Combinatorial Dialogue Authoring

  • James Owen Ryan
  • Casey Barackman
  • Nicholas Kontje
  • Taylor Owen-Milner
  • Marilyn A. Walker
  • Michael Mateas
  • Noah Wardrip-Fruin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8832)


We present an annotation scheme and combinatorial authoring procedure by which a small base of annotated human-authored dialogue exchanges can be exploited to automatically generate many new exchanges. The combinatorial procedure builds recombinant exchanges by reasoning about individual lines of dialogue in terms of their mark-up, which is attributed during annotation and captures what a line expresses about the story world and what it specifies about lines that may precede or succeed it in new contexts. From a human evaluation task, we find that while our computer-authored recombinant dialogue exchanges are not rated as highly as human-authored ones, they still rate quite well and show more than double the strength of the latter in expressing game state. We envision immediate practical use of our method in a collaborative authoring scheme in which, given a small database of annotated dialogue, the computer instantly generates many full exchanges that the human author then polishes, if necessary. We believe that combinatorial dialogue authoring represents an immediate and huge reduction in authorial burden relative to current authoring practice.


dialogue natural language generation authorial burden 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artstein, R., Gandhe, S., Rushforth, M., Traum, D.R.: Viability of a Simple Dialogue Act Scheme for a Tactical Questioning Dialogue System. In: Proceedings of the 13th Workshop on the Semantics and Pragmatics of Dialogue, pp. 43–50 (2009)Google Scholar
  2. 2.
    Carpenter, R.: Cleverbot (2011),
  3. 3.
    Crawford, C.: Deikto: An Application of the Weak Sapir-Whorf Hypothesis. In: Proceedings of the Hypertext 2008 Workshop on Creating Out of the Machine: Hypertext, Hypermedia, and Web Artists Explore the Craft (2008)Google Scholar
  4. 4.
    Electronic Arts.: The Sims 3 (2009)Google Scholar
  5. 5.
    Elson, D.K., McKeown, K.R.: A Platform for Symbolically Encoding Human Narratives. In: Proceedings of the AAAI Fall Symposium on Intelligent Narrative Technologies (2007)Google Scholar
  6. 6.
    Evans, R., Short, E.: Versu—A Simulationist Storytelling System. IEEE Transactions on Computational Intelligence and AI in Games (2014)Google Scholar
  7. 7.
    Gaffney, C., Dagger, D., Wade, V.: Supporting Personalised Simulations: A Pedagogic Support Framework for Modelling and Composing Adaptive Dialectic Simulations. In: Proceedings of the 2007 Summer Computer Simulation Conference, pp. 1175–1182 (2007)Google Scholar
  8. 8.
    Jurafsky, D., Shriberg, E., Biasca, D.: Switchboard SWBD-DAMSL Shallow-Discourse-Function Annotation Coders Manual. In: Institute of Cognitive Science Technical Report, pp. 97–102 (1997)Google Scholar
  9. 9.
    Mateas, M.: The Authoring Bottleneck in Creating AI-Based Interactive Stories. In: Proceedings of the AAAI Fall Symposium on Intelligent Narrative Technologies (2007)Google Scholar
  10. 10.
    Mateas, M., Stern, A.: Façade: An Experiment in Building a fully-Realized Interactive Drama. In: Proceedings of the Game Developers Conference, Game Design Track (2003)Google Scholar
  11. 11.
    McCoy, J., Treanor, M., Samuel, B., Wardrip-Fruin, N., Mateas, M.: Comme il Faut: A System for Authoring Playable Social Models. In: Proceedings of the Seventh Artificial Intelligence for Interactive Digital Entertainment Conference (2011b)Google Scholar
  12. 12.
    McGreal, R.: Learning Objects: A Practical Definition. International Journal of Instructional Technology and Distance Learning (2004)Google Scholar
  13. 13.
    Rishes, E., Lukin, S.M., Elson, D.K., Walker, M.A.: Generating Different Story Tellings from Semantic Representations of Narrative. In: Koenitz, H., Sezen, T.I., Ferri, G., Haahr, M., Sezen, D., C̨atak, G. (eds.) ICIDS 2013. LNCS, vol. 8230, pp. 192–204. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Ryan, J.O., Walker, M.A., Wardrip-Fruin, N.: Toward Recombinant Dialogue in Interactive Narrative. In: Proceedings of 7th Workshop on Intelligent Narrative Technologies (2014)Google Scholar
  15. 15.
    Shibata, M., Nishiguchi, T., Tomiura, Y.: Dialog System for Open-Ended Conversation Using Web Documents. In: Informatica (2009)Google Scholar
  16. 16.
    Short, E., Evans, R.: Versu: Conversation Implementation (2013),
  17. 17.
    Swanson, R., Gordon, A.S.: Say Anything: A Massively Collaborative Open Domain Story Writing Companion. In: Spierling, U., Szilas, N. (eds.) ICIDS 2008. LNCS, vol. 5334, pp. 32–40. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Walker, M.A., Grant, R., Sawyer, J., Lin, G.I., Wardrip-Fruin, N., Buell, M.: Perceived or Not Perceived: Film Character Models for Expressive NLG. In: André, E. (ed.) ICIDS 2011. LNCS, vol. 7069, pp. 109–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Wardrip-Fruin, N.: Expressive Processing: Digital Fictions, Computer Games, and Software Studies. MIT Press (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • James Owen Ryan
    • 1
    • 2
  • Casey Barackman
    • 3
  • Nicholas Kontje
    • 3
  • Taylor Owen-Milner
    • 4
  • Marilyn A. Walker
    • 1
  • Michael Mateas
    • 2
  • Noah Wardrip-Fruin
    • 2
  1. 1.Natural Language and Dialogue Systems LabUniversity of CaliforniaSanta CruzUSA
  2. 2.Expressive Intelligence StudioUniversity of CaliforniaSanta CruzUSA
  3. 3.Department of LinguisticsUniversity of CaliforniaSanta CruzUSA
  4. 4.Department of Computer ScienceUniversity of CaliforniaSanta CruzUSA

Personalised recommendations