Advertisement

Lensless Imaging Results

Chapter
  • 619 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The achieved imaging results are presented and discussed in this chapter. Using digital in-line holography amplitude and phase-contrast imaging in the extreme ultraviolet on cell-like specimen is presented. This is followed by experiments on coherent diffraction imaging at the Abbe limit demonstrating unprecedented relative resolution. Experiments carried out in reflection geometry, which allow for much more applications, and the introduction of an award-winning cancer cell classification method conclude that chapter.

Keywords

Silicon Nitride Object Plane Phase Retrieval Reflection Geometry Beam Stop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jiang, H., Song, C., Chen, C.C., Xu, R., Raines, K.S., Fahimian, B.P., Lu, C.H., Lee, T.K., Nakashima, A., Urano, J., Ishikawa, T., Tamanoi, F., Miao, J.: Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 107(25), 11234–11239 (2010)Google Scholar
  2. 2.
    Boutet, S., Lomb, L., Williams, G.J., Barends, T.R.M., Aquila, A., Doak, R.B., Weierstall, U., DePonte, D.P., Steinbrener, J., Shoeman, R.L., Messerschmidt, M., Barty, A., White, T.A., Kassemeyer, S., Kirian, R.A., Seibert, M.M., Montanez, P.A., Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S.M., Philipp, H.T., Tate, M.W., Hromalik, M., Koerner, L.J., van Bakel, N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M.J., Caleman, C., Fromme, R., Hampton, C.Y., Hunter, M.S., Johansson, L.C., Katona, G., Kupitz, C., Liang, M.N., Martin, A.V., Nass, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D.J., Zatsepin, N.A., Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J.C.H., Chapman, H.N., Schlichting, I.: High-resolution protein structure determination by serial femtosecond crystallography. Science 337(6092), 362–364 (2012)Google Scholar
  3. 3.
    Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., Bunk, O., Pfeiffer, F.: Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314), 436–439 (2010)Google Scholar
  4. 4.
    Seibert, M.M., Boutet, S., Svenda, M., Ekeberg, T., Maia, F.R.N.C., Bogan, M.J., Timneanu, N., Barty, A., Hau-Riege, S., Caleman, C., Frank, M., Benner, H., Lee, J.Y., Marchesini, S., Shaevitz, J.W., Fletcher, D.A., Bajt, S., Andersson, I., Chapman, H.N., Hajdu, J.: Femtosecond diffractive imaging of biological cells. J. Phys. B At. Mol. Opt. 43(19), 194015 (2010)Google Scholar
  5. 5.
    Henke, B.L., Gullikson, E.M., Davis, J.C: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. At. Data Nucl Data. Tables 54(2), 181–342 (1993)Google Scholar
  6. 6.
    Hardy, S.: Human Microbiology. Taylor and Francis, London (2002)Google Scholar
  7. 7.
    Plidschun, M.: Herstellung von nicht-periodischen Nanostrukturproben fuer XUV-Mikroskopie. Bachelor thesis, Friedrich-Schiller-University Jena (2013)Google Scholar
  8. 8.
    Young, K. D.: The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70(3), 660–703 (2006)Google Scholar
  9. 9.
    Seaberg, M.D., Adams, D.E., Townsend, E.L., Raymondson, D.A., Schlotter, W.F., Liu, Y.W., Menoni, C.S., Rong, L., Chen, C.C., Miao, J.W., Kapteyn, H.C., Murnane, M.M.: Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Opt. Express 19(23), 22470–22479 (2011)Google Scholar
  10. 10.
    Szameit, A., Shechtman, Y., Osherovich, E., Bullkich, E., Sidorenko, P., Dana, H., Steiner, S., Kley, E.B., Gazit, S., Cohen-Hyams, T., Shoham, S., Zibulevsky, M., Yavneh, I., Eldar, Y.C., Cohen, O., Segev, M.: Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11(5), 455–459 (2012)Google Scholar
  11. 11.
    Sandberg, R.L., Song, C., Wachulak, P.W., Raymondson, D.A., Paul, A., Amirbekian, B., Lee, E., Sakdinawat, A.E., La, O., Vorakiat C., Marconi, M.C., Menoni, C.S., Murnane, M.M., Rocca, J.J., Kapteyn, H.C., Miao, J.: High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl. Acad. Sci. USA 105(1), 24–27 (2008)Google Scholar
  12. 12.
    Chapman, H.N., Barty, A., Bogan, M.J., Boutet, S., Frank, M., Hau-Riege, S.P., Marchesini, S., Woods, B.W., Bajt, S., Benner, H., London, R.A., Plonjes, E., Kuhlmann, M., Treusch, R., Dusterer, S., Tschentscher, T., Schneider, J.R., Spiller, E., Moller, T., Bostedt, C., Hoener, M., Shapiro, D.A., Hodgson, K.O., Van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Maia, F.R.N.C., Lee, R.W., Szoke, A., Timneanu, N., Hajdu, J.: Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2(12), 839–843 (2006)Google Scholar
  13. 13.
    Raines, K.S., Salha, S., Sandberg, R.L., Jiang, H., Rodriguez, J.A., Fahimian, B.P., Kapteyn, H.C., Du, J., Miao, J.: Three-dimensional structure determination from a single view. Nature 463(7278), 214–217 (2010)Google Scholar
  14. 14.
    Gardner, D.F., Zhang, B., Seaberg, M.D., Martin, L.S., Adams, D.E., Salmassi, F., Gullikson, E., Kapteyn, H., Murnane, M.: High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination. Opt. Express 20(17), 19050–19059 (2012)Google Scholar
  15. 15.
    Chen, C.C., Jiang, H.D., Rong, L., Salha, S., Xu, R., Mason, T.G., Miao, J.W.: Three-dimensional imaging of a phase object from a single sample orientation using an optical laser. Phys. Rev. B 84(22), 224104 (2011)Google Scholar
  16. 16.
    Fienup, J.R., Crimmins, T.R., Holsztynski, W.: Reconstruction of the support of an object from the support of its auto-correlation. J. Opt. Soc. Am. 72(5), 610–624 (1982)Google Scholar
  17. 17.
    Marchesini, S., He, H., Chapman, H.N., Hau-Riege, S.P., Noy, A., Howells, M.R., Weierstall, U., Spence, J.C.H.: X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68(14), 140101 (2003)Google Scholar
  18. 18.
    Chapman, H.N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S.P., Cui, C., Howells, M.R., Rosen, R., He, H., Spence, J.C., Weierstall, U., Beetz, T., Jacobsen, C., Shapiro, D.: High-resolution ab initio three-dimensional x-ray diffraction microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23(5), 1179–1200 (2006)Google Scholar
  19. 19.
    Zuerch, M., Kern, C., Spielmann, C.: XUV coherent diffraction imaging in reflection geometry with low numerical aperture. Opt. Express 21(18), 21131–21147 (2013)Google Scholar
  20. 20.
    Martin, A.V., Wang, F., Loh, N.D., Ekeberg, T., Maia, F.R.N.C., Hantke, M., van der Schot, G., Hampton, C.Y., Sierra, R.G., Aquila, A., Bajt, S., Barthelmess, M., Bostedt, C., Bozek, J.D., Coppola, N., Epp, S.W., Erk, B., Fleckenstein, H., Foucar, L., Frank, M., Graafsma, H., Gumprecht, L., Hartmann, A., Hartmann, R., Hauser, G., Hirsemann, H., Holl, P., Kassemeyer, S., Kimmel, N., Liang, M., Lomb, L., Marchesini, S., Nass, K., Pedersoli, E., Reich, C., Rolles, D., Rudek, B., Rudenko, A., Schulz, J., Shoeman, R.L., Soltau, H., Starodub, D., Steinbrener, J., Stellato, F., Strueder, L., Ullrich, J., Weidenspointner, G., White, T.A., Wunderer, C.B., Barty, A., Schlichting, I., Bogan, M.J., Chapman, H.N.: Noise-robust coherent diffractive imaging with a single diffraction pattern. Opt. Express 20(15), 16650–16661 (2012)Google Scholar
  21. 21.
    Sun, T., Jiang, Z., Strzalka, J., Ocola, L., Wang, J.: Three-dimensional coherent X-ray surface scattering imaging near total external reflection. Nat. Photon. 6(9), 588–592 (2012)Google Scholar
  22. 22.
    Weise, F., Neumark, D.M., Leone, S.R., Gessner, O.: Differential near-edge coherent diffractive imaging using a femtosecond high-harmonic XUV light source. Opt. Express 20(24), 26167–26175 (2012)Google Scholar
  23. 23.
    Tripathi, A., Mohanty, J., Dietze, S.H., Shpyrko, O.G., Shipton, E., Fullerton, E.E., Kim, S.S., McNulty, I.: Dichroic coherent diffractive imaging. Proc. Natl. Acad. Sci. USA 108(33), 13393–13398 (2011)Google Scholar
  24. 24.
    McClatchey, K.D.: Clinical Laboratory Medicine. Lippincott Williams and Wilkins, Philadelphia (2002)Google Scholar
  25. 25.
    Rosch, P., Harz, M., Schmitt, M., Peschke, K.D., Ronneberger, O., Burkhardt, H., Motzkus, H.W., Lankers, M., Hofer, S., Thiele, H., Popp, J.: Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71(3), 1626–1637 (2005)Google Scholar
  26. 26.
    Ashton, L., Lau, K., Winder, C.L., Goodacre, R.: Raman spectroscopy: lighting up the future of microbial identification. Future Microbiol. 6(9), 991–997 (2011)Google Scholar
  27. 27.
    Zuerch, M., Spielmann, C.: Patent: Verfahren zur Auswertung von durch schmalbandige, kurzwellige, kohaerente Laserstrahlung erzeugten Streubildern von Objekten, insbesondere zur Verwendung in der XUV-Mikroskopie. DE102012022966.6 - int. reg. PCT/DE2013/000696, 21 Nov 2012 (2012)Google Scholar
  28. 28.
    Williams, G.J., Quiney, H.M., Dhal, B.B., Tran, C.Q., Nugent, K.A., Peele, A.G., Paterson, D., de Jonge, M.D.: Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97(2), 025506 (2006)Google Scholar
  29. 29.
    Lendaris, G.G., Stanley, G.L.: Diffraction-pattern sampling for automatic pattern recognition. Pr. Inst. Electr. Elect. 58(2), 198–216 (1970)Google Scholar
  30. 30.
    Saleh, B.: Introduction to Subsurface Imaging. Cambridge University Press, New York (2011)Google Scholar
  31. 31.
    Mancuso, A.P., Gorniak, T., Staler, F., Yefanov, O.M., Barth, R., Christophis, C., Reime, B., Gulden, J., Singer, A., Pettit, M.E., Nisius, T., Wilhein, T., Gutt, C., Grubel, G., Guerassimova, N., Treusch, R., Feldhaus, J., Eisebitt, S., Weckert, E., Grunze, M., Rosenhahn, A., Vartanyants, I.A.: Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New J. Phys. 12, 035003 (2010)Google Scholar
  32. 32.
    Garman, E.F., McSweeney, S.M.: Progress in research into radiation damage in cryo-cooled macromolecular crystals. J. Synchrotron. Radiat. 14(Pt 1), 1–3 (2007)Google Scholar
  33. 33.
    Howells, M.R., Beetz, T., Chapman, H.N., Cui, C., Holton, J.M., Jacobsen, C.J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Sayre, D., Shapiro, D.A., Spence, J.C., Starodub, D.: An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J. Electron Spectros. Relat. Phenom. 170(1–3), 4–12 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Optics and Quantum ElectronicsFriedrich Schiller University JenaJenaGermany

Personalised recommendations