Skip to main content

Overview on Cell-Biomaterial Interactions

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

Biomaterials, a name given to express materials used as medical implants, indwelling devices, extracorporeal ones and other categories in several medical fields, have increasingly played a significant role when aiming at improving the quality of life in humans. The behavior of a biomaterial with the surrounding physiologic environment is of major relevance for determining the in vivo performance and host acceptance of any device. Indeed, the biocompatibility and bio-functionality of implantable devices remains a serious challenge in establishing the device’s function and lifetime. Several research efforts have been conducted to further understand and control the interactions between biomaterials and cell-mediated processes, aiming at the definition of the main guidelines that regulate materials biocompatibility. Several criteria should be met when considering a biomaterial for a specific application. On the materials’ perspective, its composition, mechanical, physicochemical, thermal, electrical properties must be well understood. In parallel, knowledge on the cell-biomaterial interaction mechanisms (including specific adhesion proteins and cell receptors, signal transduction, cell differentiation, tissue development, host immune response mechanisms, to name a few processes) must be attained, to better characterize, follow up and control cell-biomaterial interactions. This review attempts to define the basic phenomenon that take place when a biomaterial comes into contact with host living tissues. Numerous strategies have been investigated to overcome body reactions induced by the implantation of devices. These strategies, their advantages and limitations, along with the fundamentals underlying biomaterials-tissue interactions and current research on biomaterial surface modification are discussed. Besides, the use of polymeric biomaterials for use in age-related macular degeneration will be presented as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

AMD:

Age-related macular degeneration

ATRP:

Atom transfer radical polymerization

BM:

Bruch’s membrane

CCMS:

4-(N-cinnamoylcarbamide)methylstyrene

DNA:

Deoxyribonucleic acid

ECM:

Extracellular matrix

EGF:

Epithelial cell growth factor

FBGCs:

Foreign body giant cells

FGF:

Fibroblast growth factor

Fn:

Fibrinogen

GAGs:

Glycosaminoglycans

GOD:

Glucose oxidase

HLC:

Human lens capsule

ICAMs:

Intracellular adhesion molecules

IPAAm:

N-isopropylacrylamide

IPE:

Iris pigment epithelium

IPNs:

Interpenetrating polymer networks

LB:

Langmuir-Blodgett

MAdCAM:

Mucosal addressin cell adhesion molecule

OSs:

Photoreceptor outer segments

PDMS:

Polydimethylsiloxane

PGS:

Poly(glycerol sebacate)

PHBV8:

Poly(hydroxybutyrate-co-hydroxyvalerate)

PLC:

Porcine lens capsule

PLGA:

Poly(lactic-co-glycolic) acid

PLLA:

Poly(L-lactide)

PMMA:

Poly(methyl methacrylate)

PMN:

Polymorphonuclear leukocytes

RFGD:

Radio frequency gas discharge

RGD:

Tripeptide Arg-Gly-Asp

RPCs:

Retinal progenitor cells

RPE:

Retinal pigment-epithelium

SAMs:

Self-assembly monolayers

SIP:

Surface-initiated polymerization

STM:

Scanning tunnelling microscopy

UV:

Ultra-violet

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial cell growth factor

θ:

Contact angle

References

  1. Williams, D.: On the nature of biomaterials. Biomaterials 30(5897), 5909 (2009)

    Google Scholar 

  2. Thevenot, P., Hu, W., Tang, L.: Surface chemistry influence implant biocompatibility. Curr. Top. Med. Chem. 8(4), 270–280 (2008)

    CAS  Google Scholar 

  3. Onuki, Y., Bhardwaj, U., Papadimitrakopoulos, F., Burgess, D.J.: A review of biocompatibility of implantable devices: Current challenges to overcome foreign body response. J. Diab. Sci. Technol. 2(6), 1003–1015 (2008)

    Google Scholar 

  4. Williams, D.: On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008)

    CAS  Google Scholar 

  5. Saltzman, W.M., Kyriakides, T.R.: Cell interactions with polymers. In: Lanza, R., Langer, R., Vacanti, J.P. (eds.) Principles of Tissue Engineering, pp. 221–235. Elsevier Academic Press, New York (2007)

    Google Scholar 

  6. Webb, K., Hlady, V., Tresco, P.A.: Relationships among cell attachment, spreading, cytoskeletal organisation and migration rate for anchorage-dependent cells on model surfaces. J. Biomed. Mater. Res. 49(3), 362–368 (2000)

    CAS  Google Scholar 

  7. Anselme, K.: Osteoblast adhesion on biomaterials. Biomaterials 21(7), 667–681 (2000)

    CAS  Google Scholar 

  8. Castner, D.G., Ratner, B.D.: Biomedical surface science: Foundations to frontiers. Surf. Sci. 500(1–3), 28–60 (2002)

    CAS  Google Scholar 

  9. Kooten, T., Spijker, H., Busscher, H.: Plasma-treated polystyrene surfaces: model surfaces for studying cell-biomaterial interactions. Biomaterials 25(10), 1735–1747 (2004)

    Google Scholar 

  10. Chen, H., Yuan, L., Song, W., Wu, Z., Li, D.: Biocompatible polymer materials: role of the protein—surface interactions. Prog. Polym. Sci. 33(11), 1059–1087 (2008)

