Skip to main content

Piecewise Expanding Maps and Conjugacy Equations

  • Conference paper
  • First Online:
Nonlinear Maps and their Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 112))

Abstract

Topological invariants of interval maps are preserved by conjugacy. We investigate some features of the conjugacy equations associated to piecewise expanding maps. For special cases, it is possible to construct explicitly a conjugacy function in terms of the a-base expansion of numbers through a solution of the corresponding functional equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Billingsley, P.: The singular function of bold play. Am. Sci. 71, 4 (1983)

    Google Scholar 

  2. Block, L. S., Coppel, W. A.: Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, Heidelberg (1992)

    Google Scholar 

  3. Blokh, A., Coven, E., Misiurewicz, M., Nitecki, Z.: Roots of continuous piecewise monotone maps of an interval. Acta Math. Univ. Comenian. LX 1, 3–10 (1991)

    MathSciNet  Google Scholar 

  4. Ciepliński, K., Zdun, M.: On uniqueness of conjugacy of continuous and piecewise monotone functions. Fixed Point Theory A 2009, 23041–4 (2009)

    Google Scholar 

  5. de Rham, G.: Sur quelques courbes définies par des équations fonctionnelles. Rend. Sem. Math. Torino 16, 101–113 (1956)

    Google Scholar 

  6. Dubins, L. E., Savage, L. J.: Optimal gambling systems. PNAS 46, 1597–1598 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and Its Applications, I, 3rd edn., John Wiley & Sons, Inc., New York (1968)

    Google Scholar 

  8. Girgensohn, R.: Functional equations and nowhere differentiable functions. Aequationes Math. 48, 243–256 (1993)

    MathSciNet  Google Scholar 

  9. Kuczma, M.: Functional Equations in a Single Variable. PWN Warszawa (1968)

    Google Scholar 

  10. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia Math. Appl., Cambridge University Press, New York, Melbourne (1990)

    Google Scholar 

  11. Laitochová, J.: On conjugacy equations for iterative functional equations. Int. J. Pure Appl. Math. 26(3), 421–430 (2006)

    Google Scholar 

  12. May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  13. Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer-Verlag, Berlin, Heidelberg (1993)

    Google Scholar 

  14. Shi, Y.-G.: Non-monotonic solutions and continuously differentiable solutions of conjugacy equations. Appl. Math. Comput. 215, 2399–2404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Turbin, A. F., Prats’ovytyi, M. V.: Fractal Sets, Functions and Distributions. Naukova Dumka, arXiv:math/0308007v2 (1992)

    Google Scholar 

  16. Prats’ovytyi, M. V.: Fractal approach to investigations of singular probability distributions, Kiyv, Drahomanov National Pedagogical Univ. (1998)

    Google Scholar 

  17. Prats’ovytyi, M. V., Kalashnikov, A. V.: Self-affine singular and monotone functions related to the Q-representation of real numbers. Ukr. Math. J. 65, 448–462 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zdun, M.: On conjugacy of some systems of functions. Aequationes Math. 61, 239–254 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support by Fundação para a Ciência e Tecnologia, grant SFRH/BD/77623/2011. The second author acknowledges partial support by Fundação para a Ciência e Tecnologia, PEst-OE/MAT/UI0209/2013. The authors are also indebted to the anonymous referees for their sharp suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Serpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Serpa, C., Buescu, J. (2015). Piecewise Expanding Maps and Conjugacy Equations. In: López-Ruiz, R., Fournier-Prunaret, D., Nishio, Y., Grácio, C. (eds) Nonlinear Maps and their Applications. Springer Proceedings in Mathematics & Statistics, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-12328-8_11

Download citation

Publish with us

Policies and ethics