Skip to main content

Induced Disjoint Paths in Circular-Arc Graphs in Linear Time

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 8747))

Included in the following conference series:

Abstract

The Induced Disjoint Paths problem is to test whether a graph \(G\) with \(k\) distinct pairs of vertices \((s_{i},t_{i})\) contains paths \(P_{1},\ldots ,P_{k}\) such that \(P_{i}\) connects \(s_{i}\) and \(t_{i}\) for \(i=1,\ldots ,k\), and \(P_{i}\) and \(P_{j}\) have neither common vertices nor adjacent vertices (except perhaps their ends) for \(1 \le i < j \le k\). We present a linear-time algorithm that solves Induced Disjoint Paths and finds the corresponding paths (if they exist) on circular-arc graphs. For interval graphs, we exhibit a linear-time algorithm for the generalization of Induced Disjoint Paths where the pairs \((s_{i},t_{i})\) are not necessarily distinct.

This work is supported by EPSRC (EP/K025090/1) and Royal Society (JP100692). The research leading to these results has also received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 267959.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due the space restrictions some proofs in this section and in the next ones are omitted or sketched. The full paper, with complete proofs, can be found in [10].

References

  1. Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kaminski, M., Paulusma, D.: Detecting fixed patterns in chordal graphs in polynomial time. Algorithmica 69, 501–521 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90, 85–92 (1991). See also Corrigendum, Discrete Mathematics 102 (1992), 109

    Article  MathSciNet  MATH  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diestel, R.: Graph Theory. Springer, New York (2005). Electronic Edition

    MATH  Google Scholar 

  5. Fellows, M.R.: The Robertson-Seymour theorems: a survey of applications. In: Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference, Contemporary Mathematics, vol. 89, pp. 1–18. American Mathematical Society, Providence (1989)

    Google Scholar 

  6. Fiala, J., Kamiński, M., Lidicky, B., Paulusma, D.: The \(k\)-in-a-path problem for claw-free graphs. Algorithmica 62, 499–519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO. In: Proceedings of SODA 2014, pp. 582–593. SIAM (2014)

    Google Scholar 

  8. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-Free graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 153–164. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-free graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 515–526. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in circular-arc graphs in linear time. CoRR abs/1403.0789 (2014)

    Google Scholar 

  11. Golumbic, M.C., Hammer, P.L.: Stability in circular arc graphs. J. Algorithms 9, 56–63 (1988)

    Article  MathSciNet  Google Scholar 

  12. Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs. Theor. Comput. Sci. 359, 188–199 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234, 59–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heggernes, P., van ’t Hof, P., van Leeuwen, E.J., Saei, R.: Finding disjoint paths in split graphs. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 315–326. Springer, Heidelberg (2014)

    Google Scholar 

  15. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Kobayashi, Y., Kawarabayashi, K.: A linear time algorithm for the induced disjoint paths problem in planar graphs. J. Comput. Syst. Sci. 78, 670–680 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs SIAM. J. Comput. 18, 68–81 (1989)

    MATH  Google Scholar 

  18. Kramer, M., van Leeuwen, J.: The complexity of wirerouting and finding minimum area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2, 129–146 (1984)

    Google Scholar 

  19. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. SIGDA Newsl. 5, 31–36 (1975)

    Article  Google Scholar 

  20. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic J. Comput. 3, 256–270 (1996)

    MathSciNet  Google Scholar 

  22. Reed, B.A.: Tree width and tangles: A new connectivity measure and some applications. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 87–162. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  23. Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in planar graphs in linear time. In: Robertson, N., Seymour, P.D. (eds.) Contemporary Mathematics, vol. 147, pp. 295–301. American Mathematical Society, Robertson (1993)

    Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63, 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr A. Golovach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Golovach, P.A., Paulusma, D., van Leeuwen, E.J. (2014). Induced Disjoint Paths in Circular-Arc Graphs in Linear Time. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics