Skip to main content

Determination of Permittivity from Propagation Constant Measurements in Optical Fibers

  • Conference paper
  • First Online:
Inverse Problems and Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 120))

Abstract

We present a new method for determination of dielectric permittivity constant using measurements of fundamental mode of propagation constant in optical fiber’s. We first solve the forward spectral problem to compute the dispersion curve for the fundamental mode. Then using this curve we present an effective and accurate spline-collocation method for calculation of permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asadzadeh, M., Beilina, L.: A posteriori error analysis in a globally convergent numerical method for a hyperbolic coefficient inverse problem. Inverse Probl. 26, 11500–7 (2010)

    Google Scholar 

  2. Andresen Hatlo, M.P., Krogstad, H.E, Skaar, J.: Inverse scattering of two-dimensional photonic structures by layer stripping. J. Opt. Soc. Am. B. Opt. Phys. 4, 689–696 (2011)

    Google Scholar 

  3. Beilina, L.: Adaptive finite element method for a coefficient inverse problem for the Maxwell’s system. Appl. Anal. 90(10), 1461–1479 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Beilina, L., Johnson, C.: A posteriori error estimation in computational inverse scattering.Math. Models Appl. Sci. 1 (5), 23–35 (2005)

    Article  MathSciNet  Google Scholar 

  5. Beilina, L., Klibanov, M.V.: A globally convergent numerical method for a coefficient inverse problem.SIAM J. Sci. Comp. 31(1): 478–509 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beilina L., Klibanov M.V.: Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D. J. Inverse Ill-posed Prob. 18, 85–132 (2010a)

    Google Scholar 

  7. Beilina, L., Klibanov, M.V.: Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm. Inverse Prob. 26, 12500–9 (2010b)

    Google Scholar 

  8. Beilina, L., Klibanov, M.V.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. Springer, New York (2012a)

    Google Scholar 

  9. Beilina, L., Klibanov, M.V.: A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data. Inverse Ill-Posed Prob. 20, 513–565 (2012b)

    Google Scholar 

  10. Beilina, L., Thành, N.T., Klibanov, M.V., Fiddy, M.A.: Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation. Inverse Prob. 30, 02500–2 (2014). doi:10.1088/0266-5611/30/2/025002

    Google Scholar 

  11. Beilina, L., Thành, N. T., Klibanov, M.V., Malmberg, J. B.: Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity. Inverse Prob. 30, 105007 (2014)

    Google Scholar 

  12. Chu, M.T., Golub, G.H.: Inverce Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford University Press, New York (2005)

    Google Scholar 

  13. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  14. Eves, E., Murphy, K., Yakovlev, V.: Reconstruction of complex permittivity with neural-network-controlled FDTD modeling. J. Microw. Power Electromag. Energy. 41, 131–137 (2007)

    Google Scholar 

  15. Frolov, A., Kartchevskiy, E.: Integral Equation Methods in Optical Waveguide Theory. Springer Proceedings in Mathematics and Statistics. 52, 119–133 (2013)

    Google Scholar 

  16. Ikehata, M., Makrakis, G., Nakamura, G.: Inverse boundary value problem for ocean acoustics. Math. Methods Appl. Sci. 24, 1–8 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Janezic, M.D., Jargon, J.A.: Complex permettivity determination from propagation constant measurements. IEEE Microw. Guided Wave Lett. 9(2), 76–78 (1999)

    Article  Google Scholar 

  18. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University, Princeton (1995)

    Google Scholar 

  19. Karchevskii, E.M.: Study of spectrum of guided waves of dielectric fibers. Mathematical Methods in Electromagnetic Theory, MMET 98, Conference Proceedings. 2, 787–788 (1998)

    Google Scholar 

  20. Karchevskii, E.M.: Analysis of the eigenmode spectra of dielectric waveguides. Comput. Math. Math. Phys. 39(9), 1493–1498 (1999)

    MathSciNet  Google Scholar 

  21. Karchevskii, E.M.: The fundamental wave problem for cylindrical dielectric waveguides. Differ. Equ. 36(7), 1109–1111 (2000)

