Advertisement

Introduction and Fundamental Theory

Chapter
  • 623 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter covers the underlying theory and introduces concepts for imaging using extreme ultraviolet radiation. The concept of high harmonic generation is briefly introduced. This is followed by general aspects, geometric considerations, and numerical reconstruction procedures for diffraction-based imaging and digital in-line holography. The chapter is concluded by a summary and an overview of the state-of-the-art techniques in the field of lensless imaging.

Keywords

Laser Field Spatial Coherence Object Plane Temporal Coherence Reference Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boyd, R.W.: Nonlinear Optics. Academic Press, London (2008)Google Scholar
  2. 2.
    Schaefer, C., Niedrig, H., Bergmann, L., Eichler, H.-J.: Lehrbuch der Experimentalphysik. Walter de Gruyter, Berlin (2004) (Optik)Google Scholar
  3. 3.
    McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T.S., Mcintyre, I.A., Boyer, K., Rhodes, C.K.: Studies of multiphoton production of vacuum ultraviolet-radiation in the rare-gases. J. Opt. Soc. Am. B 4(4), 595–601 (1987)Google Scholar
  4. 4.
    Li, X.F., L’Huillier, A., Ferray, M., Lompre, L.A., Mainfray, G.: Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39(11), 5751–5761 (1989)Google Scholar
  5. 5.
    Seres, J., Seres, E., Verhoef, A.J., Tempea, G., Streli, C., Wobrauschek, P., Yakovlev, V., Scrinzi, A., Spielmann, C., Krausz, F.: Laser technology: source of coherent kiloelectronvolt X-rays. Nature 433(7026), 596–596 (2005)Google Scholar
  6. 6.
    Popmintchev, T., Chen, M.C., Popmintchev, D., Arpin, P., Brown, S., Alisauskas, S., Andriukaitis, G., Balciunas, T., Mucke, O.D., Pugzlys, A., Baltuska, A., Shim, B., Schrauth, S.E., Gaeta, A., Hernandez-Garcia, C., Plaja, L., Becker, A., Jaron-Becker, A., Murnane, M.M., Kapteyn, H.C.: Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336(6086), 1287–1291 (2012)Google Scholar
  7. 7.
    Krause, J.L., Schafer, K.J., Kulander, K.C.: High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68(24), 3535–3538 (1992)Google Scholar
  8. 8.
    Corkum, P.B.: Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71(13), 1994–1997 (1993)Google Scholar
  9. 9.
    Awasthi, M., Vanne, Y.V., Saenz, A., Castro, A., Decleva, P.: Single-active-electron approximation for describing molecules in ultrashort laser pulses and its application to molecular hydrogen. Phys. Rev. A 77(6), 063403 (2008)Google Scholar
  10. 10.
    Keldysh, L.V.: Ionization in field of a strong electromagnetic wave. Sov. Phys. JETP 20(5), 1307–1314 (1965)Google Scholar
  11. 11.
    Brabec, T., Krausz, F.: Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72(2), 545–591 (2000)Google Scholar
  12. 12.
    Lewenstein, M., Balcou, Ph, Ivanov, M.Y., L’Huillier, A., Corkum, P.B.: Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49(3), 2117–2132 (1994)Google Scholar
  13. 13.
    Bartels, R.A., Paul, A., Green, H., Kapteyn, H.C., Murnane, M.M., Backus, S., Christov, I.P., Liu, Y.W., Attwood, D., Jacobsen, C.: Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297(5580), 376–378 (2002)Google Scholar
  14. 14.
    Ditmire, T., Gumbrell, E.T., Smith, R.A., Tisch, J.W.G., Meyerhofer, D.D., Hutchinson, M.H.R.: Spatial coherence measurement of soft X-ray radiation produced by high order harmonic generation. Phys. Rev. Lett. 77(23), 4756–4759 (1996)Google Scholar
  15. 15.
    Constant, E., Garzella, D., Breger, P., Mevel, E., Dorrer, C., Le Blanc, C., Salin, F., Agostini, P.: Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82(8), 1668–1671 (1999)Google Scholar
  16. 16.
    Takahashi, E., Nabekawa, Y., Midorikawa, K.: Generation of 10-\(\upmu \)J coherent extreme-ultraviolet light by use of high-order harmonics. Opt. Lett. 27(21), 1920–1922 (2002)Google Scholar
  17. 17.
    Popmintchev, T., Chen, M.C., Bahabad, A., Gerrity, M., Sidorenko, P., Cohen, O., Christov, I.P., Murnane, M.M., Kapteyn, H.C.: Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl. Acad. Sci. USA 106(26), 10516–10521 (2009)Google Scholar
  18. 18.
    Paul, P.M., Toma, E.S., Breger, P., Mullot, G., Auge, F., Balcou, Ph., Muller, H.G., Agostini, P.: Observation of a train of attosecond pulses from high harmonic generation. Science 292(5522), 1689–1692 (2001)Google Scholar
  19. 19.
    Myers, O.E.: Studies of transmission zone plates. Am. J. Phys. 19(6), 359–365 (1951)Google Scholar
  20. 20.
    Horowitz, P.: Scanning X-ray microscope using synchrotron radiation. Science 178(4061), 608–611 (1972)Google Scholar
  21. 21.
    Lee, K.H., Park, S.B., Singhal, H., Nam, C.H.: Ultrafast direct imaging using a single high harmonic burst. Opt. Lett. 38(8), 1253–1255 (2013)Google Scholar
  22. 22.
    Attwood, D.: Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge University Press, Cambridge (2007)Google Scholar
  23. 23.
    Jackson, J.D., Witte, C., Mueller, K.: Klassische Elektrodynamik, vol. 3. Walter de Gruyter, Berlin (2006)CrossRefGoogle Scholar
  24. 24.
    Gu, M.: Advanced Optical Imaging Theory. Springer, Berlin (2000)CrossRefGoogle Scholar
  25. 25.
    Williams, G.J., Quiney, H.M., Dhal, B.B., Tran, C.Q., Nugent, K.A., Peele, A.G., Paterson, D., de Jonge, M.D.: Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97(2), 025506 (2006)Google Scholar
  26. 26.
    Consortini, A.: Trends in Optics: Research, Developments, and Applications. Academic Press, London (1996)Google Scholar
  27. 27.
    Ewald, P.P.: Zur Theorie der Interferenzen der Roentgenstrahlen in Kristallen. Phys. Zeitschrift 14, 465–472 (1913)zbMATHGoogle Scholar
  28. 28.
    Chapman, H.N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S.P., Cui, C., Howells, M.R., Rosen, R., He, H., Spence, J.C., Weierstall, U., Beetz, T., Jacobsen, C., Shapiro, D.: High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23(5), 1179–1200 (2006)Google Scholar
  29. 29.
    Sayre, D.: Some Implications of a theorem due to shannon. Acta Crystallogr. 5(6), 843–843 (1952)Google Scholar
  30. 30.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)Google Scholar
  31. 31.
    Sayre, D.: Prospects for long-wavelength X-ray microscopy and diffraction. In: Schlenker, M., Fink, M., Goedgebuer, J.P., Malgrange, C., Vieenot, J.C., Wade, R.H. (eds.) Imaging Processes and Coherence in Physics, vol. 112, pp. 229–235. Springer, Berlin (1980)Google Scholar
  32. 32.
    Bates, R.H.T.: Fourier phase problems are uniquely solvable in more than one dimension. I: underlying theory. Optik 61, 247–262 (1982)Google Scholar
  33. 33.
    Miao, J., Sayre, D.: On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallogr. A 56(6), 596–605 (2000)Google Scholar
  34. 34.
    Miao, J., Ishikawa, T., Anderson, E.H., Hodgson, K.O.: Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys. Rev. B 67(17), 174104 (2003)Google Scholar
  35. 35.
    Spence, J.C., Weierstall, U., Howells, M.: Coherence and sampling requirements for diffractive imaging. Ultramicroscopy 101(2–4), 149–152 (2004)Google Scholar
  36. 36.
    Whitehead, L.W., Williams, G.J., Quiney, H.M., Vine, D.J., Dilanian, R.A., Flewett, S., Nugent, K.A., Peele, A.G. Balaur, E. McNulty, I.: Diffractive imaging using partially coherent X-rays. Phys. Rev. Lett. 103(24), 243902 (2009)Google Scholar
  37. 37.
    Gerchberg, R.W., Saxton, W.O.: Phase determination from image and diffraction plane pictures in electron-microscope. Optik 34(3), 275–283 (1971)Google Scholar
  38. 38.
    Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)Google Scholar
  39. 39.
    Fienup, J.R., Crimmins, T.R., Holsztynski, W.: Reconstruction of the support of an object from the support of its auto-correlation. J. Opt. Soc. Am. 72(5), 610–624 (1982)Google Scholar
  40. 40.
    Marchesini, S., Chapman, H.N., Hau-Riege, S.P., London, R.A., Szoke, A., He, H., Howells, M.R., Padmore, H., Rosen, R., Spence, J.C.H., Weierstall, U.: Coherent X-ray diffractive imaging: applications and limitations. Opt. Express 11(19), 2344–2353 (2003)Google Scholar
  41. 41.
    Martin, A.V., Wang, F., Loh, N.D., Ekeberg, T., Maia, F.R.N.C., Hantke, M., van der Schot, G., Hampton, C.Y., Sierra, R.G., Aquila, A., Bajt, S., Barthelmess, M., Bostedt, C., Bozek, J.D., Coppola, N., Epp, S.W., Erk, B., Fleckenstein, H., Foucar, L., Frank, M., Graafsma, H., Gumprecht, L., Hartmann, A., Hartmann, R., Hauser, G., Hirsemann, H., Holl, P., Kassemeyer, S., Kimmel, N., Liang, M., Lomb, L., Marchesini, S., Nass, K., Pedersoli, E., Reich, C., Rolles, D., Rudek, B., Rudenko, A., Schulz, J., Shoeman, R.L., Soltau, H., Starodub, D., Steinbrener, J., Stellato, F., Strueder, L., Ullrich, J., Weidenspointner, G., White, T.A., Wunderer, C.B., Barty, A., Schlichting, I., Bogan, M.J., Chapman, H.N.: Noise-robust coherent diffractive imaging with a single diffraction pattern. Opt. Express 20(15), 16650–16661 (2012)Google Scholar
  42. 42.
    Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob. 21(1), 37–50 (2005)Google Scholar
  43. 43.
    Marchesini, S., He, H., Chapman, H.N., Hau-Riege, S.P., Noy, A., Howells, M.R., Weierstall, U., Spence, J.C.H.: X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68(14), 140101 (2003)Google Scholar
  44. 44.
    Baeck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)Google Scholar
  45. 45.
    Miao, J., Chen, C.-C., Song, C., Nishino, Y., Kohmura, Y., Ishikawa, T., Ramunno-Johnson, D., Lee, T.-K., Risbud, S.H.: Three-dimensional GaN-Ga\(_{2}\)O\(_{3}\) core shell structure revealed by X-ray diffraction microscopy. Phys. Rev. Lett. 97(21), 215503 (2006)Google Scholar
  46. 46.
    Miao, J., Sayre, D., Chapman, H.N.: Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15(6), 1662–1669 (1998)Google Scholar
  47. 47.
    Gabor, D.: Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lon. Ser. A 197(1051), 454–487 (1949)Google Scholar
  48. 48.
    Toal, V.: Introduction to Holography. CRC Press, Boca Raton (2011)Google Scholar
  49. 49.
    Howells, M., Jacobsen, C., Kirz, J., Feder, R., Mcquaid, K., Rothman, S.: X-ray holograms at improved resolution—a study of Zymogen Granules. Science 238(4826), 514–517 (1987)Google Scholar
  50. 50.
    McNulty, I., Kirz, J., Jacobsen, C., Anderson, E.H., Howells, M.R., Kern, D.P.: High-resolution imaging by Fourier transform X-ray holography. Science 256(5059), 1009–1012 (1992)Google Scholar
  51. 51.
    Eisebitt, S., Luning, J., Schlotter, W.F., Lorgen, M., Hellwig, O., Eberhardt, W., Stohr, J.: Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432(7019), 885–888 (2004)Google Scholar
  52. 52.
    Chapman, H.N., Hau-Riege, S.P., Bogan, M.J., Bajt, S., Barty, A., Boutet, S., Marchesini, S., Frank, M., Woods, B.W., Benner, W.H., London, R.A., Rohner, U., Szoke, A., Spiller, E., Moller, T., Bostedt, C., Shapiro, D.A., Kuhlmann, M., Treusch, R., Plonjes, E., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Hajdu, J.: Femtosecond time-delay X-ray holography. Nature 448(7154), 676–679 (2007)Google Scholar
  53. 53.
    Quiney, H.M., Peele, A.G., Cai, Z., Paterson, D., Nugent, K.A.: Diffractive imaging of highly focused X-ray fields. Nat. Phys. 2(2), 101–104 (2006)Google Scholar
  54. 54.
    Schropp, A., Hoppe, R., Meier, V., Patommel, J., Seiboth, F., Lee, H.J., Nagler, B., Galtier, E.C., Arnold, B., Zastrau, U., Hastings, J.B., Nilsson, D., Uhlen, F., Vogt, U., Hertz, H.M., Schroer, C.G.: Full spatial characterization of a nanofocused X-ray free-electron laser beam by ptychographic imaging. Sci. Rep. 3, 1633 (2013)Google Scholar
  55. 55.
    Sandberg, R.L., Raymondson, D.A., La, O.V.C., Paul, A., Raines, K.S., Miao, J., Murnane, M.M., Kapteyn, H.C., Schlotter, W.F.: Tabletop soft-X-ray Fourier transform holography with 50 nm resolution. Opt. Lett. 34(11), 1618–1620 (2009)Google Scholar
  56. 56.
    Williams, G.J., Quiney, H.M., Dahl, B.B., Tran, C.Q., Peele, A.G., Nugent, K.A., De Jonge, M.D., Paterson, D.: Curved beam coherent diffractive imaging. Thin Solid Films 515(14), 5553–5556 (2007)Google Scholar
  57. 57.
    Williams, G.J., Quiney, H.M., Peele, A.G., Nugent, K.A.: Fresnel coherent diffractive imaging: treatment and analysis of data. New J. Phys. 12, 035020 (2010)Google Scholar
  58. 58.
    Geilhufe, J., Pfau, B., Schneider, M., Buttner, F., Gunther, C.M., Werner, S., Schaffert, S., Guehrs, E., Frommel, S., Klaui, M., Eisebitt, S.: Monolithic focused reference beam X-ray holography. Nat. Commun. 5, 3008 (2014)Google Scholar
  59. 59.
    Schlotter, W.F., Rick, R., Chen, K., Scherz, A., Stohr, J., Luning, J., Eisebitt, S., Gunther, C., Eberhardt, W., Hellwig, O., McNulty, I.: Multiple reference Fourier transform holography with soft X-rays. Appl. Phys. Lett. 89(16), 163112 (2006)Google Scholar
  60. 60.
    Gunther, C.M., Pfau, B., Mitzner, R., Siemer, B., Roling, S., Zacharias, H., Kutz, O., Rudolph, I., Schondelmaier, D., Treusch, R., Eisebitt, S.: Sequential femtosecond X-ray imaging. Nat. Photonics 5(2), 99–102 (2011)Google Scholar
  61. 61.
    Guizar-Sicairos, M., Fienup, J.R.: Holography with extended reference by autocorrelation linear differential operation. Opt. Express 15(26), 17592–17612 (2007)Google Scholar
  62. 62.
    Gauthier, D., Guizar-Sicairos, M., Ge, X., Boutu, W., Carre, B., Fienup, J.R., Merdji, H.: Single-shot Femtosecond X-ray holography using extended references. Phys. Rev. Lett. 105(9), 093901 (2010)Google Scholar
  63. 63.
    Zhu, D., Guizar-Sicairos, M., Wu, B., Scherz, A., Acremann, Y., Tyliszczak, T., Fischer, P., Friedenberger, N., Ollefs, K., Farle, M., Fienup, J.R., Stohr, J.: High-resolution X-ray lensless imaging by differential holographic encoding. Phys. Rev. Lett. 105(4), 043901 (2010)Google Scholar
  64. 64.
    Wachulak, P.W., Marconi, M.C., Bartels, R.A., Menoni, C.S., Rocca, J.J.: Holographic imaging with a nanometer resolution using compact table-top EUV laser. Opto-Electron. Rev. 18(1), 80–90 (2010)Google Scholar
  65. 65.
    Schnars, U., Jueptner, W.: Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer, Berlin (2005)Google Scholar
  66. 66.
    Morlens, A.S., Gautier, J., Rey, G., Zeitoun, P., Caumes, J.P., Kos-Rosset, M., Merdji, H., Kazamias, S., Casson, K., Fajardo, M.: Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics. Opt. Lett. 31(21), 3095–3097 (2006)Google Scholar
  67. 67.
    Genoud, G., Guilbaud, O., Mengotti, E., Pettersson, S.G., Georgiadou, E., Pourtal, E., Wahlstroem, C.G., L’Huillier, A.: XUV digital in-line holography using high-order harmonics. Appl. Phys. B 90(3–4), 533–538 (2008)Google Scholar
  68. 68.
    Schnars, U., Juptner, W.P.: Digital recording and reconstruction of holograms in hologram interferometry and shearography. Appl. Opt. 33(20), 4373–4377 (1994)Google Scholar
  69. 69.
    Schnars, U., Jueptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)Google Scholar
  70. 70.
    Garcia-Sucerquia, J., Xu, W., Jericho, S.K., Klages, P., Jericho, M.H., Kreuzer, H.J.: Digital in-line holographic microscopy. Appl. Opt. 45(5), 836–850 (2006)Google Scholar
  71. 71.
    Schuermann, M.: Digital in-line holographic microscopy with various wavelengths and point sources applied to static and fluidic specimens. Ph.D. thesis, University of Heidelberg (2007)Google Scholar
  72. 72.
    Poon, T.C., Banerjee, P.P.: Contemporary Optical Image Processing with MATLAB. Elsevier Science, Oxford (2001)Google Scholar
  73. 73.
    Liu, G., Scott, P.D.: Phase retrieval and twin-image elimination for in-line Fresnel holograms. J. Opt. Soc. Am. A 4(1), 159–165 (1987)Google Scholar
  74. 74.
    Koren, G., Polack, F., Joyeux, D.: Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints. J. Opt. Soc. Am. A 10(3), 423–433 (1993)Google Scholar
  75. 75.
    Rong, L., Li, Y., Liu, S., Xiao, W., Pan, F., Wang, D.Y.: Iterative solution to twin image problem in in-line digital holography. Opt. Laser. Eng. 51(5), 553–559 (2013)Google Scholar
  76. 76.
    Kreuzer, H.J., Jericho, M.J., Meinertzhagen, I.A., Xu, W.B.: Digital in-line holography with photons and electrons. J. Phys. Condens. Matter 13(47), 10729–10741 (2001)Google Scholar
  77. 77.
    Kanka, M.: Bildrekonstruktion in der digitalen inline-holografischen Mikroskopie. Universitaetsverlag Ilmenau, Ilmenau (2011)Google Scholar
  78. 78.
    Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F.: High-resolution scanning X-ray diffraction microscopy. Science 321(5887), 379–382 (2008)Google Scholar
  79. 79.
    Thibault, P., Menzel, A.: Reconstructing state mixtures from diffraction measurements. Nature 494(7435), 68–71 (2013)Google Scholar
  80. 80.
