Skip to main content

Bayesian D-Optimal Design Issues for Binomial Generalized Linear Model Screening Designs

  • Chapter
Frontiers in Statistical Quality Control 11

Abstract

Bayesian D-optimal designs have become computationally feasible to construct for simple prior distributions. Some parameter values give rise to models that have little utility to the practitioner for effect screening. For some generalized linear models such as the binomial, inclusion of such models can cause the optimal design to spread out toward the boundary of the design space. This can reduce the D-efficiency of the design over much of the parameter space and result in the Bayesian D-optimal criterion’s divergence from the concerns of a practitioner designing a screening experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson, A., Donev, A., & Tobias, R. (2007). Optimum experimental designs, with SAS. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2), 101–117.

    MATH  MathSciNet  Google Scholar 

  • Brown, L. D., Cai, T. T., & DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics, 30(1), 160–201.

    Article  MATH  MathSciNet  Google Scholar 

  • Brown, L. D., Cai, T. T., & DasGupta, A. (2003). Interval estimation in exponential families. Statistical Sinica, 13, 19–49.

    MATH  MathSciNet  Google Scholar 

  • Chaloner, K., & Larntz, K. (1989). Optimal bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference, 21(2), 191–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science, 10, 273–304.

    Article  MATH  MathSciNet  Google Scholar 

  • Clyde, M. (2001). Experimental design: a bayesian perspective. In N. J. Smelser, et al. (Eds.), International encyclopedia of the social and behavioral science (pp. 5075–5081). New York: Elsevier Science.

    Chapter  Google Scholar 

  • DasGupta, A. (1995). Review of optimal bayes designs. Technical Report #95-4, Department of Statistics, Purdue University.

    Google Scholar 

  • Davis, P., & Rabinowitz, P. (2007). Methods of numerical integration. New York: Dover.

    MATH  Google Scholar 

  • Dror, H. A., & Steinberg, D. M. (2006). Robust experimental design for multivariate generalized linear models. Technometrics, 48(4), 520–529.

    Article  MathSciNet  Google Scholar 

  • Faraway, J. J. (2005). Extending the linear model with R. Boca Raton: CRC Press.

    Google Scholar 

  • Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80(1), 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Firth, D., & Hinde, J. P. (1994). Invariant optimum design for nonlinear models. Unpublished.

    Google Scholar 

  • Gautschi, W. (2004). Orthogonal polynomials: computation and approximation. In G. H. Golub, C. Schwab, & E. SĂĽli (Eds.), Numerical mathematics and scientific computation. Oxford: Oxford University Press.

    Google Scholar 

  • Gotwalt, C. M., Jones, B. A., & Steinberg, D. M. (2009). Fast computation of designs robust to parameter uncertainty for nonlinear settings. Technometrics, 51(1), 88–95.

    Article  MathSciNet  Google Scholar 

  • JMP, Version 10 (1989–2013). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Khuri, A. I., Mukherjee, B., Sinha, B. K., & Ghosh, M. (2006). Design issues for generalized linear models: a review. Statistical Science, 21, 376–399.

    Article  MATH  MathSciNet  Google Scholar 

  • Lindley, D. V. (1972). Bayesian statistics - A review. Philadelphia: SIAM.

    Book  Google Scholar 

  • Lohr, S. L. (1995). Optimal Bayesian design of experiments for the one-way random effects model. Biometrika, 82, 175–186.

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Boca Raton: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Meyer, R. K., & Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics, 37(1), 60–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Monahan, J. (2001). Numerical methods in statistics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Myers, R., Montgomery, D., Vining, G., & Robinson, T. (2012). Generalized linear models: with applications in engineering and the sciences. New York: Wiley.

    Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sándor, Z., & Wedel, M. (2001). Designing conjoint choice experiments using managers’ prior beliefs. Journal of Marketing Research, 38(4), 430–444.

    Article  Google Scholar 

  • Woods, D. C., Lewis, S. M., Eccleston, J. A., & Russell, K. G. (2006). Designs for generalized linear models with several variables and model uncertainty. Technometrics, 48(2), 284–292.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christopher M. Gotwalt for his helpful correspondence in implementing the algorithm described in Gotwalt et al. (2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Hassler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hassler, E., Montgomery, D.C., Silvestrini, R.T. (2015). Bayesian D-Optimal Design Issues for Binomial Generalized Linear Model Screening Designs. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 11. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-12355-4_20

Download citation

Publish with us

Policies and ethics