Skip to main content

Estimation and Calibration of Lévy Models via Fourier Methods

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LEVY,volume 2128))

Abstract

In this chapter we discuss different aspects of statistical estimation for Lévy-based processes based on low-frequency observations. In particular, we consider the estimation of the Lévy triplet and the Blumenthal-Getoor index in Lévy and time-changed Lévy models. Moreover, a calibration problem in exponential Lévy models based on option data is studied. The common feature of all these statistical problems is that they can be conveniently formulated in the Fourier domain. We introduce a general spectral estimation/calibration approach that can be applied to these and many other statistical problems related to Lévy processes. On the theoretical side, we provide a comprehensive convergence analysis of the proposed algorithms and address each time the question of optimality.

AMS Subject Classification 2000:

Primary: 60G10, 60G70, 60J10

Secondary: 91B28, 91B84

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Provided through the SFB 649 “Economic Risk”, Humboldt-Universität zu Berlin.

References

  1. Ait-Sahalia, Y., & Duarte, J. (2003). Nonparametric option pricing under shape restrictions. Journal of Econometrics, 116(1), 9–47.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aït-Sahalia, Y., & Jacod, J. (2009). Estimating the degree of activity of jumps in high frequency data. The Annals of Statistics, 37(5A), 2202–2244.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aït-Sahalia, Y., & Jacod, J. (2012). Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data. The Journal of Economic Literature, 50(4), 1007–50.

    Article  Google Scholar 

  4. Aït-Sahalia, Y., & Jacod, J. (2012). Identifying the successive Blumenthal-Getoor indices of a discretely observed process. The Annals of Statistics, 40(3), 1430–1464.

    Article  MATH  MathSciNet  Google Scholar 

  5. Barndorff-Nielsen, O. E. (1997). Processes of normal inverse Gaussian type. Finance and Stochastics, 2(1), 41–68.

    Article  MathSciNet  Google Scholar 

  6. Basawa, I. V., Brockwell, P. J. (1982). Non-parametric estimation for non-decreasing Lévy processes. Journal of the Royal Statistical Society. Series B (Methodological), 15, 262–269.

    MathSciNet  Google Scholar 

  7. Bauer, F., & Reiß, M. (2008). Regularization independent of the noise level: an analysis of quasi-optimality. Inverse Problems, 24(5), 1–16.

    Article  Google Scholar 

  8. Belomestny, D. (2011). Spectral estimation of the Lévy density in partially observed affine models. Stochastic Processes and Their Applications, 121(6), 1217–1244.

    Article  MATH  MathSciNet  Google Scholar 

  9. Belomestny, D. (2011). Statistical inference for time-changed Lévy processes via composite characteristic function estimation. The Annals of Statistics, 39(4), 2205–2242.

    Article  MATH  MathSciNet  Google Scholar 

  10. Belomestny, D., & Reiß, M. (2006). Spectral calibration of exponential Lévy models. Finance and Stochastics, 10(4), 449–474.

    Article  MATH  MathSciNet  Google Scholar 

  11. Belomestny, D., & Schoenmakers, J. (2011). A jump-diffusion libor model and its robust calibration. Quantitative Finance, 11(4), 529–546.

    Article  MATH  MathSciNet  Google Scholar 

  12. Belomestny, D. (2010). Spectral estimation of the fractional order of a Lévy process. Annals of Statistics, 38(1), 317–351.

    Article  MATH  MathSciNet  Google Scholar 

  13. Belomestny, D., & Panov V. (2013). Abelian theorems for stochastic volatility models with application to the estimation of jump activity. Stochastic Processes and Their Applications, 123(1), 15–44.

    Article  MATH  MathSciNet  Google Scholar 

  14. Belomestny, D., & Panov V. (2013). Estimation of the activity of jumps in time-changed Lévy models. Electronic Journal of Statistics, 7, 2970–3003.

    Article  MATH  MathSciNet  Google Scholar 

  15. Bismut, J.-M. (1983). Calcul des variations stochastique et processus de sauts. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 63, 147–235.

    Article  MATH  MathSciNet  Google Scholar 

  16. Brown, L. D., & Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. The Annals of Statistics, 24(6), 2384–2398.

    Article  MATH  MathSciNet  Google Scholar 

  17. Bücher, A., & Vetter, M. (2013). Nonparametric inference on Lévy measures and copulas. The Annals of Statistics, 41(3), 1485–1515.

    Article  MATH  MathSciNet  Google Scholar 

  18. Cai, T. T., & Zhou, H. H. (2012). Optimal rates of convergence for sparse covariance matrix estimation. The Annals of Statistics, 40(5), 2389–2420.

    Article  MATH  MathSciNet  Google Scholar 

  19. Carr, P., & Madan, D. (1999). Option valuation using the fast fourier transform. Journal of Computational Finance, 2(4), 61–73.

    Google Scholar 

  20. Comte, F., & Genon-Catalot, V. (2011). Estimation for Lévy processes from high frequency data within a long time interval. The Annals of Statistics, 39(2), 803–837.

    Article  MATH  MathSciNet  Google Scholar 

  21. Cont, R., & Tankov, P. (2004). Financial modelling with jump processes (Vol. 133). Boca Raton: Chapman & Hall/CRC

    Google Scholar 

  22. Cont, R., & Tankov, P. (2004). Non-parametric calibration of jump-diffusion option pricing models. Journal of Computational Finance, 7(3), 1–50.

    Google Scholar 

  23. Csorgo, S. (1981). Limit behaviour of the empirical characteristic function. The Annals of Probability, 9 (1), 130–144.

    Article  MathSciNet  Google Scholar 

  24. Dereich, S. (2011). Multilevel monte carlo algorithms for Lévy-driven sdes with Gaussian correction. The Annals of Applied Probability, 21(1), 283–311.

    Article  MATH  MathSciNet  Google Scholar 

  25. Duffie, D., Filipovic, D., & Schachermayer, W. (2003). Affine processes and applications in finance. Annals of Applied Probability, 13(3), 984–1053.

    Article  MATH  MathSciNet  Google Scholar 

  26. Duffie, D., Filipović, D., & Schachermayer, W. (2003). Affine processes and applications in finance. Annals of Applied Probability, 13(3), 984–1053.

    Article  MATH  MathSciNet  Google Scholar 

  27. Eberlein, E., & Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1(3), 281–299.

    Article  MATH  Google Scholar 

  28. Erdélyi, A. (1955). Asymptotic expansions. Technical report, DTIC Document.

    Google Scholar 

  29. Feuerverger, A., & Mureika, R. A. (1977). The empirical characteristic function and its applications. The Annals of Statistics, 88–97.

    Google Scholar 

  30. Figueroa-López, J. E. (2009). Nonparametric estimation of time-changed Lévy models under high-frequency data. Advances in Applied Probability, 41(4), 1161–1188.

    Article  MATH  MathSciNet  Google Scholar 

  31. Figueroa-López, J. E. (2011). Sieve-based confidence intervals and bands for Lévy densities. Bernoulli, 17(2), 643–670.

    Article  MATH  MathSciNet  Google Scholar 

  32. Figueroa-López, J. E., & Houdré, C. (2006). Risk bounds for the non-parametric estimation of Lévy processes. Lecture Notes-Monograph Series, 96–116.

    Google Scholar 

  33. Gnedenko, B., & Kolmogorov, A. (1954). Limit Distributions for Sums of Independent Random Variables. Cambridge: Mass

    MATH  Google Scholar 

  34. Gugushvili, S. (2009). Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process. Journal of Nonparametric Statistics, 21(3), 321–343.

    Article  MATH  MathSciNet  Google Scholar 

  35. Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  36. Horowitz, J., & Mammen, E. (2007). Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions. Annals of Statistics, 35(6), 2589–2619.

    Article  MATH  MathSciNet  Google Scholar 

  37. Jacod, J., & Reiß, M. (2014). A remark on the rates of convergence for integrated volatility estimation in the presence of jumps. The Annals of Statistics, 42(3), 1131–1144.

    Article  MATH  MathSciNet  Google Scholar 

  38. Jacod, J., & Shiryaev, A. (1987). Limit theorems for stochastic processes. New York: Springer

    Book  MATH  Google Scholar 

  39. Juditsky, A. B., Lepski, O. V., & Tsybakov, A. B. (2009). Nonparametric estimation of composite functions. The Annals of Statistics, 37(3), 1360–1404.

    Article  MATH  MathSciNet  Google Scholar 

  40. Kamae, T., & Krengel, U. (1978). Stochastic partial ordering. The Annals of Probability, 6(6), 1044–1049.

    Article  MATH  MathSciNet  Google Scholar 

  41. Kappus, J. (2014). Adaptive nonparametric estimation for Lévy processes observed at low frequency. Stochastic Processes and Their Applications, 124(1), 730–758.

    Article  MATH  MathSciNet  Google Scholar 

  42. Kappus, J., & Reiß, M. (2010). Estimation of the characteristics of a Lévy process observed at arbitrary frequency. Statistica Neerlandica, 64(3), 314–328.

    Article  MathSciNet  Google Scholar 

  43. Kawata, T. (1972). Fourier analysis in probability theory. Probability and mathematical statistics (Vol. 15). New York: Academic Press

    Google Scholar 

  44. Keller-Ressel, M., Schachermayer, W., & Teichmann, J. (2013). Regularity of affine processes on general state spaces. Electronic Journal of Probability, 18(43), 1–17.

    MathSciNet  Google Scholar 

  45. Kou, S. G. (2002). A jump-diffusion model for option pricing. Management Science, 48(8), 1086–1101.

    Article  MATH  Google Scholar 

  46. Liese, F. (1987). Estimates of Hellinger integrals of infinitely divisible distributions. Kybernetika (Prague), 23(3), 227–238.

    MATH  MathSciNet  Google Scholar 

  47. Massart, P., & Picard, J. (2007). Concentration inequalities and model selection (Vol. 1896). New York: Springer

    Google Scholar 

  48. Neumann, M. H., & Reiß, M. (2009). Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli, 15(1), 223–248.

    Article  MATH  MathSciNet  Google Scholar 

  49. Nickl, R., & Reiß, M. (2012). A donsker theorem for Lévy measures. Journal of Functional Analysis, 263, 3306–3332.

    Article  MATH  MathSciNet  Google Scholar 

  50. Reiß, M. (2013). Testing the characteristics of a Lévy process. Stochastic Processes and Their Applications, 123(7), 2808–2828.

    Article  MATH  MathSciNet  Google Scholar 

  51. Rubin, H., & Tucker, H. G. (1959). Estimating the parameters of a differential process. The Annals of Mathematical Statistics, 30, 641–658.

    Article  MATH  MathSciNet  Google Scholar 

  52. Sato, K. (1999). Lévy Processes and infinitely divisible distributions. Cambridge: Cambridge University Press

    MATH  Google Scholar 

  53. Söhl, J. (2010). Polar sets for anisotropic Gaussian random fields. Statistics & Probability Letters, 80(9), 840–847.

    Article  MATH  MathSciNet  Google Scholar 

  54. Söhl, J. (2012). Confidence sets in nonparametric calibration of exponential Lvy models. Finance and Stochastics, 1–33.

    Google Scholar 

  55. Söhl, J., & Trabs, M. (2012). Option calibration of exponential Lévy models: Confidence intervals and empirical results. arXiv preprint arXiv:1202.5983, to appear in Journal of Computational Finance

    Google Scholar 

  56. Steutel, F. W., & Van Harn, K. (2003). Infinite divisibility of probability distributions on the real line. Boca Raton: CRC Press

    Book  Google Scholar 

  57. Todorov, V., & Tauchen, G. (2012). Realized laplace transforms for pure-jump semimartingales. The Annals of Statistics, 40(2), 1233–1262.

    Article  MATH  MathSciNet  Google Scholar 

  58. Trabs, M. (2013). Information bounds for inverse problems with application to deconvolution and lévy models. arXiv preprint arXiv:1307.6610.

    Google Scholar 

  59. Trabs, M. (2014). Calibration of self-decomposable Lévy models. Bernoulli, 20(1), 109–140.

    Article  MATH  MathSciNet  Google Scholar 

  60. Tsybakov, A. B. (2009). Introduction to nonparametric estimation. Springer series in statistics. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats. New York: Springer

    Google Scholar 

  61. Ushakov, N.G. (1999). Selected topics in characteristic functions. Utrecht: VSP

    Book  MATH  Google Scholar 

  62. Woerner, J. H. (2003). Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models. Statistics & Decisions, 21(1), 47–68.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are indebted to Jakob Söhl, Mathias Trabs and the reviewers for careful proofreading, all remaining mistakes are our own.

Partial financial support by the Deutsche Forschungsgemeinschaft through SFB 649 “Economic Risk”, Research Unit 1749 “Structural Inference in Statistics” and through SFB 823 “Statistical modelling of nonlinear dynamic processes”, by Laboratory for Structural Methods of Data Analysis in Predictive Modeling, MIPT, RF government grant, ag. 11.G34.31.0073 and by the International Laboratory of Qualitative Finance, NRU HSE, RF government grant, ag. 14.A12.31.0007 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Belomestny .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belomestny, D., Reiß, M. (2015). Estimation and Calibration of Lévy Models via Fourier Methods. In: Lévy Matters IV. Lecture Notes in Mathematics(), vol 2128. Springer, Cham. https://doi.org/10.1007/978-3-319-12373-8_1

Download citation

Publish with us

Policies and ethics