Respiratory Conservation of Energy with Dioxygen: Cytochrome c Oxidase

  • Shinya YoshikawaEmail author
  • Atsuhiro Shimada
  • Kyoko Shinzawa-Itoh
Part of the Metal Ions in Life Sciences book series (MILS, volume 15)


Cytochrome c oxidase (CcO) is the terminal oxidase of cell respiration which reduces molecular oxygen (O2) to H2O coupled with the proton pump. For elucidation of the mechanism of CcO, the three-dimensional location and chemical reactivity of each atom composing the functional sites have been extensively studied by various techniques, such as crystallography, vibrational and time-resolved electronic spectroscopy, since the X-ray structures (2.8 Å resolution) of bovine and bacterial CcO have been published in 1995.

X-ray structures of bovine CcO in different oxidation and ligand binding states showed that the O2 reduction site, which is composed of Fe (heme a 3) and Cu (CuB), drives a non-sequential four-electron transfer for reduction of O2 to water without releasing any reactive oxygen species. These data provide the crucial structural basis to solve a long-standing problem, the mechanism of the O2 reduction.

Time-resolved resonance Raman and charge translocation analyses revealed the mechanism for coupling between O2 reduction and the proton pump: O2 is received by the O2 reduction site where both metals are in the reduced state (R-intermediate), giving the O2-bound form (A-intermediate). This is spontaneously converted to the P-intermediate, with the bound O2 fully reduced to 2 O2−. Hereafter the P-intermediate receives four electron equivalents from the second Fe site (heme a), one at a time, to form the three intermediates, F, O, and E to regenerate the R-intermediate. Each electron transfer step from heme a to the O2 reduction site is coupled with the proton pump.

X-ray structural and mutational analyses of bovine CcO show three possible proton transfer pathways which can transfer pump protons (H) and chemical (water-forming) protons (K and D). The structure of the H-pathway of bovine CcO indicates that the driving force of the proton pump is the electrostatic repulsion between the protons on the H-pathway and positive charges of heme a, created upon oxidation to donate electrons to the O2 reduction site. On the other hand, mutational and time-resolved electrometric findings for the bacterial CcO strongly suggest that the D-pathway transfers both pump and chemical protons. However, the structure for the proton-gating system in the D-pathway has not been experimentally identified. The structural and functional diversities in CcO from various species suggest a basic proton pumping mechanism in which heme a pumps protons while heme a 3 reduces O2 as proposed in 1978.


cell respiration cytochrome c oxidase heme/copper terminal oxidase membrane protein O2 reduction without forming ROS proton pump 



This work is supported by a Grant-in-Aid for the Global Center of Excellence Program (to S. Yoshikawa) and for Scientific Research (A) 2247012 (to S. Yoshikawa), each provided by the Japanese Ministry of Education, Culture, Sports, Science and Technology, and supported by CREST. S. Yoshikawa is “Senior Visiting Scientist in the Riken Harima Institute”.


  1. 1.
    S. Ferguson-Miller, G. T. Babcock, Chem. Rev. 1996, 96, 2889–2908.CrossRefPubMedGoogle Scholar
  2. 2.
    S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh, Annu. Rev. Biophys. 2011, 40, 205–223.CrossRefPubMedGoogle Scholar
  3. 3.
    T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1995, 269, 1069–1074.CrossRefPubMedGoogle Scholar
  4. 4.
    S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, Nature 1995, 376, 660–669.CrossRefPubMedGoogle Scholar
  5. 5.
    C. Ostermeier, A. Harrenga, U. Ermler, H. Michel, Proc. Natl. Acad. Sci. USA 1997, 94, 10547–10553.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    M. Svensson-Ek, J. Abramson, G. Larsson, S. Törnroth, P. Brzezinski, S. Iwata, J. Mol. Biol. 2002, 321, 329–339.CrossRefPubMedGoogle Scholar
  7. 7.
    J. Abramson, S. Riistama, G. Larsson, A. Jasaitis, M. Svensson-Ek, L. Laakkonen, A. Puustinen, S. Iwata, M. Wikström, Nat. Struct. Biol. 2000, 7, 910–917.CrossRefPubMedGoogle Scholar
  8. 8.
    J. A. Lyons, D. Aragão, O. Slattery, A. V Pisliakov, T. Soulimane, M. Caffrey, Nature 2012, 487, 514–518.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    T. Tiefenbrunn, W. Liu, Y. Chen, V. Katritch, C. D. Stout, J. A. Fee, V. Cherezov, PLoS One 2011, 6, e22348.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, H. Michel, Science 2010, 329, 327–330.CrossRefPubMedGoogle Scholar
  11. 11.
    E. Yakushiji, K. Okunuki, Proc. Impact Acad. Japan 1941, 17, 205–223.Google Scholar
  12. 12.
    T. Yonetani, S. Takemori, I. Sekuzu, K. Okunuki, Nature 1958, 181, 1339–1340.CrossRefPubMedGoogle Scholar
  13. 13.
    T. Yonetani, J. Biol. Chem. 1961, 236, 1680–1688.PubMedGoogle Scholar
  14. 14.
    B. Kadenbach, M. Ungibauer, J. Jarausch, U. Buge, L. Kuhn-Nentwig, Trends Biochem. Sci. 1983, 8, 398–400.CrossRefGoogle Scholar
  15. 15.
    W. S. Caughey, G. A. Smythe, D. H. O’Keeffe, J. E. Maskasky, M. I. Smith, J. Biol. Chem. 1975, 250, 7602–7622.PubMedGoogle Scholar
  16. 16.
    E. Yamashita, H. Aoyama, M. Yao, K. Muramoto, K. Shinzawa-Itoh, S. Yoshikawa, T. Tsukihara, Acta Crystallogr. D. Biol. Crystallogr. 2005, 61, 1373–1377.CrossRefPubMedGoogle Scholar
  17. 17.
    P. M. Kroneck, W. A. Antholine, J. Riester, W. G. Zumft, FEBS Lett. 1988, 242, 70–74.CrossRefPubMedGoogle Scholar
  18. 18.
    K. Shinzawa-Itoh, H. Aoyama, K. Muramoto, H. Terada, T. Kurauchi, Y. Tadehara, A. Yamasaki, T. Sugimura, S. Kurono, K. Tsujimoto, T. Mizushima, E. Yamashita, T. Tsukihara, S. Yoshikawa, EMBO J. 2007, 26, 1713–1725.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    W. S. Caughey, W. J. Wallace, J. A. Volpe, S. Yoshikawa, in Oxidation-Reduction, Part C, Vol. 13 of The Enzymes, 3rd edn., Ed P. D. Boyer, Academic Press, New York, 1976, pp. 299–344.Google Scholar
  20. 20.
    W. T. Potter, M. P. Tucker, R. A. Houtchens, W. S. Caughey, Biochemistry 1987, 26, 4699–4707.CrossRefPubMedGoogle Scholar
  21. 21.
    Q. H. Gibson, C. Greenwood, Biochem. J. 1963, 86, 541–554.PubMedCentralPubMedGoogle Scholar
  22. 22.
    T. Ogura, S. Takahashi, K. Shinzawa-Itoh, S. Yoshikawa, T. Kitagawa, J. Am. Chem. Soc. 1990, 112, 5630–5631.CrossRefGoogle Scholar
  23. 23.
    S. W. Han, Y. C. Ching, D. L. Rousseau, Proc. Natl. Acad. Sci. USA 1990, 87, 2491–2495.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    C. Varotsis, W. H. Woodruff, G. T. Babcock, J. Am. Chem. Soc. 1989, 111, 6439–6440.CrossRefGoogle Scholar
  25. 25.
    T. Ogura, S. Hirota, D. A. Proshlyakov, K. Shinzawa-Itoh, J. Am. Chem. Soc. 1996, 118, 5443–5449.CrossRefGoogle Scholar
  26. 26.
    T. Ogura, S. Takahashi, S. Hirota, K. Shinzawa-Itoh, S. Yoshikawa, E. H. Appelman, T. Kitagawa, J. Am. Chem. Soc. 1993, 115, 8527–8536.CrossRefGoogle Scholar
  27. 27.
    J. P. Collman, C. J. Sunderland, K. E. Berg, M. A. Vance, E. I. Solomon, J. Am. Chem. Soc. 2003, 125, 6648–9.CrossRefPubMedGoogle Scholar
  28. 28.
    D. A. Proshlyakov, M. A. Pressler, G. T. Babcock, Proc. Natl. Acad. Sci. USA 1998, 95, 8020–8025.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    T. Ogura, T. Kitagawa, Biochim. Biophys. Acta 2004, 1655, 290–297.CrossRefPubMedGoogle Scholar
  30. 30.
    D. A. Proshlyakov, M. A. Pressler, C. DeMaso, J. F. Leykam, D. L. DeWitt, G. T. Babcock, Science 2000, 290, 1588–1591.CrossRefPubMedGoogle Scholar
  31. 31.
    M. A. Yu, T. Egawa, K. Shinzawa-Itoh, S. Yoshikawa, V. Guallar, S.-R. Yeh, D. L. Rousseau, G. J. Gerfen, J. Am. Chem. Soc. 2012, 134, 4753–4761.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    A. Sucheta, K. E. Georgiadis, O. Einarsdóttir, Biochemistry 1997, 36, 554–565.CrossRefPubMedGoogle Scholar
  33. 33.
    A. Sucheta, I. Szundi, O. Einarsdóttir, Biochemistry 1998, 37, 17905–17914.CrossRefPubMedGoogle Scholar
  34. 34.
    I. Szundi, G. L. Liao, O. Einarsdóttir, Biochemistry 2001, 40, 2332–2339.CrossRefPubMedGoogle Scholar
  35. 35.
    O. Einarsdóttir, I. Szundi, N. Van Eps, A. Sucheta, J. Inorg. Biochem. 2002, 91, 87–93.CrossRefPubMedGoogle Scholar
  36. 36.
    N. Van Eps, I. Szundi, O. Einarsdóttir, Biochemistry 2003, 42, 5065–5073.CrossRefPubMedGoogle Scholar
  37. 37.
    K. Muramoto, K. Ohta, K. Shinzawa-Itoh, K. Kanda, M. Taniguchi, H. Nabekura, E. Yamashita, T. Tsukihara, S. Yoshikawa, Proc. Natl. Acad. Sci. USA 2010, 107, 7740–7745.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    W. H. Woodruff, O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, D. S. Kliger, Proc. Natl. Acad. Sci. USA 1991, 88, 2588–2592.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    J. O. Alben, P. P. Moh, F. G. Fiamingo, R. A. Altschuld, Proc. Natl. Acad. Sci. USA 1981, 78, 234–237.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    J. P. Collman, C. J. Sunderland, R. Boulatov, Inorg. Chem. 2002, 41, 2282–2291.CrossRefPubMedGoogle Scholar
  41. 41.
    J. P. Collman, R. A. Decréau, C. J. Sunderland, Chem. Commun. 2006, 3894–3896.Google Scholar
  42. 42.
    J. P. Collman, N. K. Devaraj, R. A. Decréau, Y. Yang, Y.-L. Yan, W. Ebina, T. A. Eberspacher, C. E. D. Chidsey, Science 2007, 315, 1565–1568.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    J. P. Collman, S. Ghosh, A. Dey, R. A. Decréau, Y. Yang, J. Am. Chem. Soc. 2009, 131, 5034–5035.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Z. Halime, M. T. Kieber-Emmons, M. F. Qayyum, B. Mondal, T. Gandhi, S. C. Puiu, E. E. Chufán, A. A. N. Sarjeant, K. O. Hodgson, B. Hedman, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2010, 49, 3629–3645.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Z. Halime, H. Kotani, Y. Li, S. Fukuzumi, K. D. Karlin, Proc. Natl. Acad. Sci. USA 2011, 108, 13990–13994.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    M. I. Verkhovsky, A. Jasaitis, M. L. Verkhovskaya, J. E. Morgan, M. Wikström, Nature 1999, 400, 480–483.CrossRefPubMedGoogle Scholar
  47. 47.
    A. Jasaitis, M. I. Verkhovsky, J. E. Morgan, M. L. Verkhovskaya, M. Wikström, Biochemistry 1999, 38, 2697–2706.CrossRefPubMedGoogle Scholar
  48. 48.
    D. Bloch, I. Belevich, A. Jasaitis, C. Ribacka, A. Puustinen, M. I. Verkhovsky, M. Wikström, Proc. Natl. Acad. Sci. USA 2004, 101, 529–533.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    S. A. Siletsky, A. A. Konstantinov, Biochim. Biophys. Acta 2012, 1817, 476–488.CrossRefPubMedGoogle Scholar
  50. 50.
    D. Zaslavsky, A. D. Kaulen, I. A. Smirnova, T. Vygodina, A. A. Konstantinov, FEBS Lett. 1993, 336, 389–393.CrossRefPubMedGoogle Scholar
  51. 51.
    D. Zaslavsky, R. C. Sadoski, K. Wang, B. Durham, R. B. Gennis, F. Millett, Biochemistry 1998, 37, 14910–14916.CrossRefPubMedGoogle Scholar
  52. 52.
    E. Pilet, A. Jasaitis, U. Liebl, M. H. Vos, Proc. Natl. Acad. Sci. USA 2004, 101, 16198–16203.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    S. A. Siletsky, D. Han, S. Brand, J. E. Morgan, M. Fabian, L. Geren, F. Millett, B. Durham, A. A. Konstantinov, R. B. Gennis, Biochim. Biophys. Acta 2006, 1757, 1122–1132.CrossRefPubMedGoogle Scholar
  54. 54.
    S. A. Siletsky, A. S. Pawate, K. Weiss, R. B. Gennis, A. A. Konstantinov, J. Biol. Chem. 2004, 279, 52558–52565.CrossRefPubMedGoogle Scholar
  55. 55.
    V. Y. Artzatbanov, A. A. Konstantinov, V. P. Skulachev, FEBS Lett. 1978, 87, 180–185.CrossRefPubMedGoogle Scholar
  56. 56.
    A. A. Konstantinov, S. Siletsky, D. Mitchell, A. Kaulen, R. B. Gennis, Proc. Natl. Acad. Sci. USA 1997, 94, 9085–9090.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    M. Wikström, M. I. Verkhovsky, G. Hummer, Biochim. Biophys. Acta 2003, 1604, 61–65.CrossRefPubMedGoogle Scholar
  58. 58.
    V. R. I. Kaila, M. I. Verkhovsky, G. Hummer, M. Wikström, Proc. Natl. Acad. Sci. USA 2008, 105, 6255–6259.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    S. Yang, Q. Cui, Biophys. J. 2011, 101, 61–69.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    T. Yamashita, G. A. Voth, J. Am. Chem. Soc. 2012, 134, 1147–1152.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    G. Brändén, M. Brändén, B. Schmidt, D. A. Mills, S. Ferguson-Miller, P. Brzezinski, Biochemistry 2005, 44, 10466–10474.CrossRefPubMedGoogle Scholar
  62. 62.
    A. Puustinen, M. Wikström, Proc. Natl. Acad. Sci. USA 1999, 96, 35–37.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    J. Qian, D. A. Mills, L. Geren, K. Wang, C. W. Hoganson, B. Schmidt, C. Hiser, G. T. Babcock, B. Durham, F. Millett, S. Ferguson-Miller, Biochemistry 2004, 43, 5748–5756.CrossRefPubMedGoogle Scholar
  64. 64.
    M. Wikström, C. Ribacka, M. Molin, L. Laakkonen, M. Verkhovsky, A. Puustinen, Proc. Natl. Acad. Sci. USA 2005, 102, 10478–10481.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    J. Fetter, M. Sharpe, J. Qian, D. Mills, S. Ferguson-Miller, P. Nicholls, FEBS Lett. 1996, 393, 155–160.CrossRefPubMedGoogle Scholar
  66. 66.