    CAS  Google Scholar 

  11. Rodrigues, L.R.: Inhibition of bacterial adhesion on medical devices. In: Linke, D., Goldman, A. (eds.) Bacterial Adhesion: Biology, Chemistry, and Physics, Series: Advances in Experimental Medicine and Biology, vol. 715, pp. 351–367. Springer, Germany (2011)

    Google Scholar 

  12. Badylak, S.F.: Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12(3–4), 367–377 (2004)

    CAS  Google Scholar 

  13. Badylak, S.F.: The extracellular matrix as a biologic scaffold material. Biomaterials 28(25), 3587–3593 (2007)

    CAS  Google Scholar 

  14. Badylak, S.F., Freytes, D.O., Gilbert, T.W.: Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5(1), 1–13 (2009)

    CAS  Google Scholar 

  15. Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.): Biomaterials Science: An Introduction to Materials in Medicine. Elsevier Academic Press, New York (2004)

    Google Scholar 

  16. Bosman, F.T., Stamenkovic, I.: Functional structure and composition of the extracellular matrix. J. Pathol. 200, 423–428 (2003)

    CAS  Google Scholar 

  17. Brown, A.E.X., Discher, D.E.: Conformational changes and signaling in cell and matrix physics. Curr. Biol. 19, R781–R789 (2009)

    CAS  Google Scholar 

  18. Janik, M.E., Litynska, A., Vereecken, P.: Cell migration—the role of integrin glycosylation. Biochim. Biophys. Acta 1800, 545–555 (2010)

    CAS  Google Scholar 

  19. Anderson, J.M., Rodriguez, A., Chang, D.T.: Foreign body reaction to biomaterials. Semin. Immunol. 20(2), 86–100 (2008)

    CAS  Google Scholar 

  20. Lanza, R., Langer, R., Vacanti, J.P. (eds.): Principles of Tissue Engineering, pp. 53–66. Elsevier Academic Press, New York (2007)

    Google Scholar 

  21. Brown, B.N., Barnes, C.A., Kasick, R.T., Michel, R., Gilbert, T.W., Beer-Stolz, D., Castner, D.G., Ratner, B.D., Badylak, S.F.: Surface characterization of extracellular matrix scaffolds. Biomaterials 31(3), 428–437 (2010)

    CAS  Google Scholar 

  22. Dexter, S.J., Pearson, R.G., Davies, M.C., Cámara, M., Shakesheff, K.M.: A comparison of the adhesion of mammalian cells and Staphylococcus epidermidis on fibronectin-modified polymer surfaces. J. Biomed. Mater. Res. 56(2), 222–227 (2001)

    CAS  Google Scholar 

  23. Schultz, G.S., Wysocki, A.: Interactions between extracellular matrix and growth factors in wound healing. Wound Rep. Reg. 17, 153–162 (2009)

    Google Scholar 

  24. Larsen, M., Artym, V.V., Green, J.A., Yamada, K.M.: The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell Biol. 18, 463–471 (2006)

    CAS  Google Scholar 

  25. Garcia, A.: Get a grip: integrins in cell-biomaterial interactions. Biomaterials 26(36), 7525–7529 (2005)

    CAS  Google Scholar 

  26. Siebers, M., Brugge, P., Walboomers, X., Jansen, J.: Integrins as linker proteins between osteoblasts and bone replacing materials. A Crit. Rev. Biomater. 26(2), 137–146 (2005)

    CAS  Google Scholar 

  27. Delon, I., Brown, N.: Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19(1), 43–50 (2007)

    CAS  Google Scholar 

  28. Gahmberg, C., Fagerholm, S., Nurmi, S., Chavakis, T., Marchesan, S., Gronholm, M.: Regulation of integrin activity and signaling. Biochemica et Biophysica Acta 1790(6), 431–444 (2009)

    CAS  Google Scholar 

  29. Ginsberg, M.H., Partridge, A., Shattil, S.S.: Integrin regulation. Curr. Opin. Cell Biol. 17(5), 509–516 (2005)

    CAS  Google Scholar 

  30. Yim, E., Darling, E., Kulangara, K., Guilak, F., Leong, K.: Nanotopography—induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31, 1299–1306 (2010)

    CAS  Google Scholar 

  31. Sanborn, S., Murugesan, G., Marchant, R.E., Kottke-Marchant, K.: Endothelial cell formation of focal adhesions on hydrophilic plasma polymers. Biomaterials 23, 1–8 (2002)

    CAS  Google Scholar 

  32. Vadgama, P.: Surface biocompatibility. Annu. Rep. Prog. Chem. Sect. C 101, 14–52 (2005)

    CAS  Google Scholar 

  33. Cole, M.A., Voelcker, N.H., Thissen, H., Griesser, H.J.: Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials 30, 1827–1850 (2009)

    CAS  Google Scholar 

  34. Werkmeister, J.A., Tebb, T.A., White, J.F., Ramshaw, J.A.M.: Collagenous tissue formation in association with medical implants. Curr. Opin. Solid State Mater. Sci. 5(2–3), 185–191 (2001)

    CAS  Google Scholar 

  35. Franz, S., Rammelt, S., Scharnweber, D., Simon, J.C.: Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709 (2011)

    CAS  Google Scholar 

  36. Morais, J.M., Papadimitrakopoulos, F., Burgess, D.J.: Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12(2), 188–196 (2010)

    CAS  Google Scholar 

  37. Webster, J.G. (ed.): Encyclopedia of Medical Devices and Instrumentation. Wiley, New York (2006)

    Google Scholar 

  38. Buckley, C.D., Pilling, D., Lord, J.M., Toellner, D.S., Salmon, M.: Fibroblasts regulate the swith from acute to persistent inflammation. Trends Immunol. 22(4), 199–204 (2001)

    CAS  Google Scholar 

  39. Bacakova, L., Filova, E., Parizek, M., Ruml, T., Svorcik, V.: Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 29(6), 739–767 (2011)

    CAS  Google Scholar 

  40. Proctor, R.A.: Toward an understanding of biomaterial infections: a complex interplay between the host and bacteria. J. Lab. Clin. Med. 135, 14–15 (2000)

    CAS  Google Scholar 

  41. Chan, G., Mooney, D.J.: New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol. 26(7), 382–392 (2008)

    CAS  Google Scholar 

  42. Badylak, S.F., Gilbert, T.W.: Immune response to biologic scaffold materials. Semin. Immunol. 20, 109–116 (2008)

    CAS  Google Scholar 

  43. Eisenbarth, E., Meyle, J., Nachtigall, W., Breme, J.: Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials 17, 1399–1403 (1996)

    CAS  Google Scholar 

  44. Hoerstrup, S.P., Sodian, R., Daebritz, S., Wang, J., Bacha, E.A., Martin, D.P., Moran, A.M., Guleserian, K.J., Sperling, J.S., Kaushal, S., Vacanti, J.P., Schoen, F.J., Mayer Jr, J.E.: Functional living trileaflet heart valves grown in vitro. Circulation 102, 44–49 (2000)

    Google Scholar 

  45. Mendelson, K., Aikawa, E., Mettler, B.A., Sales, V., Martin, D., Mayer, J.E., Schoen, F.J.: Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Cardiovasc. Pathol. 16, 277–282 (2007)

    CAS  Google Scholar 

  46. Langer, R.: Biomaterials: status, challenges, and perspectives. AIChE J. 46, 1286–1289 (2000)

    CAS  Google Scholar 

  47. Patel, N.R., Gohil, P.P.: A review on biomaterials: scope, applications and human anatomy significance. Int. J. Emerg. Technol. Adv. Eng. 2, 91–101 (2012)

    Google Scholar 

  48. Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E.: Introduction—biomaterials science: an evolving, multidisciplinary endeavor. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science: An Introduction to Materials in Medicine, 3rd edn. Elsevier Science, Academic Press (2013)

    Google Scholar 

  49. Seal, B.L., Otero, T.C., Panitch, A.: Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R 34, 147–230 (2001)

    Google Scholar 

  50. Tathe, A., Ghodke, N., Nikalje, A.P.: A brief review: biomaterials and their applications. Int. J. Pharm. & Pharm. Sci. 2, 19–23 (2010)

    CAS  Google Scholar 

  51. Harrison, R.G.: On the stereotropism of embryonic cells. Science 34, 279–281 (1911)

    CAS  Google Scholar 

  52. Harrison, R.G.: The reaction of embryonic cells to solid structures. J. Exp. Zool. 17, 521–544 (1914)

    Google Scholar 

  53. Chou, L., Firth, J.D., Uitto, V.-J., Brunette, D.M.: Substratum surface topography alters cell shape and regulates fibronectin, mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 108, 1563–1573 (1995)

    CAS  Google Scholar 

  54. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    CAS  Google Scholar 

  55. Fan, Y.W., Cui, F.Z., Hou, S.P., Xu, Q.Y., Chen, L.N., Lee, I.S.: Culture of neural cells on silicon wafers with nano-scale surface topography. J. Neurosci. Methods 120, 17–23 (2002)

    CAS  Google Scholar 

  56. O’Brien, F.J., Harley, B.A., Yannas, I.V., Gibson, L.J.: The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433–441 (2005)

    Google Scholar 

  57. Peyton, S.R., Putnam, A.J.: Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204, 198–209 (2005)

    CAS  Google Scholar 

  58. Ventre, M., Causa, F., Netti, P.A.: Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J. Roy. Soc. Interface 9, 2017–2032 (2012)

    CAS  Google Scholar 

  59. Vilches, J., Vilches-Perez, J.I., Salido, M.: Cell-surface interaction in biomedical implants assessed by simultaneous fluorescence and reflection confocal microscopy. Mod. Res. Educ. Top. Microsc. 1, 60–67 (2007)

    Google Scholar 

  60. Yang, C.Y., Huang, L.Y., Shen, T.L., Yeh, J.A.: Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces. Eur. Cells Mater. 20, 415–430 (2010)

    CAS  Google Scholar 

  61. Sabrina, M., Antonella, P.: Cell-material Interactions. Biomaterials for Stem Cell Therapy. CRC Press, Boca Raton (2013)

    Google Scholar 

  62. Anselme, K., Ponche, A., Bigerekke, M.: Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc. Inst. Mech. Eng H: J. Eng. Med. 224, 1487–1507 (2010)

    CAS  Google Scholar 

  63. Hatano, K., Inoue, H., Kojo, T., Matsunaga, T., Tsujisawa, T., Uchiyama, C., Uchida, Y.: Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 25, 439–445 (1999)

    CAS  Google Scholar 

  64. Lim, J.Y., Hansen, J.C., Siedlecki, C.A., Runt, J., Donahue, H.J.: Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J. R. Soc. Interface 2, 97–108 (2005)

    CAS  Google Scholar 

  65. Brunette, D.M.: Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp. Cell Res. 164, 11–26 (1986)

    CAS  Google Scholar 

  66. Dalton, B.A., Walboomers, X.F., Dziegielewski, M., Evans, M.D., Taylor, S., Jansen, J.A., Steele, J.G.: Modulation of epithelial tissue and cell migration by microgrooves. J. Biomed. Mater. Res. 56, 195–207 (2001)

    CAS  Google Scholar 

  67. Den Braber, E.T., De Ruijter, J.E., Ginsel, L.A., Von Recum, A.F., Jansen, J.A.: Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials 17, 2037–2044 (1996)

    Google Scholar 

  68. Rickert, D., Franke, R.P., Lendlein, A., Kelch, S., Moses, M.A.: Influence of the surface structure of a multiblock copolymer on the cellular behavior of primary cell cultures of the upper aerodigestive tract in vitro. J. Biomed. Mater. Res. A 83, 558–569 (2007)

    Google Scholar 

  69. Tamada, Y., Ikada, Y.: Fibroblast growth on polymer surfaces and biosynthesis of collagen. J. Biomed. Mater. Res. 28, 783–789 (1994)

    CAS  Google Scholar 

  70. Walboomers, X.F., Croes, H.J., Ginsel, L.A., Jansen, J.A.: Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 19, 1861–1868 (1998)

    CAS  Google Scholar 

  71. Curtis, A., Wilkinson, C.: Nanotechniques and approaches in biotechnology. Trends Biotechnol. 19(3), 97–101 (2001)

    CAS  Google Scholar 

  72. Dalby, M.J., Yarwood, S.J., Riehele, M.O., Johnstone, H.J.H., Affrossman, S., Curtis, A.S.G.: Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp. Cell Res. 276, 1–9 (2002)

    CAS  Google Scholar 

  73. Dalby, M.J., Childs, S., Riehle, M.O., Johnstone, H.J.H., Affrossman, S., Curtis, A.S.G.: Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials 24, 927–935 (2003)

    CAS  Google Scholar 

  74. Dalby, M.J., Giannaras, D., Riehele, M.O., Gadegaard, N., Affrossman, S., Curtis, A.S.G.: Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 25, 77–83 (2004)

    CAS  Google Scholar 

  75. Flemming, R.G., Murphy, C.J., Abrams, G.A., Goodman, S.L., Nealy, P.F.: Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20, 573–588 (1999)

    CAS  Google Scholar 

  76. Lord, M.S., Foss, M., Besenbacher, F.: Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5, 66–78 (2010)

    CAS  Google Scholar 

  77. Rechendorff, K., Hovgaard, M.B., Foss, M., Zhdanov, V.P., Besenbacher, F.: Enhancement of protein adsorption induced by surface roughness. Langmuir 22, 10885–10888 (2006)

    CAS  Google Scholar 

  78. Levenberg, S., Langer, R.: Advances in Tissue Engineering. Current Topics in Developmental Biology. Academic Press, New York (2004)

    Google Scholar 

  79. Ma, P.X., Choi, J.W.: Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7, 23–33 (2001)

    CAS  Google Scholar 

  80. Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)

    CAS  Google Scholar 

  81. Kim, T.G., Shin, H., Lim, D.W.: Biomimetic scaffolds for tissue engineering. Adv. Funct. Mater. 22, 2446–2468 (2012)

    CAS  Google Scholar 

  82. Ranucci, C.S., Kumar, A., Batra, S.P., Moghe, P.V.: Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 21, 783–793 (2000)

    CAS  Google Scholar 

  83. Yang, Y.L., Motte, S., Kaufman, L.J.: Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31, 5678–5688 (2010)

    CAS  Google Scholar 

  84. Yarlagadda, P.K., Chandrasekharan, M., Shyan, J.Y.: Recent advances and current developments in tissue scaffolding. Biomed. Mater. Eng. 15, 159–177 (2005)

    CAS  Google Scholar 

  85. Loh, Q.L., Choong, C.: Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Revisions B 19, 485–502 (2013)

    CAS  Google Scholar 

  86. Koschwanez, H.E., Reichert, W.M.: Textured and porous materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science, 3rd edn, chap I.2.15. Academic Press, New York (2013)

    Google Scholar 

  87. Salzmann, D.L., Kleinert, L.B., Berman, S.S., Williams, S.K.: The effects of porosity on endothelialization of ePTFE implanted in subcutaneous and adipose tissue. J. Biomed. Mater. Res. 34, 463–476 (1997)

    CAS  Google Scholar 

  88. Sharkawy, A.A., Klitzman, B., Truskey, G.A., Reichert, W.M.: Engineering the tissue which encapsulates subcutaneous implants. II. Plasma-tissue exchange properties. J. Biomed. Mater. Res. 40, 586–597 (1998)

