Skip to main content

A Construction for Perfect Periodic Autocorrelation Sequences

  • Conference paper
  • First Online:
Sequences and Their Applications - SETA 2014 (SETA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8865))

Included in the following conference series:


We introduce a construction for perfect periodic autocorrelation sequences over roots of unity. The sequences share similarities to the perfect periodic sequence constructions of Liu, Frank, and Milewski.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inform. Theor. 26(3), 350–354 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chu, D.C.: Polyphase codes with good periodic correlation properties. IEEE Trans. Inf. theor. 18(4), 531–532 (1972)

    Article  MATH  Google Scholar 

  3. Farnett, E.C., et al.: Pulse compression radar. In: Skolnik, M. (ed.) Radar Handbook, 2nd edn. McGraw-Hill, New York (1990)

    Google Scholar 

  4. Frank, R.L., Zadoff, S.A., Heimiller, R.: Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inf. Theor. 8(6), 381–382 (1961)

    Article  Google Scholar 

  5. Gabidulin, E.M.: Non-binary sequences with perfect periodic auto-correlation and with optimal periodic cross-correlation. In: Proceedings of the IEEE International Symposium on Informational Theory, San Antonio, USA, pp. 412, January 1993

    Google Scholar 

  6. Heimiller, R.C.: Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inf. Theor. 7(4), 254–257 (1961)

    Article  Google Scholar 

  7. Ipatov, V.P.: Ternary sequences with ideal autocorrelation properties. Radio Eng. Electron. Phys. 24, 75–79 (1979)

    Google Scholar 

  8. Ipatov, V.P.: Spread Spectrum and CDMA: Principles and Applications. Wiley, Chichester (2005)

    Book  Google Scholar 

  9. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized Bent functions and their properties. J. Combinat. Theor. Ser. A 40(1), 90–107 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lewis, B.L., Kretschmer, F.F.: Linear frequency modulation derived polyphase pulse compression. IEEE Trans. AES 18(5), 637–641 (1982)

    Google Scholar 

  11. Liu, Y., Fan, P.: Modified Chu sequences with smaller alphabet size. Electron. Lett. 40(10), 598–599 (2004)

    Article  Google Scholar 

  12. Milewski, A.: Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM J. Res. Dev. 27(5), 426–431 (1983)

    Article  Google Scholar 

  13. Mow, W.H.: A study of correlation of sequences. Ph.D. Department of Information Engineering, The Chinese University of Hong Kong (1993)

    Google Scholar 

  14. Simon, M.K.: Spread Spectrum Communications, vol. 1. Computer Science Press, The University of Michigan (1985)

    Google Scholar 

  15. Tirkel, A.Z., Rankin, G.A., Van Schyndel, R.M., Ho, W.J., Mee, N.R.A., Osborne, C.F.: Electronic water mark. In: DICTA 93, Macquarie University, pp. 666–673 (1993)

    Google Scholar 

  16. Van Schyndel, R.G.: Using phase-modulated probe signals to recover delays from higher order non-linear systems. In: Biomedical Research in 2001 IEEE Engineering in Medicine and Biology, pp. 94–97 (2001)

    Google Scholar 

  17. Xu, L.: Phase coded waveform design for sonar sensor network. In: 2011 6th International Conference on Communications and Networking in China (CHINACOM) ICST, pp. 251–256, August 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andrew Z. Tirkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Blake, S.T., Tirkel, A.Z. (2014). A Construction for Perfect Periodic Autocorrelation Sequences. In: Schmidt, KU., Winterhof, A. (eds) Sequences and Their Applications - SETA 2014. SETA 2014. Lecture Notes in Computer Science(), vol 8865. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12324-0

  • Online ISBN: 978-3-319-12325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics