Skip to main content

Optimal Rank-Based Tests for the Location Parameter of a Rotationally Symmetric Distribution on the Hypersphere

  • Chapter
  • First Online:
Mathematical Statistics and Limit Theorems

Abstract

Rotationally symmetric distributions on the unit hyperpshere are among the most commonly met in directional statistics. These distributions involve a finite-dimensional parameter \({\pmb {\theta }}\) and an infinite-dimensional parameter \(g\), that play the role of “location” and “angular density” parameters, respectively. In this paper, we focus on hypothesis testing on \({\pmb {\theta }}\), under unspecified \(g\). We consider (i) the problem of testing that \({\pmb {\theta }}\) is equal to some given \({\pmb {\theta }}_0\), and (ii) the problem of testing that \({\pmb {\theta }}\) belongs to some given great “circle”. Using the uniform local and asymptotic normality result from Ley et al. (Statistica Sinica 23:305–333, 2013), we define parametric tests that achieve Le Cam optimality at a target angular density \(f\). To improve on the poor robustness of these parametric procedures, we then introduce a class of rank tests for these problems. Parallel to parametric tests, the proposed rank tests achieve Le Cam optimality under correctly specified angular densities. We derive the asymptotic properties of the various tests and investigate their finite-sample behavior in a Monte Carlo study.

Paindaveine—Research supported by an A.R.C. contract from the Communauté Française de Belgique and by the IAP research network grant P7/06 of the Belgian government (Belgian Science Policy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bowers, J. A., Morton, I. D., & Mould, G. I. (2000). Directional statistics of the wind and waves. Applied Ocean Research, 22, 401–412.

    Article  Google Scholar 

  • Briggs, M. S. (1993). Dipole and quadrupole tests of the isotropy of gamma-ray burst locations. Astrophysical Journal, 407, 126–134.

    Article  Google Scholar 

  • Chang, T. (2004). Spatial statistics. Statistical Science, 19, 624–635.

    Article  MATH  MathSciNet  Google Scholar 

  • Clark, R. M. (1983). Estimation of parameters in the marginal Fisher distribution. Australian Journal of Statistics, 25, 227–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, N. I. (1953). Dispersion on a sphere. Proceedings of the Royal Society of London A, 217, 295–305.

    Article  MATH  Google Scholar 

  • Fisher, N. I. (1987). Problems with the current definitions of the standard deviation of wind direction. Journal of Climate and Applied Meteorology, 26, 1522–1529.

    Article  Google Scholar 

  • Fisher, N. I. (1989). Smoothing a sample of circular data. Journal of Structural Geology, 11, 775–778.

    Article  Google Scholar 

  • Fisher, N. I., Lewis, T., & Embleton, B. J. J. (1987). Statistical analysis of spherical data. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Fujikoshi, Y., & Watamori, Y. (1992). Tests for the mean direction of the Langevin distribution with large concentration parameter. Journal of Multivariate Analysis, 42, 210–225.

    Article  MATH  MathSciNet  Google Scholar 

  • Hallin, M., & Werker, B. J. (2003). Semi-parametric efficiency, distribution-freeness and invariance. Bernoulli, 9, 137–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Hallin, M., Paindaveine, D., & Verdebout, T. (2010). Optimal rank-based testing for principal components. Annals of Statistics, 38, 3245–3299.

    Article  MATH  MathSciNet  Google Scholar 

  • Jupp, P., & Mardia, K. (1989). A unified view of the theory of directional statistics. International Statistical Review, 57, 261–294.

    Article  MATH  Google Scholar 

  • Kreiss, J. (1987). On adaptive estimation in stationary ARMA processes. Annals of Statistics, 15, 112–133.

    Article  MATH  MathSciNet  Google Scholar 

  • Leong, P., & Carlile, S. (1998). Methods for spherical data analysis and visualization. Journal of Neuroscience Methods, 80, 191–200.

    Article  Google Scholar 

  • Ley, C., Swan, Y., Thiam, B., & Verdebout, T. (2013). Optimal R-estimation of a spherical location. Statistica Sinica, 23, 305–333.

    MATH  MathSciNet  Google Scholar 

  • Mardia, K. (1975). Statistics of directional data (with discussion). Journal of the Royal Statistical Society: Series B, 37, 349–393.

    MATH  MathSciNet  Google Scholar 

  • Mardia, K. V., & Edwards, R. (1982). Weighted distributions and rotating caps. Biometrika, 69, 323–330.

    Article  MATH  MathSciNet  Google Scholar 

  • Mardia, K. V., & Jupp, P. (2000). Directional statistics. New York: Wiley.

    MATH  Google Scholar 

  • Merrifield, A. (2006). An investigation of mathematical models for animal group movement, using classical and statistical approaches. Ph.D. thesis. The University of Sydney, Sydney, Australia.

    Google Scholar 

  • Rao, C., & Mitra, S. (1971). Generalized inverses of matrices and its apllications. New York: Wiley.

    Google Scholar 

  • Saw, J. G. (1978). A family of distributions on the \(m\)-sphere and some hypothesis tests. Biometrika, 65, 69–73.

    Article  MATH  MathSciNet  Google Scholar 

  • Storetvedt, K. M., & Scheidegger, A. E. (1992). Orthogonal joint structures in the Bergen area, southwest Norway, and their regional significance. Physics of the Earth and Planetary Interiors, 73, 255–263.

    Article  Google Scholar 

  • Tsai, M., & Sen, P. (2007). Locally best rotation-invariant rank tests for modal location. Journal of Multivariate Analysis, 98, 1160–1179.

    Article  MATH  MathSciNet  Google Scholar 

  • Watamori, Y. (1992). Tests for a given linear structure of the mean direction of the Langevin distribution. Annals of the Institute of Statistical Mathematics, 44, 147–156.

    Article  MATH  MathSciNet  Google Scholar 

  • Watson, G. (1983). Statistics on spheres. New York: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to two anonymous referees and the Editor for their careful reading and insightful comments that allowed to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davy Paindaveine .

Editor information

Editors and Affiliations

Appendix

Appendix

In this Appendix, we prove Theorems 3 and 4.

Proof of Theorem 3. (i) Recalling that \(\hat{{\pmb {\theta }}}\) is an arbitrary consistent estimator of \({\pmb {\theta }}\), we have that under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,}{g}}\),

$$\begin{aligned}&{\hat{\mathcal{L}}_k(\hat{{\pmb {\theta }}})-\hat{\mathcal{L}}_k({\pmb {\theta }}) = \frac{1}{n} \sum _{i=1}^n \big \{ (\mathbf{{X}}_i^{\prime }{\pmb {\theta }})^2 - (\mathbf{{X}}_i^{\prime }\hat{{\pmb {\theta }}})^2 \big \} }\\&\qquad =\,\frac{1}{n} \sum _{i=1}^n \big \{ \mathbf{{X}}_i^{\prime }({\pmb {\theta }}-\hat{{\pmb {\theta }}}) \mathbf{{X}}_i^{\prime }({\pmb {\theta }}+\hat{{\pmb {\theta }}}) \big \} = ({\pmb {\theta }}-\hat{{\pmb {\theta }}}) \Big \{ \frac{1}{n} \sum _{i=1}^n \mathbf{{X}}_i \mathbf{{X}}_i^{\prime }\Big \} ({\pmb {\theta }}+\hat{{\pmb {\theta }}})=o_\mathrm{P}(1) \end{aligned}$$

as \(n\rightarrow \infty \), so that \(\hat{\mathcal{L}}_k(\hat{{\pmb {\theta }}})\) is a consistent estimator of \(\mathcal{L}_k(g)=1-\mathrm{E}^{(n)}_{{\pmb {\theta }}{,}{g}}[(\mathbf{{X}}_i^{\prime }{\pmb {\theta }})^2]\). Consequently, \(Q_{f_{\mathrm{exp}}; \mathrm{Stud}}^{(n)}-Q_{{\pmb {\theta }}{,}g}^{(n)}\) is \(o_\mathrm{P}(1)\) as \(n\rightarrow \infty \) under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,}g}\), with

$$\begin{aligned}&{Q_{{\pmb {\theta }}{,}g}^{(n)}:= \frac{n(k-1)}{ \mathcal{L}_k(g)} \, {\bar{\mathbf{{X}}}}^{\prime }(\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }) {\bar{\mathbf{{X}}}} } \\&\qquad =\,\frac{n(k-1)}{ \mathcal{L}_k(g)} \, {\bar{\mathbf{{X}}}}^{\prime }(\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }) (\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime }) {\bar{\mathbf{{X}}}} = \mathbf {Y}^{\prime }(\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }) \mathbf {Y}, \end{aligned}$$

where we used the fact that \( \left( \mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }\right) (\mathbf{I}- {\pmb {\theta }}{\pmb {\theta }}^{\prime })= \mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }\) and where we let \(\mathbf {Y}:=\sqrt{n(k-1)/\mathcal{L}_k(g)}(\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime }) {\bar{\mathbf{{X}}}}\). Under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,}g}\),

$$\begin{aligned} \sqrt{n}(\mathbf{I}- {\pmb {\theta }}{\pmb {\theta }}^{\prime }) {\bar{\mathbf{{X}}}}=\frac{1}{\sqrt{n}} \sum _{i=1}^n \big \{\sqrt{1-(\mathbf{{X}}_i'{\pmb {\theta }})^2} \,{\mathbf {S}}_i({\pmb {\theta }}) \big \} \end{aligned}$$
(21)

is asymptotically normal with mean zero and covariance matrix \(\mathcal{L}_k(g)(\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime })/\) \((k-1)\), so that \(\mathbf {Y}\), under the same, is asymptotically normal with mean zero and covariance matrix \(\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime }\). By using again the fact that \( \left( \mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }\right) (\mathbf{I}- {\pmb {\theta }}{\pmb {\theta }}^{\prime })= \mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }\) and by noting that \(\mathrm{tr}[\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }]=k-s\), it is easy to check that Theorem 9.2.1 in Rao and Mitra (1971) provides the result.

(ii) Le Cam’s third lemma implies that under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}+n^{-1/2}{\pmb {\tau }}^{(n)},g}\), the random vector in (21) is asymptotically normal with mean

$$\begin{aligned} \lim _{n\rightarrow \infty } \mathrm{Cov}_{{\pmb {\theta }}{,}g}\Big [ \sqrt{n}(\mathbf{I}- {\pmb {\theta }}{\pmb {\theta }}^{\prime }) {\bar{\mathbf{{X}}}} , {\pmb {\varDelta }}_{{\pmb {\theta }}{,}g}^{(n)}\Big ] {\pmb {\tau }}^{(n)}\end{aligned}$$
(22)

and covariance matrix \(\mathcal{L}_k(g)(\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime })/(k-1)\). Using (3) and integrating by parts yields

$$ \mathrm{E}_{{\pmb {\theta }}{,}g}\big [ (1-(\mathbf{{X}}_1'{\pmb {\theta }})^2) \varphi _{g}(\mathbf{{X}}_1'{\pmb {\theta }}) \big ] = \int _{-1}^1 (1-t^2)\varphi _{g}(t) \tilde{g}(t)\,dt = k-1, $$