    CAS  Google Scholar 

  89. Sharkawy, A.A., Klitzman, B., Truskey, G.A., Reichert, W.M.: Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J. Biomed. Mater. Res. 37, 401–412 (1997)

    CAS  Google Scholar 

  90. Ward, W.K., Slobodzian, E.P., Tiekotter, K.L., Wood, M.D.: The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23, 4185–4192 (2002)

    CAS  Google Scholar 

  91. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., Kumar, D.S.: Polymeric scaffolds in tissue engineering application: a review. Int. J. Polymer Sci. Article ID 290602, 1–19 (2011)

    Google Scholar 

  92. Yang, S., Leong, K.F., Du, Z., Chua, C.K.: The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7, 679–689 (2001)

    CAS  Google Scholar 

  93. Chang, H.I., Wang, Y.: Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D (ed.) Cells and Biomaterials, Chap 27, InTech, Croatia (2011)

    Google Scholar 

  94. Yang, J., Shi, G., Bei, J., Wang, S., Cao, Y., Shang, Q., Yang, G., Wang, W.: Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J. Biomed. Mater. Res. 62, 438–446 (2002)

    CAS  Google Scholar 

  95. Ashman, A., Moss, M.L.: Implantation of porous polymethylmethacrylate resin for tooth and bone replacement. J. Prosthet. Dent. 37, 657–665 (1977)

    CAS  Google Scholar 

  96. De Groot, J.H., De Vrijer, R., Pennings, A.J., Klompmaker, J., Veth, R.P., Jansen, H.W.: Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses. Biomaterials 17, 163–173 (1996)

    Google Scholar 

  97. Yannas, I.V., Lee, E., Orgill, D.P., Skrabut, E.M., Murphy, G.F.: Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Nat. Acad. Sci. USA 86, 933–937 (1989)

    Google Scholar 

  98. Zeltinger, J., Sherwood, J.K., Graham, D.A., Mueller, R., Griffith, L.G.: Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 7, 557–572 (2001)

    CAS  Google Scholar 

  99. Salem, A.K., Stevens, R., Pearson, R.G., Davies, M.C., Tendler, S.J., Roberts, C.J., Williams, P.M., Shakesheff, K.M.: Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res. 61, 212–217 (2002)

    CAS  Google Scholar 

  100. Lim, J.Y., Liu, X., Vogler, E.A., Donahue, H.J.: Systematic variation in osteoblast adhesion and phenotype with substratum surface characteristics. J. Biomed. Mater. Res. A 68, 504–512 (2004)

    Google Scholar 

  101. Merrett, K., Cornelius, R.M., McClung, W.G., Unsworth, L.D., Sheardown, H.: Surface analysis methods for characterizing polymeric biomaterials. J. Biomater. Sci. Polymer Ed13, 593–621 (2002)

    Google Scholar 

  102. Ratner, B.D.: Surface properties and surface characterization of biomaterials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science: An Introduction to Materials in Medicine, 3rd edn. Elsevier Science, Academic Press, New York (2013)

    Google Scholar 

  103. Vogler, E.A.: Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74, 69–117 (1998)

    CAS  Google Scholar 

  104. Vogler E.A (1999) Water and the acute biological response to surfaces. J. Biomater. Sci. Polymer Ed 10_1015-1045

    Google Scholar 

  105. Vogler, E.A., Bussian, R.W.: Short-term cell-attachment rates: a surface-sensitive test of cell-substrate compatibility. J. Biomed. Mater. Res. 21, 1197–1211 (1987)

    CAS  Google Scholar 

  106. Arima, Y., Iwata, H.: Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28, 3074–3082 (2007)

    CAS  Google Scholar 

  107. Goddard, J.M., Hotchkiss, J.H.: Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 32, 698–725 (2007)

    CAS  Google Scholar 

  108. Healy, K.E., Thomas, C.H., Rezaina, A., Kim, J.E., McKeown, P.J., Lom, B., Hockberger, P.E.: Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17, 195–208 (1996)

    CAS  Google Scholar 

  109. Hlady, V., Buijs, J.: Protein adsorption on solid surfaces. Curr. Opin. Biotechnol. 7, 72–77 (1996)

    CAS  Google Scholar 

  110. Hlady, V., Buijs, J., Jennissen, H.P.: Methods for studying protein adsorption. Methods Enzymology 309, 402–429 (1999)

    CAS  Google Scholar 

  111. Lim, J.Y., Shaughnessy, M.C., Zhou, Z., Noh, H., Vogler, E.A., Donahue, H.J.: Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 29, 1776–1784 (2008)

    CAS  Google Scholar 

  112. Poncin-Epaillard, F., Vrlinic, T., Debarnot, D., Mozeitic, M., Coudrreuse, A., Legeay, G., El Moualij, B., Zorzi, W.: Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules. J. Funct. Biomaterials 3, 528–543 (2012)

    CAS  Google Scholar 

  113. Xu, L.C., Siedlecki, C.A.: Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28, 3273–3283 (2007)

    CAS  Google Scholar 

  114. Lee, J.H., Khang, G., Lee, J.W., Lee, H.B.: Interaction of different types of cells on polymer surfaces with wettability gradient. J. Colloid Interface Sci. 205, 323–330 (1998)

    CAS  Google Scholar 

  115. Lee, J.H., Lee, J.W., Khang, G., Lee, H.B.: Interaction of cells on chargeable functional group gradient surfaces. Biomaterials 18, 351–358 (1997)

    CAS  Google Scholar 

  116. Gray, J.J.: The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 14, 110–115 (2004)

    CAS  Google Scholar 

  117. Nakanishi, K., Sakiyama, T., Imamura, K.: On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 91, 233–244 (2001)

    CAS  Google Scholar 

  118. Rabe, M., Verdes, D., Seeger, S.: Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87–106 (2011)

    CAS  Google Scholar 

  119. Ballet, T.L.B., Brechet, Y., Bruckert, F., Weidenhaupt, M.: Protein conformational changes induced by adsorption onto material surfaces: an important issue for biomedical applications of material science. Bull. Pol. Acad. Sci. 58, 303–315 (2010)

    CAS  Google Scholar 

  120. Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25, 5947–5954 (2004)

    CAS  Google Scholar 

  121. Michael, K.E., Vernekar, V.N., Keselowsky, B.G., Meredith, J.C., Latour, R.A., Garcia, A.J.: Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19, 8033–8040 (2003)

    CAS  Google Scholar 

  122. Schmidt, D., Waldeck, H., Kao, W.: Protein adsorption to biomaterials. In: Puleo, D.A., Bizios, R. (eds.) Biological Interactions on Materials Surfaces. Springer, US (2009)

    Google Scholar 

  123. Abraham, G.A., De Queiroz, A.A.A., Román, J.S.: Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22, 1971–1985 (2001)

    CAS  Google Scholar 

  124. Anderson, J.M.: Biological Responses to Materials. Annu. Rev. Mater. Res. 31, 81–110 (2001)

    CAS  Google Scholar 

  125. Lee, J.H., Khang, G., Lee, J.W., Lee, H.B.: Platelet adhesion onto chargeable functional group gradient surfaces. J. Biomed. Mater. Res. 40, 180–186 (1998)

    CAS  Google Scholar 

  126. Wang, Y.-X., Robertson, J., Spillman, W, Jr., Claus, R.: Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm. Res. 21, 1362–1373 (2004)

    CAS  Google Scholar 

  127. Barbosa, J.N., Madureira, P., Barbosa, M.A., Aguas, A.P.: The influence of functional groups of self-assembled monolayers on fibrous capsule formation and cell recruitment. J. Biomed. Mater. Res. A 76, 737–743 (2006)

    Google Scholar 

  128. Faucheux, N., Schweiss, R., Lutzow, K., Werner, C., Groth, T.: Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25, 2721–2730 (2004)

    CAS  Google Scholar 

  129. Kamath, S., Bhattacharyya, D., Padukudru, C., Timmons, R.B., Tang, L.: Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A 86, 617–626 (2008)

    Google Scholar 

  130. Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Nat. Acad. Sci. USA 102, 5953–5957 (2005)

    CAS  Google Scholar 

  131. Kidoaki, S., Matsuda, T.: Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope. Langmuir 15, 7639–7646 (1999)

    CAS  Google Scholar 

  132. Lan, M.A., Gersbach, C.A., Michael, K.E., Keselowsky, B.G., Garcia, A.J.: Myoblast proliferation and differentiation on fibronectin-coated self-assembled monolayers presenting different surface chemistries. Biomaterials 26, 4523–4531 (2005)

    CAS  Google Scholar 

  133. Lorenz, M.R., Holzapfel, V., Musyanovych, A., Nothelfer, K., Walther, P., Frank, H., Landfester, K., Schresenmeier, H., Mailander, V.: Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials 27, 2820–2828 (2006)

    CAS  Google Scholar 

  134. Tang, L., Wu, Y., Timmons, R.B.: Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces. J. Biomed. Mater. Res. 42, 156–163 (1998)

    CAS  Google Scholar 

  135. Verena, H., Myriam, L., Clemens Kilian, W., Hubert, S., Katharina, L., Volker, M.: Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process. J. Phys.: Condens. Matter 18, S2581 (2006)

    Google Scholar 

  136. Guney, A., Kara, F., Ozgen, O., Aksoy, E.A., Hasirci, V., Hasirci, N.: Surface Modification of Polymeric Biomaterials. Biomaterials Surface Science. Wiley-VCH Verlag/GmbH & Co KGaA, Weinheim (2013)

    Google Scholar 

  137. Hoffman, A.S.: Surface modification of polymers. Chin. J. Polym. Sci. 13, 195–203 (1995)

    CAS  Google Scholar 

  138. Ratner, B.D.: Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens. Bioelectron. 10, 797–804 (1995)

    CAS  Google Scholar 

  139. Gonçalves, S., Leiros, A., Van Kooten, T., Dourado, F., Rodrigues, L.R.: Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices. Colloids Surf. B Biointerfaces 109, 228–235 (2013)

    Google Scholar 

  140. Lin, P., Lin, C.-W., Mansour, R., Gu, F.: Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosens. Bioelectron. 47, 451–460 (2013)

    CAS  Google Scholar 

  141. Olivier, A., Meyer, F., Raquez, J.-M., Damman, P., Dubois, P.: Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces. Prog. Polym. Sci. 37, 157–181 (2012)

