Skip to main content

The Generalized Frequency Response Functions and Output Spectrum of Nonlinear Systems

  • Chapter
  • First Online:
  • 1584 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The computation of the GFRFs and/or output spectrum for a given nonlinear system described by NARX, NDE or Block-oriented models is a fundamental task for nonlinear analysis in the frequency domain. This chapter summarizes the results for the computation of the GFRFs and output spectrum for several frequently-used parametric models, and shows it clearly that the GFRFs are explicit functions of model parameters and can be regarded as an important extension of the transfer function concept for linear systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alleyne A, Hedrick JK (1995) Nonlinear adaptive control of active suspensions. IEEE Trans Control Syst Technol 3(1):94–101

    Article  Google Scholar 

  • Bai E (2003) Frequency domain identification of Wiener models. Automatica 39:1521–1530

    Article  MATH  Google Scholar 

  • Baumgartner S, Rugh W (1975) Complete identification of a class of nonlinear systems from steady state frequency response. IEEE Trans Circuits Syst 22:753–759

    Article  MathSciNet  Google Scholar 

  • Bedrosian E, Rice SO (1971) The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc IEEE 59:1688

    Article  MathSciNet  Google Scholar 

  • Billings SA, Peyton-Jones JC (1990) Mapping nonlinear integro-differential equation into the frequency domain. Int J Control 54:863–879

    Article  Google Scholar 

  • Bloemen HHJ et al (2001) Wiener model identification and predictive control for dual composition control of a distillation column. J Process Control 11:601–620

    Article  Google Scholar 

  • Boyd S, Chua L (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circuits Syst CAS-32(11):1150–1160

    Article  MathSciNet  Google Scholar 

  • Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50:1873–1896

    Article  MATH  MathSciNet  Google Scholar 

  • Crama P, Schoukens J (2001) Initial estimates of Wiener and Hammerstein systems using multisine excitation. IEEE Trans Instrum Meas 50:1791–1795

    Article  Google Scholar 

  • Gelb A, Vander Velde WE (1968) Multiple-input describing functions and nonlinear system design. McGraw-Hill, New York, NY

    MATH  Google Scholar 

  • Huang A, Tanskanen JMA, Hartimo IO (1998) Design of optimum power estimator based on Wiener model applied to mobile transmitter power control. Proc IEEE Int Symp Circuits Syst 5:249–252

    Google Scholar 

  • Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern 55:135–144

    MATH  MathSciNet  Google Scholar 

  • Jing XJ (2011) Frequency domain analysis and identification of block-oriented nonlinear systems. J Sound Vib 330(22):5427–5442

    Article  Google Scholar 

  • Jing XJ, Lang ZQ (2009a) On the generalized frequency response functions of Volterra systems. Trans ASME J Dyn Syst Meas Control 131(6)

    Google Scholar 

  • Jing XJ, Lang ZQ, Billings SA, Tomlinson GR (2006) The parametric characteristic of frequency response functions for nonlinear systems. Int J Control 79(12):1552–1564

    Article  MATH  MathSciNet  Google Scholar 

  • Jing XJ, Lang ZQ, Billings SA (2007a) New bound characteristics of NARX model in the frequency domain. Int J Control 80(1):140–149

    Article  MATH  MathSciNet  Google Scholar 

  • Jing XJ, Lang ZQ, Billings SA (2008b) Magnitude bounds of generalized frequency response functions for nonlinear Volterra systems described by NARX model. Automatica 44:838–845

    Article  MATH  MathSciNet  Google Scholar 

  • Jing XJ, Lang ZQ, Billings SA (2008c) Frequency domain analysis for nonlinear Volterra systems with a general nonlinear output function. Int J Control 81(2):235–251

    Article  MATH  MathSciNet  Google Scholar 

  • Jing XJ, Lang ZQ, Billings SA (2008d) Output frequency response function based analysis for nonlinear Volterra systems. Mech Syst Signal Process 22:102–120

    Article  Google Scholar 

  • Jing XJ, Lang ZQ, Billings SA (2008e) Mapping from parametric characteristics to generalized frequency response functions of nonlinear systems. Int J Control 81(7):1071–1088

    Article  MATH  MathSciNet  Google Scholar 

  • Jing XJ, Lang ZQ, Billings SA (2010) Output frequency properties of nonlinear systems. Int J Nonlinear Mech 45(7):681–690

    Article  Google Scholar 

  • Kalafatis A et al (1995) A new approach to the identification of pH processes based on the Wiener model. Chem Eng Sci 50(23):3693–3701

    Article  Google Scholar 

  • Kay SM, Nagesha V (1994) Maximum likelihood estimation of signals in autoregressive noise. IEEE Trans Signal Process 42:88–101

    Article  Google Scholar 

  • Korenberg MJ (1982) Statistical identification of parallel cascades of linear and nonlinear systems. IFAC Symposium on System Identification Parameter Estimation 1:580–585

    Google Scholar 

  • Kotsios S (1997) Finite input/output representative of a class of Volterra polynomial systems. Automatica 33:257–262

    Article  MATH  MathSciNet  Google Scholar 

  • Krzyzak A (1996) On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate. Signal Process 52:299–321

    Article  MATH  Google Scholar 

  • Li G, Wen C, Zheng WX, Chen Y (2011) Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines. IEEE Trans Signal Process 59:2146–2159

    Article  MathSciNet  Google Scholar 

  • McWhorter LT, Scharf LL (1995) Nonlinear maximum likelihood estimation of autoregressive time series. IEEE Trans Signal Process 43:2909–2919

    Article  Google Scholar 

  • Nuij PWJM, Bosgra OH, Steinbuch M (2006) Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses. Mech Syst Signal Process 20:1883–1904

    Article  Google Scholar 

  • Peyton Jones JC, Billings SA (1989) Recursive algorithm for computing the frequency response of a class of nonlinear difference equation models. Int J Control 50(5):1925–1940

    Article  MATH  MathSciNet  Google Scholar 

  • Rugh WJ (1981) Nonlinear system theory: the Volterra/Wiener approach. Johns Hopkins University Press, Baltimore, MD

    MATH  Google Scholar 

  • Schmidt G, Tondl A (1986) Non-linear vibrations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sheng L, Chon KH (2003) Nonlinear autoregressive and nonlinear autoregressive moving average model parameter estimation by minimizing hypersurface distance. IEEE Trans Signal Process 51:3020–3026

    Article  MathSciNet  Google Scholar 

  • Swain AK, Billings SA (2001) Generalized frequency response function matrix for MIMO nonlinear systems. Int J Control 74(8):829–844

    Article  MATH  MathSciNet  Google Scholar 

  • Wang J, Sano A, Chen T, Huang B (2010) Identification of Hammerstein systems without explicit parameterization of nonlinearity. Int J Control 82(5):937–952

    Article  MathSciNet  Google Scholar 

  • Zhu Y (1999) Distillation column identification for control using Wiener model. ACC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jing, X., Lang, Z. (2015). The Generalized Frequency Response Functions and Output Spectrum of Nonlinear Systems. In: Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-12391-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12391-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12390-5

  • Online ISBN: 978-3-319-12391-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics