Abstract
Topological invariants of interval maps are preserved by conjugacy. We investigate some features of the conjugacy equations associated to piecewise expanding maps. For special cases, it is possible to construct explicitly a conjugacy function in terms of the a-base expansion of numbers through a solution of the corresponding functional equations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Billingsley, P.: The singular function of bold play. Am. Sci. 71, 4 (1983)
Block, L. S., Coppel, W. A.: Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, Heidelberg (1992)
Blokh, A., Coven, E., Misiurewicz, M., Nitecki, Z.: Roots of continuous piecewise monotone maps of an interval. Acta Math. Univ. Comenian. LX 1, 3–10 (1991)
Ciepliński, K., Zdun, M.: On uniqueness of conjugacy of continuous and piecewise monotone functions. Fixed Point Theory A 2009, 23041–4 (2009)
de Rham, G.: Sur quelques courbes définies par des équations fonctionnelles. Rend. Sem. Math. Torino 16, 101–113 (1956)
Dubins, L. E., Savage, L. J.: Optimal gambling systems. PNAS 46, 1597–1598 (1960)
Feller, W.: An Introduction to Probability Theory and Its Applications, I, 3rd edn., John Wiley & Sons, Inc., New York (1968)
Girgensohn, R.: Functional equations and nowhere differentiable functions. Aequationes Math. 48, 243–256 (1993)
Kuczma, M.: Functional Equations in a Single Variable. PWN Warszawa (1968)
Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia Math. Appl., Cambridge University Press, New York, Melbourne (1990)
Laitochová, J.: On conjugacy equations for iterative functional equations. Int. J. Pure Appl. Math. 26(3), 421–430 (2006)
May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)
Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer-Verlag, Berlin, Heidelberg (1993)
Shi, Y.-G.: Non-monotonic solutions and continuously differentiable solutions of conjugacy equations. Appl. Math. Comput. 215, 2399–2404 (2009)
Turbin, A. F., Prats’ovytyi, M. V.: Fractal Sets, Functions and Distributions. Naukova Dumka, arXiv:math/0308007v2 (1992)
Prats’ovytyi, M. V.: Fractal approach to investigations of singular probability distributions, Kiyv, Drahomanov National Pedagogical Univ. (1998)
Prats’ovytyi, M. V., Kalashnikov, A. V.: Self-affine singular and monotone functions related to the Q-representation of real numbers. Ukr. Math. J. 65, 448–462 (2013)
Zdun, M.: On conjugacy of some systems of functions. Aequationes Math. 61, 239–254 (2001)
Acknowledgements
The first author acknowledges support by Fundação para a Ciência e Tecnologia, grant SFRH/BD/77623/2011. The second author acknowledges partial support by Fundação para a Ciência e Tecnologia, PEst-OE/MAT/UI0209/2013. The authors are also indebted to the anonymous referees for their sharp suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Serpa, C., Buescu, J. (2015). Piecewise Expanding Maps and Conjugacy Equations. In: López-Ruiz, R., Fournier-Prunaret, D., Nishio, Y., Grácio, C. (eds) Nonlinear Maps and their Applications. Springer Proceedings in Mathematics & Statistics, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-12328-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-12328-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12327-1
Online ISBN: 978-3-319-12328-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)