Skip to main content

Introduction and Fundamental Theory

  • Chapter
  • First Online:
High-Resolution Extreme Ultraviolet Microscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 710 Accesses

Abstract

This chapter covers the underlying theory and introduces concepts for imaging using extreme ultraviolet radiation. The concept of high harmonic generation is briefly introduced. This is followed by general aspects, geometric considerations, and numerical reconstruction procedures for diffraction-based imaging and digital in-line holography. The chapter is concluded by a summary and an overview of the state-of-the-art techniques in the field of lensless imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this thesis vectors and vectorial quantities will be denoted by a boldface typeset, e.g. \(\mathbf {r}\). The modulus of \(\mathbf {r}\) is denoted simply as \(r\).

  2. 2.

    In literature this field is also often referred to as the exit surface wave.

  3. 3.

    One can compare Eq. 2.22 with the well-known momentum transfer equation from elastic scattering \(\triangle \mathbf {p}=\mathbf {p}-\mathbf {p}_0\) by multiplying both sides in Eq. 2.22 with \(\hbar =h/2\pi \) where \(h\) is Planck’s constant. If one now uses the de Broglie relation \(\mathbf {p}_0=\hbar \mathbf {k}_\mathrm{in }\) and \(\mathbf {p}=\hbar \mathbf {k}_\mathrm{out }\) for the incident and scattered particle, respectively, it becomes clear that \(\hbar \mathbf {q}=\hbar \mathbf {k}_{\mathrm {out}}-\hbar \mathbf {k}_{\mathrm {in}}\) is the momentum transfer vector [26].

  4. 4.

    For the sake of being consistent with most of the literature on CDI. Hence, \(|\mathbf {k}|=1/\lambda \) is used.

  5. 5.

    This equation comes from an isosceles triangle, where \(c=2a\sin (\gamma /2)\). Comparing it to the well-known Bragg’s law one finds that Eq. 2.23 is equivalent to a volume grating being tilted about half the diffraction angle \(\theta \).

  6. 6.

    Provided that diffraction data is measured to sufficiently high momentum transfers, such that in principle a higher resolution could be obtained considering perfect coherence properties. See the following pages for the fundamental resolution limit.

  7. 7.

    It is assumed that the zero deflection point, i.e. \(|q|=0\), resides in the center of the detector. The factor \(2\) comes from the fact that the pattern is sampled from \(-[(N_x-1)/2]\triangle q_x\) to \([N_x/2]\triangle q_x\) on the detector and that the FFT conserves the total amount of pixels, i.e. the object plane is also sampled by \(N_x\) times \(N_y\) pixels.

  8. 8.

    This refers to the midpoints from the diagonal edges of the CCD. Sometimes in literature the highest momentum transfer in the edges of the detector is mentioned. It is thus a factor of \(\sqrt{2}\) larger, but this yields no additional resolution because the highest momentum transfer with respect to the \(x\)- and \(y\)-axis is still the same.

  9. 9.

    Due to shot noise and electronic noise of the readout electronics.

  10. 10.

    Alternatively, one can threshold the PRTF at e.g. \(0.5\) or \(1/e\) to determine the highest \(|q|\).

  11. 11.

    An Airy pattern or Airy disk is the diffraction pattern caused from a round aperture featuring a bright central maximum, i.e. zeroth diffraction order, surrounded by dark and bright rings, i.e. higher order diffraction terms.

  12. 12.

    Other iterative methods reported in literature make use of the Gerchberg-Saxton algorithm [73] or use a support constraint to retrieve the hologram [74, 75]. The important difference is that here the full illumination field, which is well characterized by the pinhole being illuminated with a XUV beam having good coherence properties, is used at every step, in contrast to the algorithms reported in literature, which mostly switch between the object plane and the detector plane and disregard the illumination field.

  13. 13.

    More precisely it would be \(L_\mathrm{det }+L_\mathrm{ph }\), however, for all experiments presented in this thesis \(L_\mathrm{det }\gg L_\mathrm{ph }\), hence simply \(L_\mathrm{det }\) is used.

  14. 14.

    For typical XUV wavelengths and pinhole sizes in the order of a micron the Fraunhofer condition (Eq. 2.12) is already fulfilled a few tens of microns behind the pinhole. Hence, the Fraunhofer condition is not limiting in XUV DIH.

  15. 15.

    This is analogous to the Rayleigh criterion.

  16. 16.

    This is because the high flux of such sources allows extremely short exposures down to single shot measurements which circumvents the stability problem.

References

  1. Boyd, R.W.: Nonlinear Optics. Academic Press, London (2008)

    Google Scholar 

  2. Schaefer, C., Niedrig, H., Bergmann, L., Eichler, H.-J.: Lehrbuch der Experimentalphysik. Walter de Gruyter, Berlin (2004) (Optik)

    Google Scholar 

  3. McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T.S., Mcintyre, I.A., Boyer, K., Rhodes, C.K.: Studies of multiphoton production of vacuum ultraviolet-radiation in the rare-gases. J. Opt. Soc. Am. B 4(4), 595–601 (1987)

    Google Scholar 

  4. Li, X.F., L’Huillier, A., Ferray, M., Lompre, L.A., Mainfray, G.: Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39(11), 5751–5761 (1989)

    Google Scholar 

  5. Seres, J., Seres, E., Verhoef, A.J., Tempea, G., Streli, C., Wobrauschek, P., Yakovlev, V., Scrinzi, A., Spielmann, C., Krausz, F.: Laser technology: source of coherent kiloelectronvolt X-rays. Nature 433(7026), 596–596 (2005)

    Google Scholar 

  6. Popmintchev, T., Chen, M.C., Popmintchev, D., Arpin, P., Brown, S., Alisauskas, S., Andriukaitis, G., Balciunas, T., Mucke, O.D., Pugzlys, A., Baltuska, A., Shim, B., Schrauth, S.E., Gaeta, A., Hernandez-Garcia, C., Plaja, L., Becker, A., Jaron-Becker, A., Murnane, M.M., Kapteyn, H.C.: Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336(6086), 1287–1291 (2012)

    Google Scholar 

  7. Krause, J.L., Schafer, K.J., Kulander, K.C.: High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68(24), 3535–3538 (1992)

    Google Scholar 

  8. Corkum, P.B.: Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71(13), 1994–1997 (1993)

    Google Scholar 

  9. Awasthi, M., Vanne, Y.V., Saenz, A., Castro, A., Decleva, P.: Single-active-electron approximation for describing molecules in ultrashort laser pulses and its application to molecular hydrogen. Phys. Rev. A 77(6), 063403 (2008)

    Google Scholar 

  10. Keldysh, L.V.: Ionization in field of a strong electromagnetic wave. Sov. Phys. JETP 20(5), 1307–1314 (1965)

    Google Scholar 

  11. Brabec, T., Krausz, F.: Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72(2), 545–591 (2000)

    Google Scholar 

  12. Lewenstein, M., Balcou, Ph, Ivanov, M.Y., L’Huillier, A., Corkum, P.B.: Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49(3), 2117–2132 (1994)

    Google Scholar 

  13. Bartels, R.A., Paul, A., Green, H., Kapteyn, H.C., Murnane, M.M., Backus, S., Christov, I.P., Liu, Y.W., Attwood, D., Jacobsen, C.: Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297(5580), 376–378 (2002)

    Google Scholar 

  14. Ditmire, T., Gumbrell, E.T., Smith, R.A., Tisch, J.W.G., Meyerhofer, D.D., Hutchinson, M.H.R.: Spatial coherence measurement of soft X-ray radiation produced by high order harmonic generation. Phys. Rev. Lett. 77(23), 4756–4759 (1996)

    Google Scholar 

  15. Constant, E., Garzella, D., Breger, P., Mevel, E., Dorrer, C., Le Blanc, C., Salin, F., Agostini, P.: Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82(8), 1668–1671 (1999)

