Skip to main content

Bayesian Learning of Material Density Function by Multiple Sequential Inversions of 2-D Images in Electron Microscopy

  • Conference paper
  • First Online:
Interdisciplinary Bayesian Statistics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 118))

  • 2251 Accesses

Abstract

We discuss a novel inverse problem in which the data is generated by the sequential contractive projections of the convolution of two unknown functions, both of which we aim to learn. The method is illustrated using an application that relates to the multiple inversions of image data recorded with a scanning electron microscope, with the aim of learning the density of a given material sample and the microscopy correction function. Given the severe logistical difficulties in this application of taking multiple images at different viewing angles, a novel imaging experiment is undertaken, resulting in expansion of information. In lieu of training data, it is noted that the highly discontinuous material density function cannot be modelled using a Gaussian process (GP) as the parametrisation of the required nonstationary covariance function of such a GP cannot be achieved without training data. Consequently, we resort to estimating values of the unknown functions at chosen locations in their domain—locations at which an image data are available. Image data across a range of resolutions lead to multiscale models which we use to estimate material densities from the micrometre to nanometre length scales. We discuss applications of the method in nondestructive learning of material density using simulated metallurgical image data, as well as perform inhomogeneity detection in multicomponent composite on nanometre scales, by inverting real image data of a brick of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, A.F., McIntosh, P.C.: Open ocean modeling as an inverse problem: tidal theory. J Phys Oceanogr 12, 1004–1018 (1982)

    Article  Google Scholar 

  2. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Taylor and Francis, London (1998)

    Book  MATH  Google Scholar 

  3. Bishop, T.E., Babacan, S.D., Amizik, B., Katsaggelos, A.K., Chan, T., Molina,R.: Blind image deconvolution: problem formulation and existing approaches. In: P. Campisi, K. Egiazarian (eds.)Blind Image Deconvolution: Theory and Applications, pp. 1–41. CRC Press, Taylor and Francis, London (2007)

    Google Scholar 

  4. Chakrabarty, D., Saha, P.: Inverse Bayesian estimation of gravitational mass density in galaxies from missing kinematic data. Am. J. Comput. Math. 4(1), 6–29 (2014)

    Article  Google Scholar 

  5. Chakrabarty, D., Rigat, F., Gabrielyan, N., Beanland, R., Paul, S.: Bayesian density estimation via multiple sequential inversions of 2-D images with application in electron microscopy. Technometrics (2014). doi:10.1080/00401706.2014.923789

    Google Scholar 

  6. Draper, D., Mendes, B.: Bayesian environmetrics: uncertainty and sensitivity analysis and inverse problems. (2008). http://users.soe.ucsc.edu/draper/draper-brisbane-2008.pdf.

  7. Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., Michael, J.: Scanning Electron Microscopy and X-ray Microanalysis. Springer, New York (2003)

    Book  Google Scholar 

  8. Gouveia, W.P., Scales, J.A.: Bayesian seismic waveform inversion: parameter estimation and uncertainty analysis. J. Geophys. Res. 130(B2), 275–9 (1998)

    Google Scholar 

  9. Greenshtein, E., Park, J.: Application of non parametric empirical Bayes estimation to high dimensional classification. J. Mach. Learn. Res. 10, 1687–1704 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Helgason, S.: The Radon Transform. Progress in Mathematics. Birkhauser, Boston (1999)

    Book  Google Scholar 

  11. Jugnon, V., Demanet,L.: Interferometric inversion: a robust approach to linear inverse problems. In: J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (eds.) Proceedings of SEG Annual Meeting, Houston, (Sept. 2013)

    Google Scholar 

  12. Kanaya, K., Okamaya, S.: Penetration and energy-loss theory of electrons in solid targets. J. Phys. D., Appl. Phys. 5(1), 43 (1972)

    Google Scholar 

  13. Kutchment, P.:Generalised transforms of the radon type and their applications. In: G. Olafsson, E.T. Quinto (eds.) The Radon Transform, Inverse Problems, and Tomography, vol. 63, p. 67. American Mathematical society, Providence (2006)

    Google Scholar 

  14. Lee, R.E.: Scanning Electron Microscopy and X-Ray Microanalysis. Prentice-Hall, NewJersey (1993)

    Google Scholar 

  15. Li, L., Speed, T.: Parametric deconvolution of positive spike trains. Ann. Stat. 28, 1270 (2000)

    Google Scholar 

  16. Markoe, A., Quinto, E.T.: An elementary proof of local invertibility for generalized and attenuated radon transforms. SIAM J. Math. Anal. 16, 111–4 (1985)

    Article  MathSciNet  Google Scholar 

  17. Merlet, C.: An accurate computer correction program for quantitative electron probe microanalysis. Mikrochim. Acta 114/115, 363 (1994)

    Article  Google Scholar 

  18. Paciorek, C.J., Schervish, M.: Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17, 483–506 (2006)

    Article  MathSciNet  Google Scholar 

  19. Panaretos, V.M.: On random tomography with unobservable projection angles. Ann. Stat. 37(6), 3272 (2009)

    MathSciNet  Google Scholar 

  20. Parker, R.L.: Geophysical Inverse Theory (Princeton Series in Geophysics). Princeton University Press, Princeton (1994)

    Google Scholar 

  21. Pouchou, J.L., Pichoir, F.: PAP (ρZ) procedure for improved quantitative microanalysis. In: J.T. Armstrong (ed.) Microbeam Analysis. San Francisco Press, San Francisco, (1984)

    Google Scholar 

  22. Qiu, P.: A nonparametric procedure for blind image deblurring. Comput. Stat. Data Anal. 52, 4828–4842 (2008)

    Article  MATH  Google Scholar 

  23. Reed, S.J.B.: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  24. Rullgård, H.: Stability of the inverse problem for the attenuated radon transform with 180 data. Inverse Probl. 20, 781 (2004)

    Google Scholar 

  25. Stuart, A.: Inverse problems: a Bayesian perspective. Acta Numerica. 19, 451–559 (2010) (Cambridge University Press)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stuart, A.: Bayesian approach to inverse problems. Provide an introduction to the forthcoming book Bayesian Inverse Problems in Differential Equations by M. Dashti, M. Hairer and A.M. Stuart; available at arXiv:math/1302.6989 (2013)

    Google Scholar 

  27. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Nare Gabrielyan, Emerging Technologies Research Centre, De Montfort University, Leicester, UK, for performing the SEM imaging used in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Chakrabarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chakrabarty, D., Paul, S. (2015). Bayesian Learning of Material Density Function by Multiple Sequential Inversions of 2-D Images in Electron Microscopy. In: Polpo, A., Louzada, F., Rifo, L., Stern, J., Lauretto, M. (eds) Interdisciplinary Bayesian Statistics. Springer Proceedings in Mathematics & Statistics, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-12454-4_3

Download citation

Publish with us

Policies and ethics