Skip to main content

Polynomial Time Recognition of Squares of Ptolemaic Graphs and 3-sun-free Split Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 8747))

Included in the following conference series:

Abstract

The square of a graph \(G\), denoted \(G^2\), is obtained from \(G\) by putting an edge between two distinct vertices whenever their distance is two. Then \(G\) is called a square root of \(G^2\). Deciding whether a given graph has a square root is known to be NP-complete, even if the root is required to be a chordal graph or even a split graph.

We present a polynomial time algorithm that decides whether a given graph has a ptolemaic square root. If such a root exists, our algorithm computes one with a minimum number of edges.

In the second part of our paper, we give a characterization of the graphs that admit a 3-sun-free split square root. This characterization yields a polynomial time algorithm to decide whether a given graph has such a root, and if so, to compute one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamszek, A., Adamszek, M.: Large-girth roots of graphs. SIAM J. Discrete Math. 24, 1501–1514 (2010)

    Article  MathSciNet  Google Scholar 

  2. Adamszek, A., Adamszek, M.: Uniqueness of graph square roots of girth six. Electron. J. Combin. 18, 139 (2011)

    MathSciNet  Google Scholar 

  3. Bandelt, H.-J., Henkmann, A., Nicolai, F.: Powers of distance-hereditary graphs. Disc. Math. 145, 37–60 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory (Ser. B) 41, 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  6. Chang, M.-S., Ko, M.-T., Lu, H.-I.: Linear-time algorithms for tree root problems. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 411–422. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cochefert, M., Couturier, J.-F., Golovach, P.A., Kratsch, D., Paulusma, D.: Sparse square roots. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 177–188. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Dalhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combin. 24B, 23–30 (1987)

    Google Scholar 

  9. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity aspects of the helly property: graphs and hypergraphs. Electron. J. Combin. 17, 1–53 (2009)

    Article  Google Scholar 

  10. Farzad, B., Karimi, M.: Square-root finding problem in graphs, a complete dichotomy theorem, arXiv:1210.7684 (2012)

  11. Farzad, B., Lau, L.C., Le, V.B., Tuy, N.N.: Complexity of finding graph roots with girth conditions. Algorithmica 62, 38–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hammer, P.L., Maffray, F.: Completely separable graphs. Disc. App. Math. 27, 85–99 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theory 5, 323–331 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lau, L.C.: Bipartite roots of graphs. ACM Trans. Algorithms 2, 178–208 (2006)

    Article  MathSciNet  Google Scholar 

  15. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal graphs. SIAM J. Discrete Math. 18, 83–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Le, V.B., Nguyen, N.T.: Hardness results and efficient algorithms for graph powers. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 238–249. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Le, V.B., Tuy, N.N.: The square of a block graph. Disc. Math. 310, 734–741 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le, V.B., Tuy, N.N.: A good characterization of squares of strongly chordal split graphs. Inf. Process. Lett. 310, 120–123 (2011)

    Article  MathSciNet  Google Scholar 

  19. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16, 854–879 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milanič, M., Schaudt, O.: Computing square roots of trivially perfect and threshold graphs. Disc. App. Math. 161, 1538–1545 (2013)

    Article  MATH  Google Scholar 

  21. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Disc. App. Math. 54, 81–88 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prisner, E.: Hereditary clique-Helly graphs. J. Comb. Math. Comb. Comput. 14, 216–220 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars Combin. 34, 147–160 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Bang Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Le, V.B., Oversberg, A., Schaudt, O. (2014). Polynomial Time Recognition of Squares of Ptolemaic Graphs and 3-sun-free Split Graphs. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics