Skip to main content

Estimating and Detecting Jumps. Applications to \(D\left[ 0,1\right] \)-Valued Linear Processes

  • Chapter
  • First Online:
Book cover Mathematical Statistics and Limit Theorems
  • 1594 Accesses

Abstract

This paper is devoted to the estimation of the intensity and the density of jumps for \(D\left[ 0,1\right] \)-valued random variables and the construction of detectors for constant or random jumps. Limit theorems are obtained in the context of continuous observations or high-frequency data. Applications to jumps for \(D\left[ 0,1\right] \)-valued moving average and autoregressive processes are considered. We also study the special case where there is an infinity of jumps. Thus, our approach is somewhat different from that which consists of studying jumps in semimartingales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bezandry, P. H. (2006). Laws of large numbers for \(D[0,1]\). Statistics and Probability Letters, 76(10), 981–985.

    Article  MATH  MathSciNet  Google Scholar 

  • Bézandry, P. H., & Fernique, X. (1992). Sur la propriété de la limite centrale dans \(D[0,1]\). Annales de l’Institut Henri Poincaré Probability and Statistics, 28(1), 31–46.

    MATH  Google Scholar 

  • Billingsley, P. (1999). Convergence of probability measures (2nd ed.). Wiley Series in Probability and Statistics: Probability and Statistics. New York: Wiley.

    Google Scholar 

  • Bloznelis, M., & Paulauskas, V. (1993). On the central limit theorem in \(D[0,1]\). Statistics and Probability Letters, 17(2), 105–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Bosq, D. (1998). Nonparametric statistics for stochastic processes. Estimation and prediction (2nd ed.,). Lecture Notes in Statistics (Vol. 110). New York: Springer.

    Google Scholar 

  • Bosq, D. (2000). Linear processes in function spaces. Lecture Notes in Statistics (Vol. 149). New York: Springer.

    Google Scholar 

  • Bosq, D. (2014). Computing the best linear predictor in a Hilbert space. Applications to general ARMAH processes. Journal of Multivariate Analysis, 124, 436–450.

    Article  MATH  MathSciNet  Google Scholar 

  • Bosq, D., & Blanke, D. (2007). Prediction and inference in large dimensions. Wiley Series in Probability and Statistics. New York: Wiley-Dunod.

    Book  Google Scholar 

  • Bradley, R. C. (1986). Basic properties of strong mixing conditions. In: Dependence in probability and statistics (Oberwolfach, 1985). Programme Probability and Statistics (vol. 11, pp. 165–192). Boston: Birkhäuser.

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Daffer, P. Z., & Taylor, R. L. (1979). Laws of large numbers for \(D[0,\,1]\). Annals of Probability, 7(1), 85–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. (2000). Uniform limit laws for kernel density estimators on possibly unbounded intervals. Recent advances in reliability theory, Statistics in Indiana Technology (Bordeaux, 2000) (pp. 477–492). Boston: Birkhäuser.

    Google Scholar 

  • El Hajj, L. (2011). Théorèmes limites pour les processus autorégressifs à valeurs dans \(D[0,1]\). Comptes Rendus Mathematics Academy Sciences Paris, 349(13–14), 821–825.

    Google Scholar 

  • El Hajj, L. (2013). Inférence statistique pour des variables fonctionnelles à sauts. Thèse de doctorat, Université Pierre et Marie Curie-Paris 6, Décembre 2013.

    Google Scholar 

  • Ferraty, F., & Romain, Y. (Eds.). (2011). The Oxford handbook of functional data analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Hahn, M. G. (1978). Central limit theorems in \(D[0, 1]\). Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 44(2), 89–101.

    Article  Google Scholar 

  • Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications. Springer Series in Statistics. New York: Springer.

    Google Scholar 

  • Merlevède, F., Peligrad, M., & Bosq, D. (1999). Asymptotic normality for density kernel estimators in discrete and continuous time. Journal of Multivariate Analysis, 68(1), 78–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Norzhigitov, A. F., & Sharipov, O. S. (2010). The central limit theorem for weakly dependent random variables with values in the space \(D[0,1]\). Uzbekskii Matematicheskii Zhurnal, 2, 103–112.

    MathSciNet  Google Scholar 

  • Pestman, W. R. (1995). Measurability of linear operators in the Skorokhod topology. Bulletin of the Belgian Mathematical Society—Simon Stevin, 2(4), 381–388.

    MATH  MathSciNet  Google Scholar 

  • Ranga Rao, R. (1963). The law of large numbers for \(D[0,1]\)-valued random variables. Theory of Probability and its Applications, 8, 70–74.

    Article  MATH  Google Scholar 

  • Rosenblatt, M. (1985). Stationary sequences and random fields. Boston: Birkhäuser Boston Inc.

    Book  MATH  Google Scholar 

  • Şchiopu-Kratina, I., & Daffer, P. (1999). Tightness and the law of large numbers in \(D[0,1]\). Revue Roumaine de Mathématique Pures et Appliquées, 44(3), 473–480. (2000).

    Google Scholar 

  • Shiryaev, A. N. (1996). In R. P. Boas (Ed.), Probability, graduate texts in mathematics (2nd ed., Vol. 95). New York: Springer. translated from the first (1980).

    Google Scholar 

Download references

Acknowledgments

I want to thank the associate editor and the two referees for their very useful comments which allowed me to notably improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Bosq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bosq, D. (2015). Estimating and Detecting Jumps. Applications to \(D\left[ 0,1\right] \)-Valued Linear Processes. In: Hallin, M., Mason, D., Pfeifer, D., Steinebach, J. (eds) Mathematical Statistics and Limit Theorems. Springer, Cham. https://doi.org/10.1007/978-3-319-12442-1_4

Download citation

Publish with us

Policies and ethics