    CAS  Google Scholar 

  142. Ul Ahad, I., Bartnik, A., Fiedorowicz, H., Kostecki, J., Korczyc, B., Ciach, T., Brabazon, D.: Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. J. Biomed. Mater. Res. A (2013). doi:10.1002/jbm.a.34958

    Google Scholar 

  143. Variola, F., Vetrone, F., Richert, L., Jedrzejowwski, P., Yi, J.H., Zalzal, S., Clair, S., Sarkissian, A., Perepichka, D.F., Wuest, J.D., Rosei, F., Nanci, A.: Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. Small 5, 996–1006 (2009)

    CAS  Google Scholar 

  144. Pascolini, D., Mariotti, S.P.: Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96, 614–618 (2012)

    Google Scholar 

  145. Chamberlain, M., Baird, P., Dirani, M., Guymer, R.: Unraveling a complex genetic disease: age-related macular degeneration. Surv. Ophthalmol. 51, 576–586 (2006)

    Google Scholar 

  146. Ciulla, T.A., Danis, R.P., Harris, A.: Age-Related macular degeneration: a review of experimental treatments. Surv. Ophthalmol. 43, 134–146 (1998)

    CAS  Google Scholar 

  147. Jager, R.D., Mieler, W.F., Miller, J.W.: Age-Related macular degeneration. N. Engl. J. Med. 358, 2606–2617 (2008)

    CAS  Google Scholar 

  148. Leeuwen, R., Klaver, C.C., Vingerling, J.R., Hoffman, A., Jong, P.T.: Epidemiology of age-related maculopathy: a review. Eur. J. Epidemiol. 18, 845–854 (2003)

    Google Scholar 

  149. Madonna, R.J.: Age-related macular degeneration. Clin. Eye Vis. Care 9, 65–69 (1997)

    Google Scholar 

  150. Celesia, G.G.D.P.J. Jr.: Anatomy and physiology of the visual system. J. Clin. Neurophysiol. 11, 482–492 (1994)

    Google Scholar 

  151. Edward, D.P.K.L.M.: Anatomy, development, and physiology of the visual system. Pediatr. Clin. North Am. 50, 1–23 (2003)

    Google Scholar 

  152. Remington, L.: Retina. In: Reminggton L. (ed.) Clinical anatomy and physiology of the visual system, 3rd ed., Elsevier, Amstredam (2011)

    Google Scholar 

  153. Wassle, H., Boycott, B.B.: Functional architecture of the mammalian retina. Physiol. Rev. 71, 447–480 (1991)

    CAS  Google Scholar 

  154. Bhutto, I.L.G.: Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Aspects Med. 33, 295–317 (2012)

    CAS  Google Scholar 

  155. Goodwin, P.: Hereditary retinal disease. Current Opinion. Ophthalmology 19, 255–262 (2008)

    Google Scholar 

  156. Hageman, G.S., Marmor, M.F., Yao, X.Y., Johnson, L.V.: The interphotoreceptor matrix mediates primate retinal adhesion. Arch. Ophthalmol. 113, 655–660 (1985)

    Google Scholar 

  157. Hartnett, M.E.: Breakdown of the Retinal Pigmented Epithelium Blood–Retinal Barrier. In: Dartt, D.A., Besharse, J.C., Dana, R. (eds.) Encyclopedia of the Eye. 1st edn. Academic Press, Inc, New York (2010)

    Google Scholar 

  158. Hollyfield, J.G., Varner, H.H., Rayborn, M.E., Osterfeld, A.M.: Retinal attachment to the pigment epithelium. Linkage through an extracellular sheath surrounding cone photoreceptors. Retina 9, 59–68 (1989)

    CAS  Google Scholar 

  159. Rizzolo, L.J., Peng, S., Luo, Y., Xiao, W.: Retinal pigmented epithelium barrier. Prog. Retinal Eye Res. 30, 296–323 (2010)

    Google Scholar 

  160. Sama, T.: Properties and function of the ocular melanin—a photobiophysical view. J. Photochem. Photobiol. 12, 215–258 (1992)

    Google Scholar 

  161. Strauss, O.: The retinal pigment epithelium in visual function. Physiol. Rev. 85, 845–881 (2005)

    CAS  Google Scholar 

  162. Afshari, F.T., Fawcett, J.W.: Improving RPE adhesion to Bruch’s membrane. Eye (Lond) 23, 1890–1893 (2009)

    CAS  Google Scholar 

  163. Booij, J.C., Baas, D.C., Beisekeeva, J., Gorgels, T.G.M.F., Bergen, A.A.B.: The dynamic nature of Bruch’s membrane. Prog. Retinal Eye Res. 29, 1–18 (2010)

    CAS  Google Scholar 

  164. Curcio, C.A., Johnson, M.: Structure, function, and pathology of Bruch’s Membrane. In: Ryan, S.J., Schachat, A.P., Wilkinson, C.P., Hinton, D.R., Sadda, S.V.R., Wiedemann, P. (eds.) Retina, chap 20, Elsevier Health Sciences (2012)