    Google Scholar 

  16. Takahashi, E., Nabekawa, Y., Midorikawa, K.: Generation of 10-\(\upmu \)J coherent extreme-ultraviolet light by use of high-order harmonics. Opt. Lett. 27(21), 1920–1922 (2002)

    Google Scholar 

  17. Popmintchev, T., Chen, M.C., Bahabad, A., Gerrity, M., Sidorenko, P., Cohen, O., Christov, I.P., Murnane, M.M., Kapteyn, H.C.: Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl. Acad. Sci. USA 106(26), 10516–10521 (2009)

    Google Scholar 

  18. Paul, P.M., Toma, E.S., Breger, P., Mullot, G., Auge, F., Balcou, Ph., Muller, H.G., Agostini, P.: Observation of a train of attosecond pulses from high harmonic generation. Science 292(5522), 1689–1692 (2001)

    Google Scholar 

  19. Myers, O.E.: Studies of transmission zone plates. Am. J. Phys. 19(6), 359–365 (1951)

    Google Scholar 

  20. Horowitz, P.: Scanning X-ray microscope using synchrotron radiation. Science 178(4061), 608–611 (1972)

    Google Scholar 

  21. Lee, K.H., Park, S.B., Singhal, H., Nam, C.H.: Ultrafast direct imaging using a single high harmonic burst. Opt. Lett. 38(8), 1253–1255 (2013)

    Google Scholar 

  22. Attwood, D.: Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  23. Jackson, J.D., Witte, C., Mueller, K.: Klassische Elektrodynamik, vol. 3. Walter de Gruyter, Berlin (2006)

    Book  Google Scholar 

  24. Gu, M.: Advanced Optical Imaging Theory. Springer, Berlin (2000)

    Book  Google Scholar 

  25. Williams, G.J., Quiney, H.M., Dhal, B.B., Tran, C.Q., Nugent, K.A., Peele, A.G., Paterson, D., de Jonge, M.D.: Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97(2), 025506 (2006)

    Google Scholar 

  26. Consortini, A.: Trends in Optics: Research, Developments, and Applications. Academic Press, London (1996)

    Google Scholar 

  27. Ewald, P.P.: Zur Theorie der Interferenzen der Roentgenstrahlen in Kristallen. Phys. Zeitschrift 14, 465–472 (1913)

    MATH  Google Scholar 

  28. Chapman, H.N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S.P., Cui, C., Howells, M.R., Rosen, R., He, H., Spence, J.C., Weierstall, U., Beetz, T., Jacobsen, C., Shapiro, D.: High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23(5), 1179–1200 (2006)

    Google Scholar 

  29. Sayre, D.: Some Implications of a theorem due to shannon. Acta Crystallogr. 5(6), 843–843 (1952)

    Google Scholar 

  30. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Google Scholar 

  31. Sayre, D.: Prospects for long-wavelength X-ray microscopy and diffraction. In: Schlenker, M., Fink, M., Goedgebuer, J.P., Malgrange, C., Vieenot, J.C., Wade, R.H. (eds.) Imaging Processes and Coherence in Physics, vol. 112, pp. 229–235. Springer, Berlin (1980)

    Google Scholar 

  32. Bates, R.H.T.: Fourier phase problems are uniquely solvable in more than one dimension. I: underlying theory. Optik 61, 247–262 (1982)

    Google Scholar 

  33. Miao, J., Sayre, D.: On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallogr. A 56(6), 596–605 (2000)

    Google Scholar 

  34. Miao, J., Ishikawa, T., Anderson, E.H., Hodgson, K.O.: Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys. Rev. B 67(17), 174104 (2003)

    Google Scholar 

  35. Spence, J.C., Weierstall, U., Howells, M.: Coherence and sampling requirements for diffractive imaging. Ultramicroscopy 101(2–4), 149–152 (2004)

