Advertisement

Piecewise Expanding Maps and Conjugacy Equations

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 112)

Abstract

Topological invariants of interval maps are preserved by conjugacy. We investigate some features of the conjugacy equations associated to piecewise expanding maps. For special cases, it is possible to construct explicitly a conjugacy function in terms of the a-base expansion of numbers through a solution of the corresponding functional equations.

Keywords

Explicit Solution Gambler Playing Piecewise Continuous Function Expansivity Condition Conjugacy Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The first author acknowledges support by Fundação para a Ciência e Tecnologia, grant SFRH/BD/77623/2011. The second author acknowledges partial support by Fundação para a Ciência e Tecnologia, PEst-OE/MAT/UI0209/2013. The authors are also indebted to the anonymous referees for their sharp suggestions.

References

  1. 1.
    Billingsley, P.: The singular function of bold play. Am. Sci. 71, 4 (1983)Google Scholar
  2. 2.
    Block, L. S., Coppel, W. A.: Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, Heidelberg (1992)Google Scholar
  3. 3.
    Blokh, A., Coven, E., Misiurewicz, M., Nitecki, Z.: Roots of continuous piecewise monotone maps of an interval. Acta Math. Univ. Comenian. LX 1, 3–10 (1991)MathSciNetGoogle Scholar
  4. 4.
    Ciepliński, K., Zdun, M.: On uniqueness of conjugacy of continuous and piecewise monotone functions. Fixed Point Theory A 2009, 23041–4 (2009)Google Scholar
  5. 5.
    de Rham, G.: Sur quelques courbes définies par des équations fonctionnelles. Rend. Sem. Math. Torino 16, 101–113 (1956)Google Scholar
  6. 6.
    Dubins, L. E., Savage, L. J.: Optimal gambling systems. PNAS 46, 1597–1598 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Feller, W.: An Introduction to Probability Theory and Its Applications, I, 3rd edn., John Wiley & Sons, Inc., New York (1968)Google Scholar
  8. 8.
    Girgensohn, R.: Functional equations and nowhere differentiable functions. Aequationes Math. 48, 243–256 (1993)MathSciNetGoogle Scholar
  9. 9.
    Kuczma, M.: Functional Equations in a Single Variable. PWN Warszawa (1968)Google Scholar
  10. 10.
    Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia Math. Appl., Cambridge University Press, New York, Melbourne (1990)Google Scholar
  11. 11.
    Laitochová, J.: On conjugacy equations for iterative functional equations. Int. J. Pure Appl. Math. 26(3), 421–430 (2006)Google Scholar
  12. 12.
    May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)CrossRefGoogle Scholar
  13. 13.
    Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer-Verlag, Berlin, Heidelberg (1993)Google Scholar
  14. 14.
    Shi, Y.-G.: Non-monotonic solutions and continuously differentiable solutions of conjugacy equations. Appl. Math. Comput. 215, 2399–2404 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Turbin, A. F., Prats’ovytyi, M. V.: Fractal Sets, Functions and Distributions. Naukova Dumka, arXiv:math/0308007v2 (1992)Google Scholar
  16. 16.
    Prats’ovytyi, M. V.: Fractal approach to investigations of singular probability distributions, Kiyv, Drahomanov National Pedagogical Univ. (1998)Google Scholar
  17. 17.
    Prats’ovytyi, M. V., Kalashnikov, A. V.: Self-affine singular and monotone functions related to the Q-representation of real numbers. Ukr. Math. J. 65, 448–462 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zdun, M.: On conjugacy of some systems of functions. Aequationes Math. 61, 239–254 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centro de Matemática e Aplicações Fundamentais, Departamento de Matemática, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations