hueltenschmidt B, Sautter-Bihl ML, Lang O, Maul FD, Fischer J, Mergenthaler HG et al (2001) Whole body positron emission tomography in the treatment of Hodgkin disease. Cancer 91(2):302–310PubMedGoogle Scholar
  50. 50.
    Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P et al (2001) Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica 86(3):266–273PubMedGoogle Scholar
  51. 51.
    Menzel C, Dobert N, Mitrou P, Mose S, Diehl M, Berner U et al (2002) Positron emission tomography for the staging of Hodgkin’s lymphoma–increasing the body of evidence in favor of the method. Acta Oncol 41(5):430–436PubMedGoogle Scholar
  52. 52.
    Weihrauch MR, Re D, Bischoff S, Dietlein M, Scheidhauer K, Krug B et al (2002) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann Hematol 81(1):20–25PubMedGoogle Scholar
  53. 53.
    Cohade C, Wahl RL (2003) Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 33(3):228–237PubMedGoogle Scholar
  54. 54.
    Naumann R, Beuthien-Baumann B, Reiss A, Schulze J, Hanel A, Bredow J et al (2004) Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer 90(3):620–625PubMedCentralPubMedGoogle Scholar
  55. 55.
    Munker R, Glass J, Griffeth LK, Sattar T, Zamani R, Heldmann M et al (2004) Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann Oncol 15(11):1699–1704PubMedGoogle Scholar
  56. 56.
    Hutchings M, Loft A, Hansen M, Pedersen LM, Berthelsen AK, Keiding S et al (2006) Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica 91(4):482–489PubMedGoogle Scholar
  57. 57.
    Rigacci L, Vitolo U, Nassi L, Merli F, Gallamini A, Pregno P et al (2007) Positron emission tomography in the staging of patients with Hodgkin’s lymphoma. A prospective multicentric study by the Intergruppo Italiano Linfomi. Ann Hematol 86(12):897–903PubMedGoogle Scholar
  58. 58.
    Bangerter M, Moog F, Buchmann I, Kotzerke J, Griesshammer M, Hafner M et al (1998) Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 9(10):1117–1122PubMedGoogle Scholar
  59. 59.
    Carr R, Barrington SF, Madan B, O’Doherty MJ, Saunders CA, van der Walt J et al (1998) Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 91(9):3340–3346PubMedGoogle Scholar
  60. 60.
    Pakos EE, Fotopoulos AD, Ioannidis JP (2005) 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med 46(6):958–963PubMedGoogle Scholar
  61. 61.
    Allen-Auerbach M, Quon A, Weber WA, Obrzut S, Crawford T, Silverman DH et al (2004) Comparison between 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol 6(6):411–416PubMedGoogle Scholar
  62. 62.
    El-Galaly TC, d'Amore F, Mylam KJ, de Nully Brown P, Bøgsted M, Bukh A et al (2012) Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol 30(36):4508–4514PubMedGoogle Scholar
  63. 63.
    Borra A, El Galaly Tc, Zaucha JM, Rigacci L, Rapezzi D et al (2013) Upstaging by PET-ascertained bone and bone marrow involvement in Hodgkin lymphoma-definitions matter [abstract]. Haematologica 2013; 98(2): Abstract 113Google Scholar
  64. 64.
    Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Müeller S et al (2014) The role of imaging in the staging and response assessment of lymphoma: consensus of the ICML Imaging Working Group. J Clin Oncol 32:3048–3058Google Scholar
  65. 65.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(1):122S–150SPubMedCentralPubMedGoogle Scholar
  66. 66.
    Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJ, Lammertsma AA (2000) Monitoring response to therapy in cancer using [18f]-2-fluoro-2-deoxy- d-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 27(6):731–743PubMedGoogle Scholar
  67. 67.
    Tomasi G, Turkheimer F, Aboagye E (2012) Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol 14(2):131–146PubMedGoogle Scholar
  68. 68.
    Dibble EH, Alvarez ACL, Truong MT, Mercier G, Cook EF, Subramaniam RM (2012) 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging. J Nucl Med 53:709–715PubMedGoogle Scholar
  69. 69.
    Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, Vanderlinden B, Buvat I (2010) Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J Nucl Med 51:268–276PubMedGoogle Scholar
  70. 70.
    Daisne JF, Duprez T, Weynand B et al (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging and FGD PET and validation with surgical specimen. Radiology 233:93–100PubMedGoogle Scholar
  71. 71.
    Riegel AC et al (2006) Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 65:726–732PubMedGoogle Scholar
  72. 72.
    Nestle U et al (2007) Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:453–462PubMedGoogle Scholar
  73. 73.
    Schinagl DA, Vogel WV, Hoffmann AL et al (2007) Comparison of five segmentation tools for 18F-Fluoro-deoxy-glucosepositron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 69:1282–1289PubMedGoogle Scholar
  74. 74.
    Werner-Wasik M, Nelson AD, Choi W et al (2012) What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys 82:1164–1171PubMedGoogle Scholar
  75. 75.
    Gobbi PG, Ghirardelli ML, Solcia M, Di Giulio G, Merli F, Tavecchia L (2001) Image-aided estimate of tumor burden in Hodgkin’s disease: evidence of its primary prognostic importance. J Clin Oncol 19:1388–1394PubMedGoogle Scholar
  76. 76.
    Gobbi PG, Bergonzi M, Bassi E, Merli F, Coriani C, Stelitano C, Iannitto E, Federico M (2012) Tumor burden in Hodgkin’s lymphoma can be reliably estimated from a few staging parameters. Oncol Rep 28(3):815–820PubMedGoogle Scholar
  77. 77.
    Song MK, Chung JS, Lee JJ, Jeong SY, Lee SM, Hong JS et al (2013) Metabolic tumor volume by positron emission tomography⁄computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin’s lymphoma. Cancer Sci 104:1656–1661PubMedGoogle Scholar
  78. 78.
    Meignan M, Barrington S, Itti E, Haioun C, Polliack A (2014) Report of the 4th International Workshop on Positron Emission Tomography il Lymphoma held in Menton, France. 3–5 October 2012. Leuk Lymphoma 55:31–37PubMedGoogle Scholar
  79. 79.
    Gallamini A, Rigacci L, Merli F, Nassi L, Bosi A, Capodanno I et al (2006) The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin’s disease. Haematologica 91(4):475–481PubMedGoogle Scholar
  80. 80.
    Kostakoglu L, Goldsmith SJ, Leonard JP, Christos P, Furman RR, Atasever T et al (2006) FDG-PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic Hodgkin disease. Cancer 107(11):2678–2687PubMedGoogle Scholar
  81. 81.
    Romer W, Hanauske AR, Ziegler S, Thodtmann R, Weber W, Fuchs C et al (1998) Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 91(12):4464–4471PubMedGoogle Scholar
  82. 82.
    MacManus MP, Seymour J, Hicks RJ (2007) Overview of early response assessment in lymphoma with FDG-PET. Cancer Imaging 7:10–18PubMedCentralPubMedGoogle Scholar
  83. 83.
    Kostakoglu L (2008) Early prediction of response to therapy: the clinical implications in Hodgkin’s and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 35:1413–1420PubMedGoogle Scholar
  84. 84.
    Gallamini A, Fiore F, Sorasio R, Meignan M (2009) Interim positron emission tomography scan in Hodgkin lymphoma: definitions, interpretation rules, and clinical validation. Leuk Lymphoma 50:1761–1764PubMedGoogle Scholar
  85. 85.
    Meignan M, Itti E, Gallamini A, Haioun C (2009) Interim 18F-fluorodeoxyglucose positron emission tomography in diffuse large B-cell lymphoma: qualitative or quantitative interpretation–where do we stand? Leuk Lymphoma 50:1753–1756PubMedGoogle Scholar
  86. 86.
    Hutchings M, Mikhaeel NG, Fields PA, Nunan T, Timothy AR (2005) Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann Oncol 16(7):1160–1168PubMedGoogle Scholar
  87. 87.
    Zinzani PL, Tani M, Fanti S, Alinari L, Musuraca G, Marchi E et al (2006) Early positron emission tomography (PET) restaging: a predictive final response in Hodgkin’s disease patients. Ann Oncol 17(8):1296–1300PubMedGoogle Scholar
  88. 88.
    Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M et al (2007) Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol 25(24):3746–3752PubMedGoogle Scholar
  89. 89.
    Gallamini A, Viviani S, Bonfante V, Levis A, Di Raimondo F, Merli F et al (2007) Early interim FDG-PET during intensified BEACOPP therapy shows a lower predictive value than during conventional ABVD chemotherapy. Haematologica 92(s5):71Google Scholar
  90. 90.