    J. R. Fetter, J. Qian, J. Shapleigh, J. W. Thomas, A. García-Horsman, E. Schmidt, J. Hosler, G. T. Babcock, R. B. Gennis, S. Ferguson-Miller, Proc. Natl. Acad. Sci. USA 1995, 92, 1604–1608.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    D. A. Mills, B. Schmidt, C. Hiser, E. Westley, S. Ferguson-Miller, J. Biol. Chem. 2002, 277, 14894–14901.CrossRefPubMedGoogle Scholar
  68. 68.
    I. Belevich, M. I. Verkhovsky, M. Wikström, Nature 2006, 440, 829–832.CrossRefPubMedGoogle Scholar
  69. 69.
    P. R. Rich, A. Maréchal, J. R. Soc. Interface 2013, 10, 20130183.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    I. Belevich, E. Gorbikova, N. P. Belevich, V. Rauhamäki, M. Wikström, M. I. Verkhovsky, Proc. Natl. Acad. Sci. USA 2010, 107, 18469–18474.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    R. J. P. Williams, Nature 1995, 376, 643.CrossRefPubMedGoogle Scholar
  72. 72.
    S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, T. Tsukihara, Science 1998, 280, 1723–1729.CrossRefPubMedGoogle Scholar
  73. 73.
    S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh, Biochim. Biophys. Acta 2011, 1807, 1279–1286.CrossRefPubMedGoogle Scholar
  74. 74.
    T. Tsukihara, K. Shimokata, Y. Katayama, H. Shimada, K. Muramoto, H. Aoyama, M. Mochizuki, K. Shinzawa-Itoh, E. Yamashita, M. Yao, Y. Ishimura, S. Yoshikawa, Proc. Natl. Acad. Sci. USA 2003, 100, 15304–15309.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    C. L. Perrin, Acc. Chem. Res. 1989, 22, 268–275.CrossRefGoogle Scholar
  76. 76.
    K. Kamiya, M. Boero, M. Tateno, K. Shiraishi, A. Oshiyama, J. Am. Chem. Soc. 2007, 129, 9663–9673.CrossRefPubMedGoogle Scholar
  77. 77.
    M. Kubo, S. Nakashima, S. Yamaguchi, T. Ogura, M. Mochizuki, J. Kang, M. Tateno, K. Shinzawa-Itoh, K. Kato, S. Yoshikawa, J. Biol. Chem. 2013, 288, 30259–30269.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    K. Shimokata, Y. Katayama, H. Murayama, M. Suematsu, T. Tsukihara, K. Muramoto, H. Aoyama, S. Yoshikawa, H. Shimada, Proc. Natl. Acad. Sci. USA 2007, 104, 4200–4205.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    M. M. Pereira, F. L. Sousa, A. F. Veríssimo, M. Teixeira, Biochim. Biophys. Acta 2008, 1777, 929–934.CrossRefPubMedGoogle Scholar
  80. 80.
    M. M. Pereira, F. L. Sousa, M. Teixeira, R. M. Nyquist, J. Heberle, FEBS Lett. 2006, 580, 1350–1354.CrossRefPubMedGoogle Scholar
  81. 81.
    H.-Y. Chang, J. Hemp, Y. Chen, J. A. Fee, R. B. Gennis, Proc. Natl. Acad. Sci. USA 2009, 106, 16169–16173.CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    P. V Argade, Y. C. Ching, M. Sassaroli, D. L. Rousseau, J. Biol. Chem. 1986, 261, 5969–5973.PubMedGoogle Scholar
  83. 83.
    T. Egawa, H. J. Lee, H. Ji, R. B. Gennis, S.-R. Yeh, D. L. Rousseau, Anal. Biochem. 2009, 394, 141–143.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    T. Egawa, S.-R. Yeh, D. L. Rousseau, PLoS One 2013, 8, e63669.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1996, 272, 1136–1144.CrossRefPubMedGoogle Scholar
  86. 86.
    S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh, M. Mochizuki, Biochim. Biophys. Acta 2012, 1817, 579–589.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shinya Yoshikawa
    • 1
    Email author
  • Atsuhiro Shimada
    • 1
  • Kyoko Shinzawa-Itoh
    • 1
  1. 1.Picobiology Institute, Graduate School of Life ScienceUniversity of HyogoKamigohri Akoh HyogoJapan

Personalised recommendations