    Article  MathSciNet  Google Scholar 

  22. Karchevskii, E.M., Solov’ev, S.I.: Investigation of a spectral problem for the Helmholtz operator on the plane. Diff. Equ. 36(4), 631–634 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karchevskiy, E., Shestopalov, Y.: Mathematical and numerical analysis of dielectric waveguides by the integral equation method. Progress in Electromagnetics Research Symposium, PIERS 2013 Stockholm, 388–393 (2013)

    Google Scholar 

  24. Kartchevski, E.M., Nosich, A.I., Hanson, G.W.: Mathematical Analisys of the generalized natural modes of an inhomogeneous optical fiber. SIAM J. Appl. Math. 65(6), 2033–2048 (2005)

    Google Scholar 

  25. Klein, L.A., Swift, C.T.: An improved model for the dielectric constant of sea water at microwave frequencies, IEEE Transac. Antenna. Propag. 25(1) (1977)

    Google Scholar 

  26. Klibanov, M.V., Fiddy, M.A., Beilina, L., Pantong, N., Schenk, J.: Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem. Inverse Prob. 26(4), 04500–3 (2010)

    Article  MathSciNet  Google Scholar 

  27. Kuzhuget, A.V., Beilina, L., Klibanov, M.V., Sullivan, A., Nguyen, L., Fiddy, M.A.: Blind experimental data collected in the field and an approximately globally convergent inverse algorithm. Inverse Prob. 28, 09500–7 (2012)

    Article  Google Scholar 

  28. Nakamura, G., Sini, M.: On the near field measurement for the inverse scattering problem for ocean acoustics. Inverse Prob. 20, 13879–2 (2004)

    MathSciNet  Google Scholar 

  29. Neumaier, A.: Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 22(5), 914–923 (1985)

    Google Scholar 

  30. Pastorino, M.: Microwave Imaging. Wiley, Hoboken (2010)

    Book  Google Scholar 

  31. Ramm, A.: Multidimensional Inverse Scattering Problems. New York, Wiley (1992)

    MATH  Google Scholar 

  32. Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)

    Google Scholar 

  33. Spiridonov, A.O., Karchevskiy, E.M.: Projection methods for computation of spectral characteristics of weakly guiding optical waveguides. Proceedings of the International Conference Days on Diffraction 2013, DD 2013, 131–135 (2013)

    Google Scholar 

  34. Shestopalov, Y., Lozhechko, V.: Direct and inverse problems of the wave diffraction by screens with arbitrary finite inhomogeneities. J. Inverse Ill-Posed Prob. 11, 643–653 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shestopalov, Y., Smirnov, Y.: Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide. Inverse Prob. 26, 10500–2 (2010)

    Article  MathSciNet  Google Scholar 

  36. Shestopalov, Y., Kobayashi, K., Smirnov, Y.: Investigation of electromagnetic diffraction by a dielectric body in a waveguide using the method of volume singular integral equation.SIAM J. Appl. Maths. 70, 969–983 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stogryn, A.: Equations for calculating the dielectric constant of saline water. IEEE Trans. Microw. Theory Tech. 19(8) (1971)

    Google Scholar 

  38. Thành, N.T., Beilina, L., Klibanov M.V., Fiddy, M.A.: Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method. SIAM J. Sci. Comput. 36, B273–B293 (2014)

    Article  MATH  Google Scholar 

  39. Thành, N.T., Beilina, L., Klibanov, M.V., Fiddy, M.A.: Imaging of buried objects from experimental backscattering radar measurements using a globally convergent inverse algorithm. Chalmers Publication Library. http://www.math.chalmers.se/Math/Research/Preprints/. preprint number2014–2015 (2014)

Download references

Acknowledgments

This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities; the work was supported also by RFBR and by Government of Republic Tatarstan, grant 12-01-97012-r_povolzh’e_a. The research of Larisa Beilina was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research (SSF) through the Gothenburg Mathematical Modelling Centre (GMMC) and by the Swedish Institute, Visby Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Karchevskii, E., Spiridonov, A., Beilina, L. (2015). Determination of Permittivity from Propagation Constant Measurements in Optical Fibers. In: Beilina, L. (eds) Inverse Problems and Applications. Springer Proceedings in Mathematics & Statistics, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-319-12499-5_4

Download citation

Publish with us

Policies and ethics