    Abbey, B., Nugent, K.A., Williams, G.J., Clark, J.N., Peele, A.G., Pfeifer, M.A., De Jonge, M., McNulty, I.: Keyhole coherent diffractive imaging. Nat. Phys. 4(5), 394–398 (2008)Google Scholar
  81. 81.
    Seaberg, M.D., Zhang, F., Gardner, D.F., Shannon, C.E., Murnane, M.M., Kapteyn, H.C., Adams, D.E.: Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent fresnel ptychography, pp. 1–9. arXiv: 1312.2049 (2013)
  82. 82.
    Zhang, B., Seaberg, M.D., Adams, D.E., Gardner, D.F., Shanblatt, E.R., Shaw, J.M., Chao, W., Gullikson, E.M., Salmassi, F., Kapteyn, H.C., Murnane, M.M.: Full field tabletop EUV coherent diffractive imaging in a transmission geometry. Opt. Express 21(19), 21970–21980 (2013)Google Scholar
  83. 83.
    Miao, J.W., Charalambous, P., Kirz, J., Sayre, D.: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742), 342–344 (1999)Google Scholar
  84. 84.
    Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., Kirz, J., Lima, E., Miao, H., Neiman, A.M., Sayre, D.: Biological imaging by soft X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 102(43), 15343–15346 (2005)Google Scholar
  85. 85.
    Huang, X., Nelson, J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Neiman, A.M., Shapiro, D., Steinbrener, J., Stewart, A., Turner, J.J., Jacobsen, C.: Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys. Rev. Lett. 103(19), 198101 (2009)Google Scholar
  86. 86.
    Raines, K.S., Salha, S., Sandberg, R.L., Jiang, H., Rodriguez, J.A., Fahimian, B.P., Kapteyn, H.C., Du, J., Miao, J.: Three-dimensional structure determination from a single view. Nature 463(7278), 214–217 (2010)Google Scholar
  87. 87.
    Jiang, H., Song, C., Chen, C.C., Xu, R., Raines, K.S., Fahimian, B.P., Lu, C.H., Lee, T.K., Nakashima, A., Urano, J., Ishikawa, T., Tamanoi, F., Miao, J.: Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 107(25), 11234–11239 (2010)Google Scholar
  88. 88.
    Chapman, H.N., Barty, A., Bogan, M.J., Boutet, S., Frank, M., Hau-Riege, S.P., Marchesini, S., Woods, B.W., Bajt, S., Benner, H., London, R.A., Plonjes, E., Kuhlmann, M., Treusch, R., Dusterer, S., Tschentscher, T., Schneider, J.R., Spiller, E., Moller, T., Bostedt, C., Hoener, M., Shapiro, D.A., Hodgson, K.O., Van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Maia, F.R.N.C., Lee, R.W., Szoke, A., Timneanu, N., Hajdu, J.: Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2(12), 839–843 (2006)Google Scholar
  89. 89.
    Axford, D., Owen, R.L., Aishima, J., Foadi, J., Morgan, A.W., Robinson, J.I., Nettleship, J.E., Owens, R.J., Moraes, I., Fry, E.E., Grimes, J.M., Harlos, K., Kotecha, A., Ren, J., Sutton, G., Walter, T.S., Stuart, D.I., Evans, G.: In situ macromolecular crystallography using microbeams. Acta Crystallogr. D Biol. Crystallogr. 68(5), 592–600 (2012)Google Scholar
  90. 90.
    Ziaja, B., Chapman, H.N., Faeustlin, R., Hau-Riege, S., Jurek, Z., Martin, A.V., Toleikis, S., Wang, F., Weckert, E., Santra, R.: Limitations of coherent diffractive imaging of single objects due to their damage by intense X-ray radiation. New J. Phys. 14, 115015 (2012)Google Scholar
  91. 91.
    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., Hajdu, J.: Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797), 752–757 (2000)Google Scholar
  92. 92.
    Miao, J., Hodgson, K.O., Sayre, D.: An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. Proc. Natl. Acad. Sci. USA 98(12), 6641–6645 (2001)Google Scholar
  93. 93.
    Boutet, S., Lomb, L., Williams, G.J., Barends, T.R.M., Aquila, A., Doak, R.B., Weierstall, U., DePonte, D.P., Steinbrener, J., Shoeman, R.L., Messerschmidt, M., Barty, A., White, T.A., Kassemeyer, S., Kirian, R.A., Seibert, M.M., Montanez, P.A., Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S.M., Philipp, H.T., Tate, M.W., Hromalik, M., Koerner, L.J., van Bakel, N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M.J., Caleman, C., Fromme, R., Hampton, C.Y., Hunter, M.S., Johansson, L.C., Katona, G., Kupitz, C., Liang, M.N., Martin, A.V., Nass, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D.J., Zatsepin, N.A., Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J.C.H., Chapman, H.N., Schlichting, I.: High-resolution protein structure determination by serial femtosecond crystallography. Science 337(6092), 362–364 (2012)Google Scholar
  94. 94.
    Barends, T.R., Foucar, L., Botha, S., Doak, R.B., Shoeman, R.L., Nass, K., Koglin, J.E., Williams, G.J., Boutet, S., Messerschmidt, M., Schlichting, I.: De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505(7482), 244–247 (2014)Google Scholar
  95. 95.
    Sandberg, R.L., Paul, A., Raymondson, D.A., Haedrich, S., Gaudiosi, D.M., Holtsnider, J., Tobey, R.I., Cohen, O., Murnane, M.M., Kapteyn, H.C., Song, C.G., Miao, J.W., Liu, Y.W., Salmassi, F.: Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99(9), 098103 (2007)Google Scholar
  96. 96.
    Abbey, B., Whitehead, L.W., Quiney, H.M., Vine, D.J., Cadenazzi, G.A., Henderson, C.A., Nugent, K.A., Balaur, E., Putkunz, C.T., Peele, A.G., Williams, G.J., McNulty, I.: Lensless imaging using broadband X-ray sources. Nat. Photonics 5(7), 420–424 (2011)Google Scholar
  97. 97.
    Chen, B., Dilanian, R.A., Teichmann, S., Abbey, B., Peele, A.G., Williams, G.J., Hannaford, P., Van Dao, L., Quiney, H.M., Nugent, K.A.: Multiple wavelength diffractive imaging. Phys. Rev. A 79(2), 023809 (2009)Google Scholar
  98. 98.
    Ravasio, A., Gauthier, D., Maia, F.R., Billon, M., Caumes, J.P., Garzella, D., Geleoc, M., Gobert, O., Hergott, J.F., Pena, A.M., Perez, H., Carre, B., Bourhis, E., Gierak, J., Madouri, A., Mailly, D., Schiedt, B., Fajardo, M., Gautier, J., Zeitoun, P., Bucksbaum, P.H., Hajdu, J., Merdji, H.: Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source. Phys. Rev. Lett. 103(2), 028104 (2009)Google Scholar
  99. 99.
    Malm, E.B., Monserud, N.C., Brown, C.G., Wachulak, P.W., Xu, H., Balakrishnan, G., Chao, W., Anderson, E., Marconi, M.C.: Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object. Opt. Express 21(8), 9959–9966 (2013)Google Scholar
  100. 100.
    Seaberg, M.D., Adams, D.E., Townsend, E.L., Raymondson, D.A., Schlotter, W.F., Liu, Y.W., Menoni, C.S., Rong, L., Chen, C.C., Miao, J.W., Kapteyn, H.C., Murnane, M.M.: Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Opt. Express 19(23), 22470–22479 (2011)Google Scholar
  101. 101.
    Tobey, R.I., Siemens, M.E., Cohen, O., Murnane, M.M., Kapteyn, H.C., Nelson, K.A.: Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation. Opt. Lett. 32(3), 286–288 (2007)Google Scholar
  102. 102.
    Prell, J.S., Borja, L.J., Neumark, D.M., Leone, S.R.: Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles. Ann. Phys. (Berlin) 525(1–2), 151–161 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Optics and Quantum ElectronicsFriedrich Schiller University JenaJenaGermany

Personalised recommendations