    Avigdor A, Bulvik S, Dann EJ, Levi I, Perez-Avraham G, Shemtov N et al (2007) Combined ESCBEACOPP-ABVD therapy for advanced Hodgkin’s lymphoma patients with high IPS score: an effective regimen and low positive predictive value of early FDG-PET/CT. Haematologica 92(s5):66Google Scholar
  91. 91.
    Markova J, Kobe C, Skopalova M, Klaskova K, Dedeckova K, Plutschow A, Eich HT, Dietlein M, Engert A, Kozak T (2009) FDG–PET for assessment of early treatment response after four cycles of chemotherapy in patients with advanced-stage Hodgkin’s lymphoma has a high negative predictive value. Ann Oncol 20(7):1270–1274, ePub Feb 2009PubMedGoogle Scholar
  92. 92.
    Kasamon YL, Jones RJ, Wahl RL (2007) Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med 48:19S–27SPubMedGoogle Scholar
  93. 93.
    Hutchings M, Kostakoglu L, Zaucha JM, Malkowski B, Biggi A, Danielewicz I, Loft A, Specht L, Lamonica D, Czuczman MS, Nanni C, Zinzani PL, Diehl L, Stern R, Coleman M (2014) In-vivo treatment sensitivity testing with PET/CT after one cycle of chemotherapy for Hodgkin lymphoma. J Clin Oncol 32:2705–2711PubMedGoogle Scholar
  94. 94.
    Zijlstra JM, Lindauer-van der Werf G, Hoekstra OS, Hooft L, Riphagen II, Huijgens PC (2006) 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 91(4):522–529PubMedGoogle Scholar
  95. 95.
    Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586PubMedGoogle Scholar
  96. 96.
    Brepoels L, Stroobants S, De Wever W, Spaepen K, Vandenberghe P, Thomas J et al (2007) Hodgkin lymphoma: response assessment by revised International Workshop Criteria. Leuk Lymphoma 48(8):1539–1547PubMedGoogle Scholar
  97. 97.
    Naumann R, Vaic A, Beuthien-Baumann B, Bredow J, Kropp J, Kittner T, Wolf-Gunter F, Ehninger G (2001) Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Br J Haematol 115:793–800PubMedGoogle Scholar
  98. 98.
    Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P et al (1999) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 94(2):429–433PubMedGoogle Scholar
  99. 99.
    Terasawa T, Nihashi T, Hotta T, Nagai H (2008) 18F-FDG PET for posttherapy assessment of Hodgkin’s disease and aggressive Non-Hodgkin’s lymphoma: a systematic review. J Nucl Med 49(1):13–21PubMedGoogle Scholar
  100. 100.
    Kobe C, Dietlein M, Franklin J, Markova J, Lohri A, Amthauer H et al (2008) Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. Blood 112:3989–3994PubMedCentralPubMedGoogle Scholar
  101. 101.
    Sher DJ, Mauch PM, Van Den Abbeele A, LaCasce AS, Czerminski J, Ng AK (2009) Prognostic significance of mid- and post-ABVD PET imaging in Hodgkin’s lymphoma: the importance of involved-field radiotherapy. Ann Oncol. 2009; ePub. Edwards CL, Hayes RL (1969) Tumor scanning with gallium-67 citrate. J Nucl Med 10:103–105Google Scholar
  102. 102.
    Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A et al (2012) Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 noninferiority trial. Lancet 379(9828):1791–1799PubMedGoogle Scholar
  103. 103.
    Magagnoli M, Marzo K, Balzarotti M, Rodari M, Mazza R, Giordano L et al (2011) Dimension of residual CT scan mass in Hodgkin’s lymphoma (HL) is a negative prognostic factor in patients with PET negative after chemo+/−radiotherapy. Blood 118:93 [Abstract]Google Scholar
  104. 104.
    Savage KJ, Connors JM, Klasa RJ et al (2011) The use of FDG-PET to guide consolidative radiotherapy in patients with advanced-stage Hodgkin lymphoma with residual abnormalities on CT scan following ABVD chemotherapy. J Clin Oncol 29(Suppl):8034 [Abstract]Google Scholar
  105. 105.
    Girinsky T, Pichenot C, Beaudre A, Ghalibafian M, Lefkopoulos D (2006) Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin’s disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes? Int J Radiat Oncol Biol Phys 64(1):218–226PubMedGoogle Scholar
  106. 106.
    Girinsky T, van der Maazen R, Specht L, Aleman B, Poortmans P, Lievens Y et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 79(3):270–277PubMedGoogle Scholar
  107. 107.
    Specht L, Gray RG, Clarke MJ, Peto R (1998) Influence of more extensive radiotherapy and adjuvant chemotherapy on long-term outcome of early-stage Hodgkin’s disease: a meta-analysis of 23 randomized trials involving 3,888 patients. International Hodgkin’s Disease Collaborative Group. J Clin Oncol 16(3):830–843PubMedGoogle Scholar
  108. 108.
    Yahalom J (2005) Transformation in the use of radiation therapy of Hodgkin lymphoma: new concepts and indications lead to modern field design and are assisted by PET imaging and intensity modulated radiation therapy (IMRT). Eur J Haematol Suppl 66:90–97PubMedGoogle Scholar
  109. 109.
    Gregoire V (2004) Is there any future in radiotherapy planning without the use of PET: unraveling the myth. Radiother Oncol 73(3):261–263PubMedGoogle Scholar
  110. 110.
    Jarritt PH, Carson KJ, Hounsell AR, Visvikis D (2006) The role of PET/CT scanning in radiotherapy planning. Br J Radiol 79(Spec No 1):S27–S35PubMedGoogle Scholar
  111. 111.
    Berthelsen AK, Dobbs J, Kjellén E, Landberg T, Möller T, Nilsson P et al (2007) What’s new in target volume definition for radiologists in ICRU Report 71? How can the ICRU volume definitions be integrated in clinical practice? Cancer Imaging. 7(1):104–116Google Scholar
  112. 112.
    Specht L (2007) 2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas. Semin Radiat Oncol 17(3):190–197PubMedGoogle Scholar
  113. 113.
    Van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V et al (2006) The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 32(4):245–260PubMedGoogle Scholar
  114. 114.
    Dizendorf EV, Baumert BG, von Schulthess GK, Lutolf UM, Steinert HC (2003) Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J Nucl Med 44(1):24–29PubMedGoogle Scholar
  115. 115.
    Lee YK, Cook G, Flower MA, Rowbottom C, Shahidi M, Sharma B et al (2004) Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol 73(3):277–283PubMedGoogle Scholar
  116. 116.
    Girinsky T, Ghalibafian M, Bonniaud G, Bayla A, Magne N, Ferreira I et al (2007) Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol 85:178–186PubMedGoogle Scholar
  117. 117.
    Hutchings M, Berthelsen AK, Loft A, Hansen M, Specht L (2007) Clinical impact of FDG-PET/CT in the planning of radiotherapy for early stage Hodgkin lymphoma. Eur J Haematol 78(3):206–12PubMedGoogle Scholar
  118. 118.
    Krasin MJ, Hudson MM, Kaste SC (2004) Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process. Pediatr Radiol 34(3):214–221PubMedGoogle Scholar
  119. 119.
    Schmitz N, Pfistner B, Sextro M, Sieber M, Carella AM, Haenel M et al (2002) Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet 359(9323):2065–2071Google Scholar
  120. 120.
    Tarella C, Cuttica A, Vitolo U, Liberati M, Di Nicola M, Cortelazzo S et al (2003) High-dose sequential chemotherapy and peripheral blood progenitor cell autografting in patients with refractory and/or recurrent Hodgkin lymphoma. Cancer 97:2748–2759PubMedGoogle Scholar
  121. 121.
    Gallamini A (2009) The prognostic role of positron emission tomography scan in Hodgkin’s lymphoma. The education program for the annual congress of the European Hematology Association. Haematologica 3:144–150Google Scholar
  122. 122.
    Jabbour E, Hosing C, Ayers G et al (2007) Pretransplant positive positron emission tomography/gallium scans predict poor outcome in patients with recurrent/refractory Hodgkin lymphoma. Cancer 109:2481–2489PubMedGoogle Scholar
  123. 123.
    Schot BW, Zijlstra JM, Sluiter WJ et al (2007) Early FDG-PET assessment in combination with clinical risk scores determines prognosis in recurring lymphoma. Blood 109:486–491PubMedGoogle Scholar
  124. 124.
    Spaepen K, Stroobants S, Dupont P et al (2003) Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102:53–59PubMedGoogle Scholar
  125. 125.
    Filmont JE, Czernin J, Yap C et al (2003) Value of F-18 fluorodeoxyglucose positron emission tomography for predicting the clinical outcome of patients with aggressive lymphoma prior to and after autologous stem-cell transplantation. Chest 124:608–613PubMedGoogle Scholar
  126. 126.
    Svoboda J, Andreadis C, Elstrom R et al (2006) Prognostic value of FDG-PET scan imaging in lymphoma patients undergoing autologous stem cell transplantation. Bone Marrow Transplant 38:211–216PubMedGoogle Scholar
  127. 127.
    Crocchiolo R, Canevari C, Assanelli A et al (2008) Pre-transplant 18FDG-PET predicts outcome in lymphoma patients treated with high-dose sequential chemotherapy followed by autologous stem cell transplantation. Leuk Lymphoma 49:727–733PubMedGoogle Scholar
  128. 128.
    Elstrom R, Guan L, Baker G, Nakhoda K, Vergilio JA, Zhuang H et al (2003) Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 101:3875–3876PubMedGoogle Scholar
  129. 129.
    Tsukamoto N, Kojima M, Hasegawa M, Oriuchi N, Matsushima T, Yokohama A et al (2007) The usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and a comparison of 18F-FDG-PET with 67Gallium scintigraphy in the evaluation of lymphoma. Cancer 110:652–659PubMedGoogle Scholar
  130. 130.
    Moskowitz CH, Matasar MJ, Zelenetz AD et al (2012) Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood 119(7):1665–1670PubMedCentralPubMedGoogle Scholar
  131. 131.
    Moskowitz A, Shoder H, Gerecitano JF, Hamlin P, Horwitz S, Matasar M et al (2013) FDG-PET adapted sequential therapy with Brentuximab Vedotin and augmented ICE followed by autologous stem cell transplant for relapsed and refractory Hodgkin lymphoma. Blood 122(21):2099 [abstract]Google Scholar
  132. 132.
    Chen RW, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ et al (2011) Results from a pivotal phase II study of Brentuximab Vedotin (SGN-35) in patients with relapsed or refractory Hodgkin lymphoma (HL) [abstract]. J Clin Oncol 29 (suppl); Abstract 8031Google Scholar
  133. 133.
    Kahraman D, Theurich S, Rothe A, Kuhnert G, Sasse S, Sheid C et al (2014) 18-Fluorodeoxyglucose positron emission tomography/computed tomography for assessment of response to Brentuximab Vedotin treatment in relapsed and refractory Hodgkin lymphoma. Leuk Lymphoma 55(4):811–816Google Scholar
  134. 134.
    Zinzani PL, Viviani S, Anastasia A, Vitolo U, Luminari S, Zaja F et al (2013) Brentuximab Vedotin in relapsed/refractory Hodgkin lymphoma: the Italian experience and results of its use in daily clinical practice outside clinical rials. Haematologica 98:1232–1236PubMedCentralPubMedGoogle Scholar
  135. 135.
    Gibb A, Jones C, Bloor A, Kulkarni S, Illidge T, Linton K et al (2013) Brentuximab Vedotin in CD30+ lymphomas: a bridge to allogeneic transplantation in approximately one quarter of patients treated on a named Patient Programme at a single UK center. Haematologica 98(4):611–614PubMedCentralPubMedGoogle Scholar
  136. 136.
    Armitage JO, Loberiza FR (2006) Is there a place for routine imaging for patients in complete remission from aggressive lymphoma? Ann Oncol 17(6):883–884PubMedGoogle Scholar
  137. 137.
    Radford JA, Eardley A, Woodman C, Crowther D (1997) Follow up policy after treatment for Hodgkin’s disease: too many clinic visits and routine test? A review of hospital records. Br Med J 314(7077):343–346Google Scholar
  138. 138.
    Gallamini A, Kostakoglu L (2012) Positron emission tomography/computed tomography surveillance in patients with lymphoma: a fox hunt? Haematologica 97:1–3Google Scholar
  139. 139.
