Skip to main content

Representation of Fused Environment Data

  • Reference work entry
  • First Online:
Handbook of Driver Assistance Systems

Abstract

The requirements for a vehicle environment representation increase with the complexity of advanced driver assistance systems and automatic driving. The ability of the current traffic situation to interpret and predict is essential for being able to automatically derive reasonable decisions. As a consequence, a state of the art vehicle environment representation has to incorporate all relevant dynamic objects as well as static obstacles and context information. While dynamic objects are typically described by an object-based representation using state variables, static obstacles as well as free space area are commonly modeled using grid-based methods. This chapter gives an introduction into both of these concepts.

The chapter is organized as follows: First, the difference between function-oriented and modular fusion architectures is discussed. Afterwards, the joint integrated probabilistic data association (JIPDA) filter is introduced, which is one method to realize an object-based environment model incorporating both state and existence uncertainties. Further, the representation of static obstacles with occupancy grids is described in detail and the incorporation of measurements of different sensor types is illustrated. Finally, several hybrid environment representations are introduced and an example for a strictly modular architecture, the hierarchical modular environment perception, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baig Q, Perrollaz M, Nascimento J, Laugier C (2012) Using fast classification of static and dynamic environment for improving Bayesian occupancy filter (BOF) and tracking. In: International conference on control automation robotics vision (ICARCV), Guangzhou, China, pp 656–661

    Google Scholar 

  • Bar-Shalom Y, Fortmann T (1988) Tracking and data association. Academic, Boston

    MATH  Google Scholar 

  • Bar-Shalom Y, Tse E (1975) Tracking in a cluttered environment with probabilistic data association. Automatica 11:451–460

    Article  MATH  Google Scholar 

  • Bouzouraa M, Hofmann U (2010) Fusion of occupancy grid mapping and model based object tracking for driver assistance systems using laser and radar sensors. In: IEEE intelligent vehicles symposium (IV), San Diego, CA, USA, pp 294–300

    Google Scholar 

  • Coué C, Pradalier C, Laugier C, Fraichard T, Bessiere P (2006) Bayesian occupancy filtering for multitarget tracking: an automotive application. Int J Robot Res 25(1):19–30

    Article  Google Scholar 

  • Deusch H, Nuss D, Konrad P, Konrad M, Fritzsche M, Dietmayer K (2013) Improving localization in digital maps with grid maps. In: IEEE conference on intelligent transportation systems (ITSC), The Hague, Netherlands, pp1522–1527

    Google Scholar 

  • Effertz J (2008) Sensor architecture and data fusion for robotic perception in urban environments at the 2007 DARPA urban challenge. In: Conference on robot vision (RobVis). Springer, Berlin/Heidelberg, pp 275–290

    Chapter  Google Scholar 

  • Elfes A (1989) Using occupancy grids for mobile robot perception and navigation. IEEE Comput 22(6):46–57

    Article  Google Scholar 

  • Gindele T, Brechtel S, Schroder J, Dillmann R (2009) Bayesian occupancy grid filter for dynamic environments using prior map knowledge. In: IEEE intelligent vehicles symposium (IV), Xi’an, China, pp 669–676

    Google Scholar 

  • Julier S, Uhlmann J, Durrant-Whyte H (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control 45(3):477–482

    Article  MathSciNet  MATH  Google Scholar 

  • Kalman R (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82:35–45

    Article  Google Scholar 

  • Konrad M, Szczot M, Schüle F, Dietmayer K (2011) Generic grid mapping for road course estimation. In: IEEE intelligent vehicles symposium (IV), Baden-Baden, Germany, pp 851–856

    Google Scholar 

  • Konrad M, Nuss D, Dietmayer K (2012) Localization in digital maps for road course estimation using grid maps. In: IEEE intelligent vehicles symposium (IV), Alcalá de Henares, Spain, pp 87–92

    Google Scholar 

  • Levinson J, Thrun S (2010) Robust vehicle localization in urban environments using probabilistic maps. In: IEEE international conference on robotics and automation (ICRA), Anchorage, Alaska, pp 4372–4378

    Google Scholar 

  • Mahler R (2003) Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst 39(4):1152–1178

    Article  Google Scholar 

  • Mahler R (2007) Statistical multisource-multitarget information fusion. Artech House, Boston

    MATH  Google Scholar 

  • Mattern N, Schubert R, Wanielik G (2010) High-accurate vehicle localization using digital maps and coherency images. In: IEEE intelligent vehicles symposium (IV), San Diego, CA, USA, pp 462–469

    Google Scholar 

  • Mayr R (2001) Regelungsstrategien für die automatische Fahrzeugführung (Control strategies for automated vehicles). Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Munz M (2011) Generisches Sensorfusionsframework zur gleichzeitigen Zustands- und Existenzschätzung für die Fahrzeugumfelderfassung (Generic sensor fusion framework for simultaneous estimation of state and existence uncertainty in vehicle environment perception). PhD thesis, Ulm University

    Google Scholar 

  • Musicki D, Evans R (2004) Joint integrated probabilistic data association: JIPDA. IEEE Trans Aerosp Electron Syst 40(3):1093–1099

    Article  Google Scholar 

  • Nuss D, Reuter S, Konrad M, Munz M, Dietmayer K (2012) Using grid maps to reduce the number of false positive measurements in advanced driver assistance systems. In: IEEE conference on intelligent transportation systems (ITSC), Anchorage, Alaska, pp1509–1514

    Google Scholar 

  • Nuss D, Wilking B, Wiest J, Deusch H, Reuter S, Dietmayer K (2013) Decision-free true positive estimation with grid maps for multi-object tracking. In: IEEE conference on intelligent transportation systems (ITSC), The Hague, Netherlands, pp 28–34

    Google Scholar 

  • Nuss D, Stuebler M, Dietmayer K (2014) Consistent environmental modeling by use of occupancy grid maps, digital road maps, and multi-object tracking. In: IEEE intelligent vehicles symposium (IV), Dearborn, Michigan, USA

    Google Scholar 

  • Petrovskaya A, Perrollaz M, Oliveira L, Spinello L, Triebel R, Makris A, Yoder J, Laugier C, Nunes U, Bessiere P (2012) Awareness of road scene participants for autonomous driving. In: Eskandarian A (ed) Handbook of intelligent vehicles. Springer, London, pp 1383–1432

    Chapter  Google Scholar 

  • Reuter S, Wilking B, Wiest J, Munz M, Dietmayer K (2013a) Real-time multi-object tracking using random finite sets. IEEE Trans Aerosp Electron Syst 49(4):2666–2678

    Article  Google Scholar 

  • Reuter S, Meissner D, Wilking B, Dietmayer K (2013b) Cardinality balanced multi-target multi-Bernoulli filtering using adaptive birth distributions. In: Proceedings of the 16th international conference on information fusion, Istanbul, Turkey, pp1608–1615

    Google Scholar 

  • Reuter S, Vo B-T, Vo B-N, Dietmayer K (2014) The labeled multi-Bernoulli filter. IEEE Trans Signal Process 62:3246–3260

    Article  MathSciNet  Google Scholar 

  • Scaramuzza D, Fraundorfer F (2011) Visual odometry: part I – the first 30 years and fundamentals. IEEE Robot Autom Mag 18:4

    Article  Google Scholar 

  • Schindler A (2013) Vehicle self-localization with high-precision digital maps. In: Intelligent vehicles symposium workshops (IV Workshops), Gold Coast, Australia, pp 134–139

    Google Scholar 

  • Schmid M, Mählisch M, Dickmann J, Wünsche H (2010) Dynamic level of detail 3d occupancy grids for automotive use. In: IEEE intelligent vehicles symposium (IV), San Diego, CA, USA, pp 269–274

    Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Skog I, Handel P (2009) In-car positioning and navigation technologies: a survey. IEEE Trans Intell Transp Syst 10(1):4–21

    Article  Google Scholar 

  • Stiller C, Puente León F, Kruse M (2011) Information fusion for automotive applications – an overview. Inf Fusion 12(4):244–252

    Article  Google Scholar 

  • Thrun S (2005) Probabilistic robotics. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Vo B-T, Vo B-N (2013) Labeled random finite sets and multi-object conjugate priors. IEEE Trans Signal Process 61:3460–3475

    Article  MathSciNet  Google Scholar 

  • Vo B-T, Vo B-N, Cantoni A (2009) The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans Signal Process 57(2):409–423

    Article  MathSciNet  Google Scholar 

  • Wang C, Thorpe C, Thrun S, Hebert M, Durrant-Whyte H (2007) Simultaneous localization, mapping and moving object tracking. Int J Robot Res 26(9):889–916

    Article  Google Scholar 

  • Zou Y, Yeong K, Chin S, Xiao W (2000) Multi-ultrasonic sensor fusion for autonomous mobile robots. In: Sensor fusion: architectures, algorithms and applications IV; proceedings of SPIE 4051, Orlando, FL, USA, pp 314–321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus C. J. Dietmayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Dietmayer, K.C.J., Reuter, S., Nuss, D. (2016). Representation of Fused Environment Data. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds) Handbook of Driver Assistance Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-12352-3_25

Download citation

Publish with us

Policies and ethics