    Google Scholar 

  36. Whitehead, L.W., Williams, G.J., Quiney, H.M., Vine, D.J., Dilanian, R.A., Flewett, S., Nugent, K.A., Peele, A.G. Balaur, E. McNulty, I.: Diffractive imaging using partially coherent X-rays. Phys. Rev. Lett. 103(24), 243902 (2009)

    Google Scholar 

  37. Gerchberg, R.W., Saxton, W.O.: Phase determination from image and diffraction plane pictures in electron-microscope. Optik 34(3), 275–283 (1971)

    Google Scholar 

  38. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Google Scholar 

  39. Fienup, J.R., Crimmins, T.R., Holsztynski, W.: Reconstruction of the support of an object from the support of its auto-correlation. J. Opt. Soc. Am. 72(5), 610–624 (1982)

    Google Scholar 

  40. Marchesini, S., Chapman, H.N., Hau-Riege, S.P., London, R.A., Szoke, A., He, H., Howells, M.R., Padmore, H., Rosen, R., Spence, J.C.H., Weierstall, U.: Coherent X-ray diffractive imaging: applications and limitations. Opt. Express 11(19), 2344–2353 (2003)

    Google Scholar 

  41. Martin, A.V., Wang, F., Loh, N.D., Ekeberg, T., Maia, F.R.N.C., Hantke, M., van der Schot, G., Hampton, C.Y., Sierra, R.G., Aquila, A., Bajt, S., Barthelmess, M., Bostedt, C., Bozek, J.D., Coppola, N., Epp, S.W., Erk, B., Fleckenstein, H., Foucar, L., Frank, M., Graafsma, H., Gumprecht, L., Hartmann, A., Hartmann, R., Hauser, G., Hirsemann, H., Holl, P., Kassemeyer, S., Kimmel, N., Liang, M., Lomb, L., Marchesini, S., Nass, K., Pedersoli, E., Reich, C., Rolles, D., Rudek, B., Rudenko, A., Schulz, J., Shoeman, R.L., Soltau, H., Starodub, D., Steinbrener, J., Stellato, F., Strueder, L., Ullrich, J., Weidenspointner, G., White, T.A., Wunderer, C.B., Barty, A., Schlichting, I., Bogan, M.J., Chapman, H.N.: Noise-robust coherent diffractive imaging with a single diffraction pattern. Opt. Express 20(15), 16650–16661 (2012)

    Google Scholar 

  42. Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob. 21(1), 37–50 (2005)

    Google Scholar 

  43. Marchesini, S., He, H., Chapman, H.N., Hau-Riege, S.P., Noy, A., Howells, M.R., Weierstall, U., Spence, J.C.H.: X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68(14), 140101 (2003)

    Google Scholar 

  44. Baeck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Google Scholar 

  45. Miao, J., Chen, C.-C., Song, C., Nishino, Y., Kohmura, Y., Ishikawa, T., Ramunno-Johnson, D., Lee, T.-K., Risbud, S.H.: Three-dimensional GaN-Ga\(_{2}\)O\(_{3}\) core shell structure revealed by X-ray diffraction microscopy. Phys. Rev. Lett. 97(21), 215503 (2006)

    Google Scholar 

  46. Miao, J., Sayre, D., Chapman, H.N.: Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15(6), 1662–1669 (1998)

    Google Scholar 

  47. Gabor, D.: Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lon. Ser. A 197(1051), 454–487 (1949)

    Google Scholar 

  48. Toal, V.: Introduction to Holography. CRC Press, Boca Raton (2011)

    Google Scholar 

  49. Howells, M., Jacobsen, C., Kirz, J., Feder, R., Mcquaid, K., Rothman, S.: X-ray holograms at improved resolution—a study of Zymogen Granules. Science 238(4826), 514–517 (1987)

    Google Scholar 

  50. McNulty, I., Kirz, J., Jacobsen, C., Anderson, E.H., Howells, M.R., Kern, D.P.: High-resolution imaging by Fourier transform X-ray holography. Science 256(5059), 1009–1012 (1992)

