Advertisement

Optical Vortices in the XUV

Chapter
  • 613 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Optical vortex beams are of scientific interest since decades. This chapter presents the first-ever realization of optical vortex beam generation in the extreme ultraviolet and discusses possible applications towards high-resolution imaging.

Keywords

Gaussian Beam Orbital Angular Momentum Topological Charge Poynting Vector Spatial Light Modulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Curtis, J.E., Grier, D.G.: Structure of optical vortices. Phys. Rev. Lett. 90(13), 133901 (2003)Google Scholar
  2. 2.
    Nye, J.F., Berry, M.V.: Dislocations in wave trains. Proc. R. Soc. Lond. A Math. 336(1605), 165–190 (1974)Google Scholar
  3. 3.
    Soskin, M.S., Vasnetsov, M.V.: Singular optics. In: Wolf, E. (ed.) Progress in Optics, vol. 42, pp. 219–276. Elsevier, Amsterdam (2001)Google Scholar
  4. 4.
    Allen, L., Beijersbergen, M.W., Spreeuw, R.J., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45(11), 8185–8189 (1992)Google Scholar
  5. 5.
    Padgett, M.J., Allen, L.: The poynting vector in Laguerre-Gaussian laser modes. Opt. Commun. 121(1–3), 36–40 (1995)Google Scholar
  6. 6.
    Simpson, N.B., Allen, L., Padgett, M. J.: Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt. 43(12), 2485–2491 (1996)Google Scholar
  7. 7.
    Padgett, M., Bowman, R.: Tweezers with a twist. Nat. Photonics 5(6), 343–348 (2011)Google Scholar
  8. 8.
    Allen, L., Padgett, M.J., Babiker, M.: IV The orbital angular momentum of light. In: Wolf, E. (ed.) Progress in Optics, vol. 39, pp. 291–372. Elsevier, New York (1999)Google Scholar
  9. 9.
    Beth, R.A.: Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50(2), 115–125 (1936)Google Scholar
  10. 10.
    Volke-Sepulveda, K., Chavez-Cerda, S., Garces-Chavez, V., Dholakia, K.: Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles. J. Opt. Soc. Am. B 21(10), 1749–1757 (2004)Google Scholar
  11. 11.
    Grier, D.G.: A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)Google Scholar
  12. 12.
    Picon, A., Benseny, A., Mompart, J., de Aldana, J.R.V., Plaja, L., Calvo, G.F., Roso, L.: Transferring orbital and spin angular momenta of light to atoms. New J. Phys. 12, 083053 (2010)Google Scholar
  13. 13.
    Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3(5), 305–310 (2007)Google Scholar
  14. 14.
    Furhapter, S., Jesacher, A., Bernet, S., Ritsch-Marte, M.: Spiral interferometry. Opt. Lett. 30(15), 1953–1955 (2005)Google Scholar
  15. 15.
    Oemrawsingh, S.S., van Houwelingen, J.A., Eliel, E.R., Woerdman, J.P., Verstegen, E.J., Kloosterboer, J.G., t Hooft, G.W.: Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43(3), 688–694 (2004)Google Scholar
  16. 16.
    Swartzlander, G.A.: Achromatic optical vortex lens. Opt. Lett. 31(13), 2042–2044 (2006)Google Scholar
  17. 17.
    Beijersbergen, M.W., Allen, L., Vanderveen, H.E., Woerdman, J.P.: Astigmatic laser mode converters and transfer of orbital angular-momentum. Opt. Commun. 96(1–3), 123–132 (1993)Google Scholar
  18. 18.
    Heckenberg, N.R., McDuff, R., Smith, C.P., White, A.G.: Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17(3), 221–223 (1992)Google Scholar
  19. 19.
    Bezuhanov, K., Dreischuh, A., Paulus, G.G., Schatzel, M.G., Walther, H.: Vortices in femtosecond laser fields. Opt. Lett. 29(16), 1942–1944 (2004)Google Scholar
  20. 20.
    Peele, A.G., McMahon, P.J., Paterson, D., Tran, C.Q., Mancuso, A.P., Nugent, K.A., Hayes, J.P., Harvey, E., Lai, B., McNulty, I.: Observation of an x-ray vortex. Opt. Lett. 27(20), 1752–1754 (2002)Google Scholar
  21. 21.
    Peele, A., Nugent, K.: X-ray vortex beams: a theoretical analysis. Opt. Express 11(19), 2315–2322 (2003)Google Scholar
  22. 22.
    Cojoc, D., Kaulich, B., Carpentiero, A., Cabrini, S., Businaro, L., Di Fabrizio, E.: X-ray vortices with high topological charge. Microelectron. Eng. 83(4–9), 1360–1363 (2006)Google Scholar
  23. 23.
    Firth, W.J., Skryabin, D.V.: Optical solitons carrying orbital angular momentum. Phys. Rev. Lett. 79(13), 2450–2453 (1997)Google Scholar
  24. 24.
    Tikhonenko, V., Christou, J., Lutherdaves, B.: Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium. J. Opt. Soc. Am. B 12(11), 2046–2052 (1995)Google Scholar
  25. 25.
    Vuong, L.T., Grow, T.D., Ishaaya, A., Gaeta, A.L., t Hooft, G.W., Eliel, E.R., Fibich, G.: Collapse of optical vortices. Phys. Rev. Lett. 96(13), 133901 (2006)Google Scholar
  26. 26.
    Basistiy, I.V., Bazhenov, V.Y., Soskin, M.S., Vasnetsov, M.V.: Optics of light-beams with screw dislocations. Opt. Commun. 103(5–6), 422–428 (1993)Google Scholar
  27. 27.
    Mamaev, A.V., Saffman, M., Zozulya, A.A.: Decay of high order optical vortices in anisotropic nonlinear optical media. Phys. Rev. Lett. 78(11), 2108–2111 (1997)Google Scholar
  28. 28.
    Toda, Y., Honda, S., Morita, R.: Dynamics of a paired optical vortex generated by second-harmonic generation. Opt. Express 18(17), 17796–17804 (2010)Google Scholar
  29. 29.
    Dreischuh, A., Paulus, G.G., Zacher, F., Grasbon, F., Neshev, D., Walther, H.: Modulational instability of multiple-charged optical vortex solitons under saturation of the nonlinearity. Phys. Rev. E 60(6 Pt B), 7518–7524 (1999)Google Scholar
  30. 30.
    Henke, B.L., Gullikson, E.M., Davis, J.C: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. At. Data Nucl Data. Tables 54 (2), 181–342 (1993)Google Scholar
  31. 31.
    Brabec, T., Krausz, F.: Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72(2), 545–591 (2000)Google Scholar
  32. 32.
    Basistiy, I.V., Soskin, M.S., Vasnetsov, M.V.: Optical wavefront dislocations and their properties. Opt. Commun. 119(5–6), 604–612 (1995)Google Scholar
  33. 33.
    Soskin, M.S., Gorshkov, V.N., Vasnetsov, M.V., Malos, J.T., Heckenberg, N.R.: Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56(5), 4064–4075 (1997)Google Scholar
  34. 34.
    Lohbreier, J., Eyring, S., Spitzenpfeil, R., Kern, C., Weger, M., Spielmann, C.: Maximizing the brilliance of high-order harmonics in a gas jet. New J. Phys. 11(2), 023016 (2009)Google Scholar
  35. 35.
    Zuerch, M., Kern, C., Hansinger, P., Dreischuh, A., Spielmann, C.: Strong-field physics with singular light beams. Nat. Phys. 8(10), 743–746 (2012)Google Scholar
  36. 36.
    Hernandez-Garcia, C., Picon, A., San Roman, J., Plaja, L.: Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys. Rev. Lett. 111(8), 083602 (2013)Google Scholar
  37. 37.
    Neu, J.C.: Vortices in complex scalar fields. Physica D 43(2–3), 385–406 (1990)Google Scholar
  38. 38.
    Neu, J.C.: Vortex dynamics of the nonlinear-wave equation. Physica D 43(2–3), 407–420 (1990)Google Scholar
  39. 39.
    Fomichev, S.V.; Breger, P., Carre, B., Agostini, P., Zaretsky, D. F.: Non-collinear high-harmonic generation. Laser Phys. 12(2), 383–388 (2002)Google Scholar
  40. 40.
    Eyring, S., Kern, C., Zuerch, M., Spielmann, C.: Improving high-order harmonic yield using wavefront-controlled ultrashort laser pulses. Opt. Express 20(5), 5601–5606 (2012)Google Scholar
  41. 41.
    Lee, J.Y., Hong, B.H., Kim, W.Y., Min, S.K., Kim, Y., Jouravlev, M.V., Bose, R., Kim, K.S., Hwang, I.C., Kaufman, L.J., Wong, C.W., Kim, P., Kim, K.S.: Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 460(7254), 498–501 (2009)Google Scholar
  42. 42.
    Synge, E.H.: A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. Ser. 7—XXXVIII. 6(35), 356–362 (1928)Google Scholar
  43. 43.
    Hell, S.W.: Toward fluorescence nanoscopy. Nat. Biotechnol. 21(11), 1347–1355 (2003)Google Scholar
  44. 44.
    Dan, D., Lei, M., Yao, B., Wang, W., Winterhalder, M., Zumbusch, A., Qi, Y., Xia, L., Yan, S., Yang, Y., Gao, P., Ye, T., Zhao, W.: DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep. 3, 1116 (2013)Google Scholar
  45. 45.
    Volpe, G., Cherukulappurath, S., Juanola Parramon, R., Molina-Terriza, G., Quidant, R.: Controlling the optical near field of nanoantennas with spatial phase-shaped beams. Nano Lett. 9(10), 3608–3611 (2009)Google Scholar
  46. 46.
    Tan, P.S., Yuan, X.C., Yuan, G.H., Wang, Q.: High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices. Appl. Phys. Lett. 97(24), 241109 (2010)Google Scholar
  47. 47.
    Dennis, M.R., Gotte, J.B.: Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts. Phys. Rev. Lett. 109(18), 183903 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Optics and Quantum ElectronicsFriedrich Schiller University JenaJenaGermany

Personalised recommendations