    Google Scholar 

  165. Ferris 3rd, F.L., Fine, S.L., Hyman, L.: Age-related macular degeneration and blindness due to neovascular maculopathy. Arch. Ophthalmol. 102, 1640–1642 (1984)

    Google Scholar 

  166. Campochiaro, P.A., Soloway, P., Ryan, S.J., Miller, J.W.: The pathogenesis of choroidal neovascularization in patients with age-related macular degeneration. Molecular Vision 5, 34 (1999)

    Google Scholar 

  167. Feeney-Burns, L., Burns, R.P., Gao, C.L.: Age-related macular changes in humans over 90 years old. Am. J. Ophthalmol. 109, 265–278 (1990)

    CAS  Google Scholar 

  168. Feeney-Burns, L., Hilderbrans, E.S., Eldridge, S.: Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest. Ophthalmol. Vis. Sci. 25, 195–200 (1984)

    CAS  Google Scholar 

  169. Grunwald, G.B.: Structure and function of the retinal pigment epithelium. In: Jaeger, E.A., Duane, T.D., Tasman, W. (eds.) Duane’s Foundations of Clinical Ophthalmology. Lippincott-Raven, Philadelphia (2004)

    Google Scholar 

  170. Panda-Jonas, S., Jonas, J.B., Jakobczyk-Zmija, M.: Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am. J. Ophthalmol. 121, 181–189 (1996)

    CAS  Google Scholar 

  171. Wing, G.L., Blanchard, G.C., Weiter, J.J.: The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978)

    CAS  Google Scholar 

  172. Ambati, J., Ambati, B.K., Yoo, S.H., Ianchulev, S., Adamis, A.P.: Age-Related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv. Ophthalmol. 48, 257–293 (2003)

    Google Scholar 

  173. Zarbin, M.A.: Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122, 598–614 (2004)

    Google Scholar 

  174. Zarbin, M.A.: Retinal pigment epithelium–retina transplantation for retinal degenerative disease. Am. J. Ophthalmol. 146, 151–153 (2008)

    Google Scholar 

  175. Nag, T.C., Wadhwa, S.: Ultrastructure of the human retina in aging and various pathological states. Micron 43, 759–781 (2012)

    Google Scholar 

  176. Prasad, P.S., Schwartz, S.D., Hubschman, J.: Age-related macular degeneration: current and novel therapies. Maturitas 66, 5–5 (2010)

    Google Scholar 

  177. Stokkermans, T.J.: Treatment of age-related macular degeneration. Clin. Eye Vis. Care 12, 15–35 (2000)

    Google Scholar 

  178. Tao, S., Young, C., Redenti, S., Zhang, Y., Klassen, H., Desai, T., Young, M.J.: Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. Lab Chip 7, 695–701 (2007)

    CAS  Google Scholar 

  179. Treharne, A.J., Grossel, M.C., Lotery, A.J., Thomson, H.A.: The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control. Br. J. Ophthalmol. 95, 768–773 (2011)

    Google Scholar 

  180. Binder, S.: Scaffolds for retinal pigment epithelium (RPE) replacement therapy. Br. J. Ophthalmol. 95, 441–442 (2011)

    Google Scholar 

  181. Binder, S., Stanzel, B.V., Krebs, I., Glittenberg, C.: Transplantation of the RPE in AMD. Prog Retinal Eye Res. 26, 516–554 (2007)

    Google Scholar 

  182. Hynes, S.R., Lavik, E.B.: A tissue-engineered approach towards retinal repair: Scaffolds for cell transplantation to the subretinal space. Graefes Arch. Clin. Exp. Ophthalmol. 248, 763–778 (2010)

    Google Scholar 

  183. Imai, H., Honda, S., Kondo, N., Ishibashi, K., Tsukahara, Y., Negi, A.: The upregulation of angiogenic gene expression in cultured retinal pigment epithelial cells grown on type I collagen. Curr. Eye Res. 32, 903–910 (2007)

    CAS  Google Scholar 

  184. Neeley, W.L., Redenti, S., Klassen, H., Tao, S., Desai, T., Young, M.J., Langer, R.: A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29, 418–426 (2008)

    CAS  Google Scholar 

  185. Redenti, S., Neeley, W.L., Rompani, S., Saigal, S., Yang, J., Klassen, H., Langer, R., Young, M.J.: Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30, 3405–3414 (2009)

    CAS  Google Scholar 

  186. Redenti, S., Tao, S., Yang, J., Gu, P., Klassen, H., Saigal, S., Desai, T., Young, M.J.: Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J. Ocul. Biol., Dis. Inform. 1, 19–29 (2008)

    Google Scholar 

  187. Thumann, G., Hueber, A., Dinslage, S., Schaeffer, F., Yasukawa, T., Kirchhof, B., Yafai, Y., Eichler, W., Bringmann, A., Wiedemann, P.: Characteristics of iris and retinal pigment epithelial cells cultured on collagen type I membranes. Curr. Eye Res. 31, 241–249 (2006)

    CAS  Google Scholar 

  188. Tomita, M., Lavik, E., Klassen, H., Zahir, T., Langer, R., Young, M.J.: Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23, 1579–1588 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lígia R. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonçalves, S., Dourado, F., Rodrigues, L.R. (2015). Overview on Cell-Biomaterial Interactions. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_4

Download citation

Publish with us

Policies and ethics