    Google Scholar 

  51. Eisebitt, S., Luning, J., Schlotter, W.F., Lorgen, M., Hellwig, O., Eberhardt, W., Stohr, J.: Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432(7019), 885–888 (2004)

    Google Scholar 

  52. Chapman, H.N., Hau-Riege, S.P., Bogan, M.J., Bajt, S., Barty, A., Boutet, S., Marchesini, S., Frank, M., Woods, B.W., Benner, W.H., London, R.A., Rohner, U., Szoke, A., Spiller, E., Moller, T., Bostedt, C., Shapiro, D.A., Kuhlmann, M., Treusch, R., Plonjes, E., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Hajdu, J.: Femtosecond time-delay X-ray holography. Nature 448(7154), 676–679 (2007)

    Google Scholar 

  53. Quiney, H.M., Peele, A.G., Cai, Z., Paterson, D., Nugent, K.A.: Diffractive imaging of highly focused X-ray fields. Nat. Phys. 2(2), 101–104 (2006)

    Google Scholar 

  54. Schropp, A., Hoppe, R., Meier, V., Patommel, J., Seiboth, F., Lee, H.J., Nagler, B., Galtier, E.C., Arnold, B., Zastrau, U., Hastings, J.B., Nilsson, D., Uhlen, F., Vogt, U., Hertz, H.M., Schroer, C.G.: Full spatial characterization of a nanofocused X-ray free-electron laser beam by ptychographic imaging. Sci. Rep. 3, 1633 (2013)

    Google Scholar 

  55. Sandberg, R.L., Raymondson, D.A., La, O.V.C., Paul, A., Raines, K.S., Miao, J., Murnane, M.M., Kapteyn, H.C., Schlotter, W.F.: Tabletop soft-X-ray Fourier transform holography with 50 nm resolution. Opt. Lett. 34(11), 1618–1620 (2009)

    Google Scholar 

  56. Williams, G.J., Quiney, H.M., Dahl, B.B., Tran, C.Q., Peele, A.G., Nugent, K.A., De Jonge, M.D., Paterson, D.: Curved beam coherent diffractive imaging. Thin Solid Films 515(14), 5553–5556 (2007)

    Google Scholar 

  57. Williams, G.J., Quiney, H.M., Peele, A.G., Nugent, K.A.: Fresnel coherent diffractive imaging: treatment and analysis of data. New J. Phys. 12, 035020 (2010)

    Google Scholar 

  58. Geilhufe, J., Pfau, B., Schneider, M., Buttner, F., Gunther, C.M., Werner, S., Schaffert, S., Guehrs, E., Frommel, S., Klaui, M., Eisebitt, S.: Monolithic focused reference beam X-ray holography. Nat. Commun. 5, 3008 (2014)

    Google Scholar 

  59. Schlotter, W.F., Rick, R., Chen, K., Scherz, A., Stohr, J., Luning, J., Eisebitt, S., Gunther, C., Eberhardt, W., Hellwig, O., McNulty, I.: Multiple reference Fourier transform holography with soft X-rays. Appl. Phys. Lett. 89(16), 163112 (2006)

    Google Scholar 

  60. Gunther, C.M., Pfau, B., Mitzner, R., Siemer, B., Roling, S., Zacharias, H., Kutz, O., Rudolph, I., Schondelmaier, D., Treusch, R., Eisebitt, S.: Sequential femtosecond X-ray imaging. Nat. Photonics 5(2), 99–102 (2011)

    Google Scholar 

  61. Guizar-Sicairos, M., Fienup, J.R.: Holography with extended reference by autocorrelation linear differential operation. Opt. Express 15(26), 17592–17612 (2007)

    Google Scholar 

  62. Gauthier, D., Guizar-Sicairos, M., Ge, X., Boutu, W., Carre, B., Fienup, J.R., Merdji, H.: Single-shot Femtosecond X-ray holography using extended references. Phys. Rev. Lett. 105(9), 093901 (2010)

    Google Scholar 

  63. Zhu, D., Guizar-Sicairos, M., Wu, B., Scherz, A., Acremann, Y., Tyliszczak, T., Fischer, P., Friedenberger, N., Ollefs, K., Farle, M., Fienup, J.R., Stohr, J.: High-resolution X-ray lensless imaging by differential holographic encoding. Phys. Rev. Lett. 105(4), 043901 (2010)

    Google Scholar 

  64. Wachulak, P.W., Marconi, M.C., Bartels, R.A., Menoni, C.S., Rocca, J.J.: Holographic imaging with a nanometer resolution using compact table-top EUV laser. Opto-Electron. Rev. 18(1), 80–90 (2010)

    Google Scholar 

  65. Schnars, U., Jueptner, W.: Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer, Berlin (2005)

    Google Scholar 

  66. Morlens, A.S., Gautier, J., Rey, G., Zeitoun, P., Caumes, J.P., Kos-Rosset, M., Merdji, H., Kazamias, S., Casson, K., Fajardo, M.: Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics. Opt. Lett. 31(21), 3095–3097 (2006)

    Google Scholar 

  67. Genoud, G., Guilbaud, O., Mengotti, E., Pettersson, S.G., Georgiadou, E., Pourtal, E., Wahlstroem, C.G., L’Huillier, A.: XUV digital in-line holography using high-order harmonics. Appl. Phys. B 90(3–4), 533–538 (2008)

    Google Scholar 

  68. Schnars, U., Juptner, W.P.: Digital recording and reconstruction of holograms in hologram interferometry and shearography. Appl. Opt. 33(20), 4373–4377 (1994)

    Google Scholar 

  69. Schnars, U., Jueptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)

    Google Scholar 

  70. Garcia-Sucerquia, J., Xu, W., Jericho, S.K., Klages, P., Jericho, M.H., Kreuzer, H.J.: Digital in-line holographic microscopy. Appl. Opt. 45(5), 836–850 (2006)

    Google Scholar 

  71. Schuermann, M.: Digital in-line holographic microscopy with various wavelengths and point sources applied to static and fluidic specimens. Ph.D. thesis, University of Heidelberg (2007)

    Google Scholar 

  72. Poon, T.C., Banerjee, P.P.: Contemporary Optical Image Processing with MATLAB. Elsevier Science, Oxford (2001)

    Google Scholar 

  73. Liu, G., Scott, P.D.: Phase retrieval and twin-image elimination for in-line Fresnel holograms. J. Opt. Soc. Am. A 4(1), 159–165 (1987)

    Google Scholar 

  74. Koren, G., Polack, F., Joyeux, D.: Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints. J. Opt. Soc. Am. A 10(3), 423–433 (1993)

    Google Scholar 

  75. Rong, L., Li, Y., Liu, S., Xiao, W., Pan, F., Wang, D.Y.: Iterative solution to twin image problem in in-line digital holography. Opt. Laser. Eng. 51(5), 553–559 (2013)

    Google Scholar 

  76. Kreuzer, H.J., Jericho, M.J., Meinertzhagen, I.A., Xu, W.B.: Digital in-line holography with photons and electrons. J. Phys. Condens. Matter 13(47), 10729–10741 (2001)

    Google Scholar 

  77. Kanka, M.: Bildrekonstruktion in der digitalen inline-holografischen Mikroskopie. Universitaetsverlag Ilmenau, Ilmenau (2011)

    Google Scholar 

  78. Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F.: High-resolution scanning X-ray diffraction microscopy. Science 321(5887), 379–382 (2008)

    Google Scholar 

  79. Thibault, P., Menzel, A.: Reconstructing state mixtures from diffraction measurements. Nature 494(7435), 68–71 (2013)

    Google Scholar 

  80. Abbey, B., Nugent, K.A., Williams, G.J., Clark, J.N., Peele, A.G., Pfeifer, M.A., De Jonge, M., McNulty, I.: Keyhole coherent diffractive imaging. Nat. Phys. 4(5), 394–398 (2008)

    Google Scholar 

  81. Seaberg, M.D., Zhang, F., Gardner, D.F., Shannon, C.E., Murnane, M.M., Kapteyn, H.C., Adams, D.E.: Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent fresnel ptychography, pp. 1–9. arXiv: 1312.2049 (2013)

  82. Zhang, B., Seaberg, M.D., Adams, D.E., Gardner, D.F., Shanblatt, E.R., Shaw, J.M., Chao, W., Gullikson, E.M., Salmassi, F., Kapteyn, H.C., Murnane, M.M.: Full field tabletop EUV coherent diffractive imaging in a transmission geometry. Opt. Express 21(19), 21970–21980 (2013)

    Google Scholar 

  83. Miao, J.W., Charalambous, P., Kirz, J., Sayre, D.: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742), 342–344 (1999)

    Google Scholar 

  84. Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., Kirz, J., Lima, E., Miao, H., Neiman, A.M., Sayre, D.: Biological imaging by soft X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 102(43), 15343–15346 (2005)

    Google Scholar 

  85. Huang, X., Nelson, J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Neiman, A.M., Shapiro, D., Steinbrener, J., Stewart, A., Turner, J.J., Jacobsen, C.: Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys. Rev. Lett. 103(19), 198101 (2009)

    Google Scholar 

  86. Raines, K.S., Salha, S., Sandberg, R.L., Jiang, H., Rodriguez, J.A., Fahimian, B.P., Kapteyn, H.C., Du, J., Miao, J.: Three-dimensional structure determination from a single view. Nature 463(7278), 214–217 (2010)

    Google Scholar 

  87. Jiang, H., Song, C., Chen, C.C., Xu, R., Raines, K.S., Fahimian, B.P., Lu, C.H., Lee, T.K., Nakashima, A., Urano, J., Ishikawa, T., Tamanoi, F., Miao, J.: Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 107(25), 11234–11239 (2010)

    Google Scholar 

  88. Chapman, H.N., Barty, A., Bogan, M.J., Boutet, S., Frank, M., Hau-Riege, S.P., Marchesini, S., Woods, B.W., Bajt, S., Benner, H., London, R.A., Plonjes, E., Kuhlmann, M., Treusch, R., Dusterer, S., Tschentscher, T., Schneider, J.R., Spiller, E., Moller, T., Bostedt, C., Hoener, M., Shapiro, D.A., Hodgson, K.O., Van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Maia, F.R.N.C., Lee, R.W., Szoke, A., Timneanu, N., Hajdu, J.: Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2(12), 839–843 (2006)

    Google Scholar 

  89. Axford, D., Owen, R.L., Aishima, J., Foadi, J., Morgan, A.W., Robinson, J.I., Nettleship, J.E., Owens, R.J., Moraes, I., Fry, E.E., Grimes, J.M., Harlos, K., Kotecha, A., Ren, J., Sutton, G., Walter, T.S., Stuart, D.I., Evans, G.: In situ macromolecular crystallography using microbeams. Acta Crystallogr. D Biol. Crystallogr. 68(5), 592–600 (2012)

    Google Scholar 

  90. Ziaja, B., Chapman, H.N., Faeustlin, R., Hau-Riege, S., Jurek, Z., Martin, A.V., Toleikis, S., Wang, F., Weckert, E., Santra, R.: Limitations of coherent diffractive imaging of single objects due to their damage by intense X-ray radiation. New J. Phys. 14, 115015 (2012)

    Google Scholar 

  91. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., Hajdu, J.: Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797), 752–757 (2000)

    Google Scholar 

  92. Miao, J., Hodgson, K.O., Sayre, D.: An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. Proc. Natl. Acad. Sci. USA 98(12), 6641–6645 (2001)

    Google Scholar 

  93. Boutet, S., Lomb, L., Williams, G.J., Barends, T.R.M., Aquila, A., Doak, R.B., Weierstall, U., DePonte, D.P., Steinbrener, J., Shoeman, R.L., Messerschmidt, M., Barty, A., White, T.A., Kassemeyer, S., Kirian, R.A., Seibert, M.M., Montanez, P.A., Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S.M., Philipp, H.T., Tate, M.W., Hromalik, M., Koerner, L.J., van Bakel, N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M.J., Caleman, C., Fromme, R., Hampton, C.Y., Hunter, M.S., Johansson, L.C., Katona, G., Kupitz, C., Liang, M.N., Martin, A.V., Nass, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D.J., Zatsepin, N.A., Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J.C.H., Chapman, H.N., Schlichting, I.: High-resolution protein structure determination by serial femtosecond crystallography. Science 337(6092), 362–364 (2012)

    Google Scholar 

  94. Barends, T.R., Foucar, L., Botha, S., Doak, R.B., Shoeman, R.L., Nass, K., Koglin, J.E., Williams, G.J., Boutet, S., Messerschmidt, M., Schlichting, I.: De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505(7482), 244–247 (2014)

    Google Scholar 

  95. Sandberg, R.L., Paul, A., Raymondson, D.A., Haedrich, S., Gaudiosi, D.M., Holtsnider, J., Tobey, R.I., Cohen, O., Murnane, M.M., Kapteyn, H.C., Song, C.G., Miao, J.W., Liu, Y.W., Salmassi, F.: Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99(9), 098103 (2007)

    Google Scholar 

  96. Abbey, B., Whitehead, L.W., Quiney, H.M., Vine, D.J., Cadenazzi, G.A., Henderson, C.A., Nugent, K.A., Balaur, E., Putkunz, C.T., Peele, A.G., Williams, G.J., McNulty, I.: Lensless imaging using broadband X-ray sources. Nat. Photonics 5(7), 420–424 (2011)

    Google Scholar 

  97. Chen, B., Dilanian, R.A., Teichmann, S., Abbey, B., Peele, A.G., Williams, G.J., Hannaford, P., Van Dao, L., Quiney, H.M., Nugent, K.A.: Multiple wavelength diffractive imaging. Phys. Rev. A 79(2), 023809 (2009)

    Google Scholar 

  98. Ravasio, A., Gauthier, D., Maia, F.R., Billon, M., Caumes, J.P., Garzella, D., Geleoc, M., Gobert, O., Hergott, J.F., Pena, A.M., Perez, H., Carre, B., Bourhis, E., Gierak, J., Madouri, A., Mailly, D., Schiedt, B., Fajardo, M., Gautier, J., Zeitoun, P., Bucksbaum, P.H., Hajdu, J., Merdji, H.: Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source. Phys. Rev. Lett. 103(2), 028104 (2009)

    Google Scholar 

  99. Malm, E.B., Monserud, N.C., Brown, C.G., Wachulak, P.W., Xu, H., Balakrishnan, G., Chao, W., Anderson, E., Marconi, M.C.: Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object. Opt. Express 21(8), 9959–9966 (2013)

    Google Scholar 

  100. Seaberg, M.D., Adams, D.E., Townsend, E.L., Raymondson, D.A., Schlotter, W.F., Liu, Y.W., Menoni, C.S., Rong, L., Chen, C.C., Miao, J.W., Kapteyn, H.C., Murnane, M.M.: Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Opt. Express 19(23), 22470–22479 (2011)

    Google Scholar 

  101. Tobey, R.I., Siemens, M.E., Cohen, O., Murnane, M.M., Kapteyn, H.C., Nelson, K.A.: Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation. Opt. Lett. 32(3), 286–288 (2007)

    Google Scholar 

  102. Prell, J.S., Borja, L.J., Neumark, D.M., Leone, S.R.: Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles. Ann. Phys. (Berlin) 525(1–2), 151–161 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Werner Zürch .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zürch, M.W. (2015). Introduction and Fundamental Theory. In: High-Resolution Extreme Ultraviolet Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12388-2_2

Download citation

Publish with us

Policies and ethics