    Petrausch U, Samaras P, Veit-Haibach P, Tschopp A, Soyka JD, Knuth A et al (2010) Hodgkin’s lymphoma in remission after first-line therapy: which patients need FDG-PET/CT for follow-up? Ann Oncol 21(5):1053–1057PubMedGoogle Scholar
  140. 140.
    Zinzani PL, Stefoni V, Tani M, Fanti S, Musuraca G, Castellucci P et al (2009) Role of [18F]fluorodeoxyglucose positron emission tomography scan in the follow-up of lymphoma. J Clin Oncol 27, ePub March 2009Google Scholar
  141. 141.
    Young RC, Canellos GP, Chabner BA, Hubbard SM, DE Vita VT Jr (1978) Patterns of relapse in advanced Hodgkin’s disease treated with combination chemotherapy. Cancer 42(2 Suppl):1001–1007PubMedGoogle Scholar
  142. 142.
    El-Galaly TC, Mylam KJ, Brown P, Specht L, Christiansen I, Munksgaard L et al (2012) Positron emission tomography/computed tomography surveillance in patients with Hodgkin’s lymphoma in first remission has a low positive predictive value and high costs. Haematologica 2012;97(6):931–936Google Scholar
  143. 143.
    Lee AI, Zuckerman DS, Van den Abbeele AD, Aquino SL, Crowley D, Toomey C et al (2010) Surveillance imaging of Hodgkin lymphoma patients in first remission. Cancer 116(16):3835–3842PubMedGoogle Scholar
  144. 144.
    Surbone A, Longo DL, DeVita VT Jr, Ihde DC, Duffey PL, Jaffe ES et al (1988) Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy: significance and management. J Clin Oncol 6:1832–1837PubMedGoogle Scholar
  145. 145.
    Dittmann H, Sokler M, Kollmannsberger C, Dohmen BM, Baumann C, Kopp A et al (2001) Comparison of 18FDG-PET with CT scans in the evaluation of patients with residual and recurrent Hodgkin’s lymphoma. Oncol Rep 8(6):1393–1399PubMedGoogle Scholar
  146. 146.
    Jerusalem G, Beguin Y, Fassotte MF, Belhocine T, Hustinx R, Rigo P et al (2003) Early detection of relapse by whole-body positron emission tomography in the follow-up of patients with Hodgkin’s disease. Ann Oncol 14(1):123–130PubMedGoogle Scholar
  147. 147.
    El-Galaly TC, Mylam KJ, Bøgsted M, Brown P, Rossing M, Gang AO et al (2014) Role of routine imaging in detecting recurrent lymphoma: A review of 258 patients with relapsed aggressive non-Hodgkin and Hodgkin lymphoma. Am J Hematol 89(6):575–580Google Scholar
  148. 148.
    Raemekers JM, Andre MP, Federico M et al (2014) Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 32(12):1188–1194Google Scholar
  149. 149.
    Radford J, Barrington S, Counsell N, Pettengell R, Johnson P, Wimperis J et al (2012) Involved field radiotherapy versus no further treatment in patients with clinical stages IA and IIA Hodgkin lymphoma and a ‘negative’ PET scan after 3 cycles ABVD. Results of the UK NCRI RAPID trial. Blood (ASH Ann Meet Abstr) 120:547Google Scholar
  150. 150.
    Oza AM, Ganesan TS, Leahy M, Gregory W, Lim J, Dadiotis L et al (1993) Patterns of survival in patients with Hodgkin’s disease: long follow up in a single centre. Ann Oncol 4(5):385–392PubMedGoogle Scholar
  151. 151.
    Diehl V, Franklin J, Pfreundschuh M, Lathan B, Paulus U, Hasenclever D et al (2003) Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med 348(24):2386–2395PubMedGoogle Scholar
  152. 152.
    Positron Emission Tomography (PET)-adapted chemotherapy in advanced Hodgkin lymphoma (HL)Positron Emission Tomography (PET)-adapted chemotherapy in advanced Hodgkin lymphoma (HL).
  153. 153.
    Fludeoxyglucose F 18-PET/CT imaging in assessing response to chemotherapy in patients with newly diagnosed stage II, stage III, or stage IV Hodgkin lymphoma Fludeoxyglucose F 18-PET/CT imaging in assessing response to chemotherapy in patients with newly diagnosed stage II, stage III, or stage IV Hodgkin lymphoma.
  154. 154.
    High-dose chemotherapy and stem cell transplantation, in patients PET-2 positive, after 2 courses of ABVD and comparison of RT versus no RT in PET-2 negative patients (HD0801)High-dose chemotherapy and stem cell transplantation, in patients PET-2 positive, after 2 courses of ABVD and comparison of RT versus no RT in PET-2 negative patients (HD0801).
  155. 155.
    Gallamini A, Rossi A, Patti C, Picardi M, Di Raimondo F, Cantonetti M (2012) Early treatment intensification in advanced-stage high-risk Hodgkin lymphoma (HL) patients, with a positive FDG-PET scan after two ABVD courses – first interim analysis of the GITIL/FIL HD0607 clinical trial. Blood (ASH Ann Meet Abstr) 120:550Google Scholar
  156. 156.
    Johnson P, Federico M, Fossa A, Barrington S, Kirkwood A, Roberts T, Trotman J et al (2013) Response rates and toxicity or response-adapted therapy in advanced Hodgkin lymphoma: initial results from the international RATHL study [Abstract]. Haematologia 98(2): Abstract T003Google Scholar
  157. 157.
    Press OW, LeBlanc M, Rimsza LM, Schoder H, Friedberg W, Evens AM (2013) A phase II trial or response-adapted therapy of stages III-IV lymphoma using early interim FDG-PET imaging: U.S. intergroup trial. S0816. Hematol Oncol 31(Suppl 1):124Google Scholar
  158. 158.
    Zinzani P, Bonfichi M, Rossi G, Zaja F, Vitolo U, Pavone V (2013) Interim results of the IIL –HD 0801 study on early salvage with high-dose chemotherapy and stem cell transplantation in advanced stage Hodgkin’s lymphoma patients with positive positron emission tomography after two courses of chemotherapy. Hematol Oncol 31(Suppl 1):019 [abstr.]Google Scholar
  159. 159.
    HD18 for advanced stages in Hodgkin’s lymphoma HD18 for advanced stages in Hodgkins lymphoma.
  160. 160.
    Barrington SF, Qian W, Somer EJ et al (2009) Concordance between four European Centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. [Abstract]. 22nd annual EANM meeting. Barcelona, 10 Oct 2009. Abstract n° S-347Google Scholar
  161. 161.
    Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M et al (2013) International validation study for interim PET in ABVD-treated, advanced- stage Hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med 54:683–690PubMedGoogle Scholar
  162. 162.
    Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregianin M et al (2014) The predictive role of interim positron emission tomography on Hodgkin lymphoma treatment outcome is confirmed using the 5-point scale interpretation criteria. Haematologica. doi: 10.3324/haematol.2013.103218 PubMedCentralGoogle Scholar
  163. 163.
    Itti E, Meignan M, Berriolo-Riedinger A, Biggi A, Cashen AF, Véra P, Tilly H et al (2013) An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and ΔSUVmax. Eur J Nucl Med Mol Imaging 40(9):1312–1320PubMedGoogle Scholar
  164. 164.
    Crocchiolo R, Fallanca F, Giovacchini G, Ferreri AJ, Assanelli A, Verona C et al (2009) Role of 18FDG-PET/CT in detecting relapse during follow-up of patients with Hodgkin’s lymphoma. Ann Hematol 88:1229–1236PubMedGoogle Scholar
  165. 165.
    Fallanca F, Picchio M, Crivellaro C, Mapelli P, Samanes Gajate AM, Sabattini E et al (2012) Unusual presentation of sarcoid-like reaction on bone marrow level associated with mediastinal lymphadenopathy on 18F-FDG-PET/CT resembling an early recurrence of Hodgkin’s lymphoma. Rev Esp Med Nucl Imagen Mol 31(4):207–209PubMedGoogle Scholar
  166. 166.
    Tychyj-Pinel C, Ricard F, Fulham M, Fournier M, Meignan M, Lamy T et al (2014) PET/CT assessment in follicular lymphoma using standardized criteria: central review in the PRIMA study. Eur J Nucl Med Mol Imaging 41(3):408–415PubMedGoogle Scholar
  167. 167.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca (2014) Recommendations for initial evaluation, staging and response assessment of Hodgkin and Non Hodgkin lymphoma – the Lugano classification. J Clin Oncol. pii: JCO.2013.54.8800. [Epub ahead of print]Google Scholar
  168. 168.
    Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44(9):1426–1431PubMedGoogle Scholar
  169. 169.
    Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA (2005) FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics 25(1):191–207PubMedGoogle Scholar
  170. 170.
    Sandherr M, von Schilling C, Link T, Stock K, von Bubnoff N, Peschel C et al (2001) Pitfalls in imaging Hodgkin’s disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann Oncol 12(5):719–722PubMedGoogle Scholar
  171. 171.
    Martiat P, Ferrant A, Labar D, Cogneau M, Bol A, Michel C et al (1988) In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med 29(10):1633–1637PubMedGoogle Scholar
  172. 172.
    Shields AF, Mankoff DA, Link JM, Graham MM, Eary JF, Kozawa SM et al (1998) Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 39(10):1757–1762PubMedGoogle Scholar
  173. 173.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336PubMedGoogle Scholar
  174. 174.
    Buchmann I, Neumaier B, Schreckenberger M, Reske S (2004) [18F]3'-deoxy-3'-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations–a pilot study. Cancer Biother Radiopharm 19(4):436–442PubMedGoogle Scholar
  175. 175.
    Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66(22):11055–11061PubMedGoogle Scholar
  176. 176.
    Kasper B, Egerer G, Gronkowski M, Haufe S, Lehnert T, Eisenhut M et al (2007) Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk Lymphoma 48(4):746–753PubMedGoogle Scholar
  177. 177.
    Buck AK, Kratochwil C, Glatting G, Juweid M, Bommer M, Tepsic D et al (2007) Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur J Nucl Med Mol Imaging 34(11):1775–1782PubMedGoogle Scholar
  178. 178.
    Graf N, Herrmann K, den Hollander J, Fend F, Schuster T, Wester HJ et al (2008) Imaging proliferation to monitor early response of lymphoma to cytotoxic treatment. Mol Imaging Biol 10(6):349–355PubMedGoogle Scholar
  179. 179.
    Hoffman RM (1984) Altered methionine metabolism. DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta 738(1–2):49–87PubMedGoogle Scholar
  180. 180.
    Stern PH, Wallace CD, Hoffman RM (1984) Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119(1):29–34PubMedGoogle Scholar
  181. 181.
    Wheatley DN (1982) On the problem of linear incorporation of amino acids into cell protein. Experientia 38(7):818–820PubMedGoogle Scholar
  182. 182.
    Nuutinen J, Leskinen S, Lindholm P, Söderström KO, Någren K, Huhtala S et al (1998) Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur J Nucl Med 25(7):729–735PubMedGoogle Scholar
  183. 183.
    Al-Nabhani KZ, Syed R, Michopoulou S et al (2014) Qualitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med 55:88–94PubMedGoogle Scholar
  184. 184.
    King AD, Ahuja AT, Yeung DKW, Fong DKY, Lee YYP, Kenny I et al (2007) Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging. Radiology 245:806–813PubMedGoogle Scholar
  185. 185.
    Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedCentralPubMedGoogle Scholar
  186. 186.
    Lencioni R, Cioni D, Bertolazzi C et al (2002) Tissue harmonic and contrast-specific imaging: back to grey scale in ultrasound. Eur Radiol 12:151–165PubMedGoogle Scholar
  187. 187.
    Oktar SO, Yucel C, Ozdemir H, Uluturk A, Isik S et al (2003) Comparison of conventional sonography, real-time compound sonography, tissue harmonic compound sonography of abdominal and pelvic lesions. AJR Am J Roentgenol 181:1341–1347PubMedGoogle Scholar
  188. 188.
    Picardi M, Soricelli A, Pane F, Zeppa P, Nicolai E, De Laurentis M et al (2009) Contrast-enhanced harmonic compound US of the spleen to increase staging accuracy in patients with Hodgkin lymphoma: a prospective study. Radiology 251:574–582PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Andrea Gallamini
    • 1
    • 2
    Email author
  • Martin Hutchings
    • 3
    • 4
  • Anna Borra
    • 2
  1. 1.Department of Research and Medical Innovation, A Lacassagne Cancer CenterNice UniversityNiceFrance
  2. 2.Hematology DepartmentAzienda Ospedaliera S. Croce e CarleCuneoItaly
  3. 3.Department of HematologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
  4. 4.Department of OncologyCopenhagen University HospitalCopenhagenDenmark

Personalised recommendations