Advertisement

Advanced Asymptotic Methods

  • Christian Kuehn
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 191)

Abstract

Asymptotic analysis is a key ingredient in capturing multiscale dynamics. In this chapter, a collection of asymptotic and perturbation methods is presented. The focus is on the basic principles of methods and key examples to understand their application. All methods can be applied in many other circumstances, and although the algebraic manipulations change, the principles of the methods tend to carry over.

Bibliography

  1. [AAM98]
    J. Awrejcewicz, I.V. Andrianov, and L.I. Manevitch. Asymptotic Approaches in Nonlinear Dynamics. Springer, 1998.Google Scholar
  2. [AAN11]
    A. Arnold, N.B. Abdallah and C. Negulescu. WKB-based schemes for the oscillatory 1D Schrödinger equation in the semi-classical limit. SIAM J. Numer. Anal., 49(4):1436–1460, 2011.zbMATHMathSciNetGoogle Scholar
  3. [ABC+06]
    N.D. Alikakos, P.W. Bates, J.W. Cahn, P.C. Fife, G. Fusco, and G.B. Tanoglu. Analysis of a corner layer problem in anisotropic interfaces. Discr. Cont. Dyn. Syst. B, 6(2):237–266, 2006.zbMATHMathSciNetGoogle Scholar
  4. [ACM08a]
    N. Ben Abdallah, F. Castella, and F. Méhats. Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity. J. Differential Equations, 245(1): 154–200, 2008.zbMATHMathSciNetGoogle Scholar
  5. [AFFS06]
    N.D. Alikakos, P.C. Fife, G. Fusco, and C. Sourdis. Analysis of the heteroclinic connection in a singularly perturbed system arising from the study of crystalline grain boundaries. Interfaces & Free Boundaries, 8(2):159–183, 2006.zbMATHMathSciNetGoogle Scholar
  6. [AIT09]
    D. Arotaritei, M. Ilea, and M. Turnea. Boundary functions method from differential equations systems with small parameter in enzyme kinetics. Int. J. Math. Model. Simul. Appl., 2:77–91, 2009.zbMATHMathSciNetGoogle Scholar
  7. [ALT07]
    Z. Artstein, J. Linshiz, and E.S. Titi. Young measure approach to computing slowly advancing fast oscillations. Multiscale Model. Simul., 243:1085–1097, 2007.MathSciNetGoogle Scholar
  8. [Ami84]
    D.J. Amit. Field theory, the renormalization group, and critical phenomena. World Scientific, 1984.Google Scholar
  9. [AO70]
    R.C. Ackerberg and R.E. O’Malley. Boundary layer problems exhibiting resonance. Stud. Appl. Math., 49:277–295, 1970.zbMATHMathSciNetGoogle Scholar
  10. [ARLS11]
    M. Assaf, E. Roberts, and Z. Luthey-Schulten. Determining the stability of genetic switches: explicitly accounting for mRNA noise. Phys. Rev. Lett., 106:248102, 2011.Google Scholar
  11. [Art07]
    Z. Artstein. Averaging of time-varying differential equations revisited. J. Differen. Equat., 243:146–167, 2007.zbMATHMathSciNetGoogle Scholar
  12. [Art10]
    Z. Artstein. Averaging of ordinary differential equations with slowly varying averages. Discr. Cont. Dyn. Syst. B, 14(2):353–360, 2010.zbMATHMathSciNetGoogle Scholar
  13. [ASS13]
    P. Antonelli, J.-C. Saut, and C. Sparber. Well-posedness and averaging of NLS with time-periodic dispersion management. Adv. Differential Equations, 18(1):49–68, 2013.zbMATHMathSciNetGoogle Scholar
  14. [Att11]
    B.S. Attili. Numerical treatment of singularly perturbed two point boundary value problems exhibiting boundary layers. Commun. Nonlinear Sci. Numer. Simulat., 16:3504–3511, 2011.zbMATHMathSciNetGoogle Scholar
  15. [Bak86]
    V.I. Bakhtin. Averaging in multifrequency systems. Func. Anal. Appl., 20(2):83–88, 1986.zbMATHMathSciNetGoogle Scholar
  16. [BDFN92]
    J.J. Binney, N.J. Dowrick, A.J. Fisher, and M. Newman. The Theory of Critical Phenomena: An Introduction to the Renormalization Group. OUP, 1992.Google Scholar
  17. [BFSW98a]
    E. Benoît, A. Fruchard, R. Schäfke, and G. Wallet. Overstability: towards a global study. C. R. Acad. Sci. Paris Sér. I Math., 326:873–878, 1998.zbMATHGoogle Scholar
  18. [BFSW98b]
    E. Benoît, A. Fruchard, R. Schäfke, and G. Wallet. Solutions surstables des équations différentielles complexes lentes-rapides à point tournant. Ann. Fac. Sci. Toulouse Math., 6(7):627–658, 1998.Google Scholar
  19. [BG95]
    G. Benfatto and G. Gallavotti. Renormalization Group. Princeton University Press, 1995.Google Scholar
  20. [BG06]
    N. Berglund and B. Gentz. Noise-Induced Phenomena in Slow–Fast Dynamical Systems. Springer, 2006.Google Scholar
  21. [BH88]
    F.J. Bourland and R. Haberman. The modulated phase shift for strongly nonlinear, slowly varying, and weakly damped oscillators. SIAM J. Appl. Math., 48(4):737–748, 1988.zbMATHMathSciNetGoogle Scholar
  22. [BH90]
    M.V. Berry and C.J. Howls. Hyperasymptotics. Proc. R. Soc. A, 430(1880):653–668, 1990.zbMATHMathSciNetGoogle Scholar
  23. [BHF02]
    E. Benoît, A. El Hamidi, and A. Fruchard. On combined asymptotic expansions in singular perturbations. Electron. J. Differential Equat., 2002(51):1–27, 2002.Google Scholar
  24. [BHK91]
    F.J. Bourland, R. Haberman, and W.L. Kath. Averaging methods for the phase shift of arbitrarily perturbed strongly nonlinear oscillators with an application to capture. SIAM J. Appl. Math., 51(4):1150–1167, 1991.zbMATHMathSciNetGoogle Scholar
  25. [BJ12]
    C.M. Bender and H.F. Jones. WKB analysis of PT-symmetric Sturm–Liouville problems. J. Phys. A, 45(44):444004, 2012.Google Scholar
  26. [BK08b]
    V.I. Bakhtin and Yu. Kifer. Nonconvergence examples in averaging. Contemp. Math., 469:1–17, 2008.MathSciNetGoogle Scholar
  27. [BM61]
    N.N. Bogoliubov and I.A. Mitropol’skii. Asymptotic methods in the theory of non-linear oscillations. Gordon Breach Science Pub., 1961.Google Scholar
  28. [BM81]
    D. Bainov and S. Milusheva. Justification of the averaging method for a system of differential equations with fast and slow variables and with impulses. Z. Angew. Math. Phys., 32(3):237–254, 1981.zbMATHMathSciNetGoogle Scholar
  29. [BMF02]
    W. Balser and J. Mozo-Fernandez. Multisummability of formal solutions of singular perturbation problems. J. Differential Equat., 183:526–545, 2002.zbMATHMathSciNetGoogle Scholar
  30. [BNR82]
    H.L. Berk, W.M. Nevins, and K.V. Roberts. New Stokes line in WKB theory. J. Math. Phys., 23(6): 988–1002, 1982.zbMATHMathSciNetGoogle Scholar
  31. [BO99]
    C.M. Bender and S.A. Orszag. Asymptotic Methods and Perturbation Theory. Springer, 1999.Google Scholar
  32. [Bob07]
    R.V. Bobryk. Closure method and asymptotic expansions for linear stochastic systems. J. Math. Anal. Appl., 329(1):703–711, 2007.zbMATHMathSciNetGoogle Scholar
  33. [Bos96]
    D.L. Bosley. An improved matching procedure for transient resonance layers in weakly nonlinear oscillatory systems. SIAM J. Appl. Math., 56(2):420–445, 1996.zbMATHMathSciNetGoogle Scholar
  34. [Boy99]
    J.P. Boyd. The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series. Acta Appl. Math., 56:1–98, 1999.zbMATHMathSciNetGoogle Scholar
  35. [Boy05]
    J.P. Boyd. Hyperasymptotics and the linear boundary layer problem: Why asymptotic series diverge. SIAM Rev., 47:553–575, 2005.zbMATHMathSciNetGoogle Scholar
  36. [Bra03]
    P.A. Braza. The bifurcation structure of the Holling–Tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math., 63(3):889–904, 2003.zbMATHMathSciNetGoogle Scholar
  37. [Bre51]
    H. Bremmer. The WKB approximation as the first term of a geometric-optical series. Comm. Pure. Appl. Math., 4(1):105–115, 1951.zbMATHMathSciNetGoogle Scholar
  38. [Bri26]
    L. Brillouin. La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives. Comptes Rendus de l’Academie des Sciences, 183:24–26, 1926.Google Scholar
  39. [Bri09]
    I. Bright. Tight estimates for general averaging applied to almost-periodic differential equations. J. Differential Equat., 246(7):2922–2937, 2009.zbMATHMathSciNetGoogle Scholar
  40. [Bri11]
    I. Bright. Moving averages of ordinary differential equations via convolution. J. Differential Equat., 250(3):1267–1284, 2011.zbMATHMathSciNetGoogle Scholar
  41. [Bru70]
    N.G. De Bruijn. Asymptotic Methods in Analysis. Dover, 1970.Google Scholar
  42. [BS10]
    M.V. Berry and P. Shukla. High-order classical adiabatic reaction forces: slow manifold for a spin model. J. Phys. A: Math. Theor., 43(4):045102, 2010.Google Scholar
  43. [BSSV98]
    C. Bonet, D. Sauzin, T. Seara, and M. Valencia. Adiabatic invariant of the harmonic oscillator, complex matching and resurgence. SIAM J. Math. Anal., 29(6):1335–1360, 1998.zbMATHMathSciNetGoogle Scholar
  44. [BU01]
    N. Berglund and T. Uzer. The averaged dynamics of the hydrogen atom in crossed electric and magnetic fields as a perturbed Kepler problem. Found. Phys., 31(2):283–326, 2001.MathSciNetGoogle Scholar
  45. [BU11]
    M.V. Berry and R. Uzdin. Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon. J. Phys. A: Math. Theor., 44:435303, 2011.MathSciNetGoogle Scholar
  46. [Bud01]
    C.J. Budd. Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrödinger equation. SIAM J. Appl. Math., 62(3):801–830, 2001.zbMATHMathSciNetGoogle Scholar
  47. [Bur70]
    R.R. Burnside. A note on Lighthill’s method of strained coordinates. SIAM J. Appl. Math., 18(2): 318–321, 1970.zbMATHMathSciNetGoogle Scholar
  48. [CAK78]
    J.H. Chow, J.J. Allemong, and P.V. Kokotovic. Singular perturbation analysis of systems with sustained high frequency oscillations. Automatica, 14(3):271–279, 1978.zbMATHGoogle Scholar
  49. [Car96]
    J. Cardy. Scaling and Renormalization in Statistical Physics. CUP, 1996.Google Scholar
  50. [Car08]
    R. Carles. Semi-classical Analysis for Nonlinear Schrödinger Equations. World Scientific, 2008.Google Scholar
  51. [CC96]
    O. Costin and R. Costin. Rigorous WKB for finite-order linear recurrence relations with smooth coefficients. SIAM J. Math. Anal., 27(1):110–134, 1996.zbMATHMathSciNetGoogle Scholar
  52. [CC03]
    H. Cai and R. Chadwick. Radial structure of traveling waves in the inner ear. SIAM J. Appl. Math., 63(4):1105–1120, 2003.zbMATHMathSciNetGoogle Scholar
  53. [CCR79]
    B. Caroli, C. Caroli, and B. Roulet. Diffusion in a bistable potential: a systematic WKB treatment. J. Stat. Phys., 21(4):415–437, 1979.Google Scholar
  54. [CD93]
    M. Canalis-Durand. Solution formelle Gevrey d’une équation singulièrement perturbée: le cas multidimensionel. Annales de l’institut Fourier, 43(2):469–483, 1993.zbMATHMathSciNetGoogle Scholar
  55. [CD94]
    M. Canalis-Durand. Solution formelle Gevrey d’une équation différentielle singulirèment perturbée. Asymptotic Anal., 8:185–216, 1994.zbMATHMathSciNetGoogle Scholar
  56. [CDMFS07]
    M. Canalis-Durand, J. Mozo-Fernández, and R. Schäfke. Monomial summability and doubly singular differential equations. J. Differential Equat., 233:485–511, 2007.zbMATHGoogle Scholar
  57. [CDRSS00]
    M. Canalis-Durand, J.P. Ramis, R. Schäffke, and Y. Sibuya. Gevrey solutions of singularly perturbed differential equations. J. Reine Angew. Math., 518:95–129, 2000.zbMATHMathSciNetGoogle Scholar
  58. [CFL78]
    D.S. Cohen, A. Fokas, and P.A. Lagerstrom. Proof of some asymptotic results for a model equation for low Reynolds number flow. SIAM J. Appl. Math., 35(1):187–207, 1978.zbMATHMathSciNetGoogle Scholar
  59. [CGO94]
    L.Y. Chen, N. Goldenfeld, and Y. Oono. Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett., 73(10): 1311–1315, 1994.MathSciNetGoogle Scholar
  60. [CGO96]
    L.Y. Chen, N. Goldenfeld, and Y. Oono. Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E, 54(1):376–394, 1996.Google Scholar
  61. [CGOP94]
    L.Y. Chen, N. Goldenfeld, Y. Oono, and G. Paquette. Selection, stability and renormalization. Physica A, 204(1):111–133, 1994.Google Scholar
  62. [CH84]
    K.W. Chang and F.A. Howes. Nonlinear Singular Perturbation Phenomena: Theory and Applications. Springer, 1984.Google Scholar
  63. [CH13]
    C. Chicone and M.T. Heitzman. Phase-locked loops, demodulation, and averaging approximation time-scale extensions. SIAM J. Appl. Dyn. Syst., 12(2):674–721, 2013.zbMATHMathSciNetGoogle Scholar
  64. [Cha87]
    F. Chaplais. Averaging and deterministic optimal control. SIAM J. Control Optim., 25(3):767–780, 1987.zbMATHMathSciNetGoogle Scholar
  65. [Che04]
    H. Cheng. The renormalized two-scale method. Stud. Appl. Math., 113(4):381–387, 2004.zbMATHMathSciNetGoogle Scholar
  66. [Chi08]
    H. Chiba. C 1 approximation of vector fields based on the renormalization group method. SIAM J. Appl. Dyn. Sys., 7(3):895–932, 2008.zbMATHMathSciNetGoogle Scholar
  67. [Chi09]
    H. Chiba. Extension and unification of singular perturbation methods for ODEs based on the renormalization group method. SIAM J. Appl. Dyn. Sys., 8(3):1066–1115, 2009.zbMATHMathSciNetGoogle Scholar
  68. [Chi13]
    H. Chiba. Reduction of weakly nonlinear parabolic partial differential equations. J. Math. Phys., 54:101501, 2013.MathSciNetGoogle Scholar
  69. [CJK98]
    J.M. Cline, M. Joyce, and K. Kainulainen. Supersymmetric electroweak baryogenesis in the WKB approximation. Phys. Lett. B, 417(1):79–86, 1998.Google Scholar
  70. [CK83b]
    R.C.Y. Chin and R.A. Krasny. A hybrid asymptotic-finite element method for stiff two-point boundary value problems. SIAM J. Sci. Statist. Comput., 4(2):229–243, 1983.zbMATHMathSciNetGoogle Scholar
  71. [CK98]
    M. Christ and A. Kiselev. Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: some optimal results. J. Amer. Math. Soc., 11(4):771–797, 1998.zbMATHMathSciNetGoogle Scholar
  72. [CK11]
    M. Christ and A. Kiselev. WKB and spectral analysis of one-dimensional Schrödinger operators with slowly varying potentials. Comm. Math. Phys., 218(2):245–262, 2011.MathSciNetGoogle Scholar
  73. [CM70]
    V.H. Chu and C.M. Mei. On slowly-varying Stokes waves. J. Fluid Mech., 41(4):873–887, 1970.zbMATHMathSciNetGoogle Scholar
  74. [CMP77]
    S.N. Chow and J. Mallet-Paret. Integral averaging and bifurcation. J. Differential Equat., 26(1): 112–159, 1977.zbMATHMathSciNetGoogle Scholar
  75. [CMS05]
    R. Carles, N.J. Mauser, and H.P. Stimming. (Semi)classical limit of the Hartree equation with harmonic potential. SIAM J. Appl. Math., 66(1):29–56, 2005.Google Scholar
  76. [Com68]
    C. Comstock. On Lighthill’s method of strained coordinates. SIAM J. Appl. Math., 16(3):596–602, 1968.zbMATHMathSciNetGoogle Scholar
  77. [Com72]
    C. Comstock. The Poincaré–Lighthill perturbation technique and its generalizations. SIAM Rev., 14(3):433–446, 1972.zbMATHMathSciNetGoogle Scholar
  78. [Con04]
    F. Cong. The approximate decomposition of exponential order of slow–fast motions in multifrequency systems. J. Differential Equat., 196(2):466–480, 2004.zbMATHMathSciNetGoogle Scholar
  79. [COR12]
    F. Casas, J.A. Oteo, and J. Ros. Unitary transformations depending on a small parameter. Proc. R. Soc. A, 468:685–700, 2012.MathSciNetGoogle Scholar
  80. [Cos09]
    O. Costin. Asymptotics and Borel Summability. Chapman-Hall, 2009.Google Scholar
  81. [Dem10]
    H. Demiray. Multiple time scale formalism and its application to long water waves. Appl. Math. Model., 34(5):1187–1193, 2010.zbMATHMathSciNetGoogle Scholar
  82. [Dep69]
    A. Deprit. Canonical transformations depending on a small parameter. Celes. Mech., 1(1):12–30, 1969.zbMATHMathSciNetGoogle Scholar
  83. [DEV04]
    H.S. Dumas, J.A. Ellison, and M. Vogt. First-order averaging principles for maps with applications to accelerator beam dynamics. SIAM J. Appl. Dyn. Syst., 3(4):409–432, 2004.zbMATHMathSciNetGoogle Scholar
  84. [DGL94]
    H.S. Dumas, F. Golse, and P. Lochak. Multiphase averaging for generalized flows on manifolds. Ergodic Theor. Dyn. Syst., 14(1):53–67, 1994.zbMATHMathSciNetGoogle Scholar
  85. [DHH+08]
    L. DeVille, A. Harkin, M. Holzer, K. Josić, and T.J. Kaper. Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D, 237: 1029–1052, 2008.zbMATHMathSciNetGoogle Scholar
  86. [DIZ97]
    P.A. Deift, A.R. Its, and X. Zhou. A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. of Math., 146(1):149–235, 1997.zbMATHMathSciNetGoogle Scholar
  87. [DK13]
    D. Dolgopyat and L. Koralov. Averaging of incompressible flows on two-dimensional surfaces. J. Amer. Math. Soc., 26(2):427–449, 2013.zbMATHMathSciNetGoogle Scholar
  88. [DKM02]
    A. Doelman, A.F. Koenderink, and L.R.M. Maas. Quasi-periodically forced nonlinear Helmholtz oscillators. Physica D, 164(1):1–27, 2002.zbMATHMathSciNetGoogle Scholar
  89. [DM10]
    S.Yu. Dobrokhotov and D.S. Minenkov. On various averaging methods for a nonlinear oscillator with slow time-dependent potential and a nonconservative perturbation. Reg. & Chaotic Dynamics, 15(2):285–299, 2010.Google Scholar
  90. [DRW89]
    M.M. Dodson, B.P. Rynne, and J.A.G. Wickers. Averaging in multifrequency systems. Nonlinearity, 2(1):137, 1989.Google Scholar
  91. [DS95b]
    F. Dumortier and B. Smits. Transition time analysis in singularly perturbed boundary value problems. Trans. Amer. Math. Soc., 347(10):4129–4145, 1995.zbMATHMathSciNetGoogle Scholar
  92. [DW10]
    H.-H. Dai and F.-F. Wang. Asymptotic bifurcation solutions for compressions of a clamped nonlinearly elastic rectangle: transition region and barrelling to a corner-like profile. SIAM J. Appl. Math., 70(7):2673–2692, 2010.zbMATHMathSciNetGoogle Scholar
  93. [Eck73]
    W. Eckhaus. Matched Asymptotic Expansions and Singular Perturbations. North-Holland, 1973.Google Scholar
  94. [Eck77]
    W. Eckhaus. Matching principles and composite expansions. In Singular Perturbations and Boundary Layer Theory, volume 594 of Lect. Notes Math., pages 146–177. Springer, 1977.Google Scholar
  95. [Eck79]
    W. Eckhaus. Asymptotic Analysis of Singular Perturbations. Elsevier, 1979.Google Scholar
  96. [Eck94]