so that (22) can be rewritten as \( \mathrm{E}_{{\pmb {\theta }}{,}g}\big [ (1-(\mathbf{{X}}_1'{\pmb {\theta }})^2) \varphi _{g}(\mathbf{{X}}_1'{\pmb {\theta }}) \big ] \mathrm{E}_{{\pmb {\theta }}{,}g}\big [ S_1({\pmb {\theta }})(S_1({\pmb {\theta }}))' \big ] {\pmb {\tau }}= (\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime }){\pmb {\tau }}= {\pmb {\tau }}\). Therefore, \(\mathbf {Y}\), under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}+n^{-1/2}{\pmb {\tau }}^{(n)},g}\), is asymptotically normal with mean \( {\pmb \mu }:=\sqrt{(k-1)/\mathcal{L}_k(g)} \,{\pmb {\tau }}\) and covariance matrix \(\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime }\). From contiguity, we still have that \(Q_{f_{\mathrm{exp}}; \mathrm{Stud}}^{(n)}-\mathbf {Y}^{\prime }(\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }) \mathbf {Y}\) is \(o_\mathrm{P}(1)\) under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}+n^{-1/2}{\pmb {\tau }}^{(n)},g}\). Theorem 9.2.1 in Rao and Mitra (1971) then shows that under this sequence of probability measures, \(Q_{f_{\mathrm{exp}}; \mathrm{Stud}}^{(n)}\) is asymptotically \(\chi ^2_{k-s}\) with non-centrality parameter \({\pmb \mu }'(\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }){\pmb \mu }\), which establishes the result.

(iii) This directly follows from the asymptotic null distribution given in (i) and the classical Helly–Bray theorem.

(iv) Fix \(\kappa >0\). Then, it follows from Part (i) of the proof that under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,}f_{\mathrm{exp},\kappa }}\), with \({\pmb {\theta }}\in \fancyscript{S}^{k-1} \cap \mathcal{M}({\pmb {\varUpsilon }})\), \(Q_{f_{\mathrm{exp}}; \mathrm{Stud}}^{(n)}\) is asymptotically equivalent in probability to

$$\begin{aligned} Q_{{\pmb {\theta }};f_{\mathrm{exp},\kappa }}^{(n)}&= \frac{n(k-1)}{ \mathcal{L}_k(f_{\mathrm{exp},\kappa })} \, {\bar{\mathbf{{X}}}}^{\prime }(\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }) {\bar{\mathbf{{X}}}}\\&= \frac{n\kappa ^2(k-1)}{\fancyscript{J}_k({f_{\mathrm{exp},\kappa }})} \, {\bar{\mathbf{{X}}}}^{\prime }(\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }) {\bar{\mathbf{{X}}}} , \end{aligned}$$

which is the FvML(\(\kappa \))-most stringent statistic we derived in (18).   \(\square \)

In Theorem 3(ii), we assumed that \(g\in \fancyscript{F}_\mathrm{ULAN}\) to show, through Le Cam’s third lemma, that \(\sqrt{n}(\mathbf{I}- {\pmb {\theta }}{\pmb {\theta }}^{\prime }) {\bar{\mathbf{{X}}}}\), under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}+n^{-1/2}{\pmb {\tau }}^{(n)},g}\), is asymptotically normal with mean \({\pmb {\tau }}\) and covariance matrix \(\mathcal{L}_k(g)(\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime })/(k-1)\). Actually, the result still holds for \(g\in \fancyscript{F}\), as it can be shown that as \(n\rightarrow \infty \) under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}+n^{-1/2}{\pmb {\tau }}^{(n)},g}\),

$$ \sqrt{n}(\mathbf{I}- {\pmb {\theta }}{\pmb {\theta }}^{\prime }) {\bar{\mathbf{{X}}}} = {\mathbf {M}}^{(n)}+(\mathbf {I}_k+{\pmb {\theta }}{\pmb {\theta }}^{\prime }){\pmb {\tau }}+o_\mathrm{P}(1) = {\mathbf {M}}^{(n)}+{\pmb {\tau }}+o_\mathrm{P}(1), $$

where \({\mathbf {M}}^{(n)}:=\sqrt{n}(\mathbf{I}- ({\pmb {\theta }}+n^{-1/2}{\pmb {\tau }}^{(n)})({\pmb {\theta }}+n^{-1/2}{\pmb {\tau }}^{(n)})^{\prime }) {\bar{\mathbf{{X}}}}\), under the same, is clearly asymptotically normal with mean zero and covariance matrix \(\mathcal{L}_k(g)(\mathbf{I}_k- {\pmb {\theta }}{\pmb {\theta }}^{\prime })/\) \((k-1)\).

Proof of Theorem 4. (i)–(ii) First note that since \({\pmb {\theta }}'{\pmb {\tau }}^{(n)}=O(n^{-1/2})\), Proposition 2(iv) rewrites

(23)

as \(n\rightarrow \infty \) under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,} g}\). Since Assumption (B) holds, Lemma 4.4 in Kreiss (1987) allows to replace in (23) the deterministic quantity \({\pmb {\tau }}^{(n)}\) with the random one \(\sqrt{n}(\hat{{\pmb {\theta }}}-{{\pmb {\theta }}})\), which yields

as \(n\rightarrow \infty \), under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,}g}\). This, jointly with Assumption (B)(iii) (which implies that \((\mathbf{I}_k-{\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime })\hat{{\pmb {\theta }}}=0\) almost surely), entails that under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,} g}\), with \({\pmb {\theta }}\in \fancyscript{M}({\pmb {\varUpsilon }})\),

as \(n\rightarrow \infty \). It follows that \( \begin{array}{c}{Q}\\ \widetilde{} \end{array} _{K}^{(n)}= \begin{array}{c}{Q}\\ \widetilde{} \end{array} _{{\pmb {\theta }}{,}K}^{(n)}+o_\mathrm{P}(1)\) as \(n\rightarrow \infty \) under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,} g}\), with \({\pmb {\theta }}\in \fancyscript{M}({\pmb {\varUpsilon }})\), hence also under sequences of local alternatives. The results in (i)–(ii) then follow, as in the proof of Theorem 3(i)–(ii), from Theorem 9.2.1 in Rao and Mitra (1971) and Proposition 2(ii)–(iii) (recall that \((\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime })(\mathbf{I}- {\pmb {\theta }}{\pmb {\theta }}^{\prime })=\mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }\)).

(iii) As in the proof of Theorem 3(iii), this is a direct consequence of Part (i) of the result and the classical Helly–Bray theorem.

(iv) Then, under \(\mathrm{P}^{(n)}_{{\pmb {\theta }}{,}f}\), with \({\pmb {\theta }}\in \fancyscript{S}^{k-1} \cap \mathcal{M}({\pmb {\varUpsilon }})\), \( \begin{array}{c}{Q}\\ \widetilde{} \end{array} _{K_{f}}^{(n)}= \begin{array}{c}{Q}\\ \widetilde{} \end{array} _{{\pmb {\theta }}{,}K_{f}}^{(n)}+o_\mathrm{P}(1)\) as \(n\rightarrow \infty \). Now, Proposition 2(i) entails that under the same sequence of hypotheses, \( \begin{array}{c}{Q}\\ \widetilde{} \end{array} _{{\pmb {\theta }}{,}K_{f}}^{(n)}\) is asymptotically equivalent in probability to

$$ Q_{{\pmb {\theta }}{,}K_{f}}^{(n)}= \frac{k-1}{\mathcal{J}_k(K_{f})} \big ( {\pmb {\varDelta }}_{{\pmb \theta }, K_{f}}^{(n)}\big )^{\prime }\left( \mathbf{I}_k- {\pmb {\varUpsilon }}_{}({\pmb {\varUpsilon }}_{}^{\prime }{\pmb {\varUpsilon }}_{})^{-1} {\pmb {\varUpsilon }}_{}^{\prime }\right) {\pmb {\varDelta }}_{{\pmb \theta }, K_{f}}^{(n)}\nonumber , $$

which coincides with the \(f\)-most stringent statistic in (17). The result follows.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paindaveine, D., Verdebout, T. (2015). Optimal Rank-Based Tests for the Location Parameter of a Rotationally Symmetric Distribution on the Hypersphere. In: Hallin, M., Mason, D., Pfeifer, D., Steinebach, J. (eds) Mathematical Statistics and Limit Theorems. Springer, Cham. https://doi.org/10.1007/978-3-319-12442-1_14

Download citation

Publish with us

Policies and ethics