    W. Eckhaus. Fundamental concepts of matching. SIAM Rev., 36(3):431–439, 1994.zbMATHMathSciNetGoogle Scholar
  97. [EdJ66]
    W. Eckhaus and E.M. de Jager. Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type. Arch. Rat. Mech. Anal., 23(1):26–86, 1966.zbMATHGoogle Scholar
  98. [EdJ82]
    W. Eckhaus and E.M. de Jager. Theory and Applications of Singular Perturbations. Springer, 1982.Google Scholar
  99. [Edw00]
    D.A. Edwards. An alternative example of the method of multiple scales. SIAM Rev., 42(2):317–332, 2000.MathSciNetGoogle Scholar
  100. [EK90]
    R. Estrada and R.P. Kanwal. A distributional theory for asymptotic expansions. Proc. R. Soc. London A, 428(1875):399–430, 1990.zbMATHMathSciNetGoogle Scholar
  101. [EK91]
    G.B. Ermentrout and N. Kopell. Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol., 29:195–217, 1991.zbMATHMathSciNetGoogle Scholar
  102. [EK95]
    R. Estrada and R.P. Kanwal. A distributional approach to the boundary layer theory. J. Math. Anal. Appl., 192(3):796–812, 1995.zbMATHMathSciNetGoogle Scholar
  103. [EK02]
    R. Estrada and R.P. Kanwal. Asymptotics Analysis: A Distributional Approach. Birkäuser, 2002.Google Scholar
  104. [Erd56]
    A. Erdelyi. Asymptotic Expansions. Dover, 1956.Google Scholar
  105. [ESD90]
    J.A. Ellison, A.W. Sáenz, and H.S. Dumas. Improved N-th order averaging theory for periodic systems. J. Differential Equations, 84(2):383–403, 1990.zbMATHMathSciNetGoogle Scholar
  106. [EY91]
    W. E and H. Yang. Numerical study of oscillatory solutions of the gas-dynamic equations. Stud. Appl. Math., 85:29–52, 1991.Google Scholar
  107. [Fat28]
    P. Fatou. Sur le mouvement d’un système soumis á des forces á courte période. Bull. Soc. Math., 56:98–139, 1928.zbMATHMathSciNetGoogle Scholar
  108. [Feč91]
    M. Fečkan. Discretization in the method of averaging. Proc. Amer. Math. Soc., 113(4):1105–1113, 1991.zbMATHMathSciNetGoogle Scholar
  109. [Féj01]
    J. Féjoz. Averaging the planar three-body problem in the neighborhood of double inner collisions. J. Differential Equat., 175(1):175–182, 2001.zbMATHGoogle Scholar
  110. [Fif74]
    P.C. Fife. Transition layers in singular perturbation problems. J. Differential Equat., 15:77–105, 1974.zbMATHMathSciNetGoogle Scholar
  111. [Fif76]
    P.C. Fife. Boundary and interior transition layer phenomenon for pairs of second-order differential equations. J. Math. Anal. Appl., 54:497–521, 1976.zbMATHMathSciNetGoogle Scholar
  112. [Fil06]
    D.S. Filippychev. Applying the dual operator formalism to derive the zeroth-order boundary function of the plasma-sheath equation. Comput. Math. Model., 17(4):341–353, 2006.zbMATHMathSciNetGoogle Scholar
  113. [Fis74]
    M.E. Fisher. The renormalization group in the theory of critical behavior. Rev. Mod. Phys., 46(4): 597–616, 1974.Google Scholar
  114. [FJ82]
    J.E. Flaherty and R.E. O’Malley Jr. Singularly perturbed boundary value problems for nonlinear systems, including a challenging problem for a nonlinear beam. In Theory and Applications of Singular Perturbations, volume 942 of Lecture Notes in Mathematics, pages 170–191. Springer, 1982.Google Scholar
  115. [FK85]
    C.L. Frenzen and J. Kevorkian. A review of the multiple scale and reductive perturbation methods for deriving uncoupled nonlinear evolution equations. Wave Motion, 7:25–42, 1985.zbMATHMathSciNetGoogle Scholar
  116. [FK93]
    P. Frankel and T. Kiemel. Relative phase behavior of two slowly coupled oscillators. SIAM J. Appl. Math., 53(5):1436–1446, 1993.zbMATHMathSciNetGoogle Scholar
  117. [FM13]
    M. Federson and J.G. Mesquita. Non-periodic averaging principles for measure functional differential equations and functional dynamic equations on time scales involving impulses. J. Differential Equat., 255(10):3098–3126, 2013.MathSciNetGoogle Scholar
  118. [Fra69]
    L.E. Fraenkel. On the method of matched asymptotic expansions. Parts I-III. Proc. Cambridge Phil Soc., 65:209–284, 1969.Google Scholar
  119. [Fre72]
    D.D. Freund. A note on Kaplun limits and double asymptotics. Proc. Amer. Math. Soc., 35(2):464–470, 1972.zbMATHMathSciNetGoogle Scholar
  120. [Fre86]
    M.I. Freidlin. Geometric optics approach to reaction–diffusion equations. SIAM J. Appl. Math., 46(2):222–232, 1986.zbMATHMathSciNetGoogle Scholar
  121. [Fre06]
    E. Frenod. Application of the averaging method to the gyrokinetic plasma. Asymp. Anal., 46:1–28, 2006.zbMATHMathSciNetGoogle Scholar
  122. [Fri02c]
    E. Fridman. Slow periodic motions with internal sliding modes in variable structure systems. Internat. J. Control, 75(7):524–537, 2002.zbMATHMathSciNetGoogle Scholar
  123. [FS02b]
    Y.B. Fu and P.M. Sanjarani. WKB method with repeated roots and its application to the buckling analysis of an everted cylindrical tube. SIAM J. Appl. Math., 62(6):1856–1871, 2002.zbMATHMathSciNetGoogle Scholar
  124. [FS04]
    A. Fruchard and R. Schäfke. Classification of resonant equations. J. Differential Equat., 207(2):360–391, 2004.zbMATHGoogle Scholar
  125. [FS10b]
    A. Fruchard and R. Schäfke. Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations. Comptes Rendus Math., 348(23):1273–1277, 2010.zbMATHGoogle Scholar
  126. [FS10c]
    A. Fruchard and R. Schäfke. Développements asymptotiques combinés et points tournants d’équations différentielles singulièrement perturbées. arXiv:1003.4110v1, pages 1–71, 2010.Google Scholar
  127. [FS13]
    A. Fruchard and R. Schäfke. Composite Asymptotic Expansions, volume 2066 of Lect. Notes Math. Springer, 2013.Google Scholar
  128. [Gai86]
    V. Gaitsgory. Use of the averaging method in control problems. Differential Equat., 22:1290–1299, 1986.MathSciNetGoogle Scholar
  129. [Gam01]
    T.W. Gamelin. Complex Analysis. Springer, 2001.Google Scholar
  130. [GH83]
    J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.zbMATHGoogle Scholar
  131. [GH84]
    B. Greenspan and P. Holmes. Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators. SIAM J. Math. Anal., 15(1):69–97, 1984.zbMATHMathSciNetGoogle Scholar
  132. [GH88]
    H. Gingold and P.F. Hsieh. Asymptotic solutions of a Hamiltonian system in intervals with several turning points. SIAM J. Math. Anal., 19(5):1142–1150, 1988.zbMATHMathSciNetGoogle Scholar
  133. [Gil75]
    D.E. Gilsinn. The method of averaging and domains of stability for integral manifolds. SIAM J. Appl. Math., 29(4):628–660, 1975.zbMATHMathSciNetGoogle Scholar
  134. [Gil82]
    D.E. Gilsinn. A high order generalized method of averaging. SIAM J. Appl. Math., 42(1):113–134, 1982.zbMATHMathSciNetGoogle Scholar
  135. [Gil97]
    A.D. MacGillivray. A method for incorporating transcendentally small terms into the method of matched asymptotic expansions. Studies in Appl. Math., 99:285–310, 1997.zbMATHMathSciNetGoogle Scholar
  136. [GK10a]
    D.Y. Gao and V.A. Krysko. Introduction to Asymptotic Methods. CRC Press, 2010.Google Scholar
  137. [GM77]
    J. Grasman and B.J. Matkowsky. A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points. SIAM J. Appl. Math., 32(3):588–597, 1977.zbMATHMathSciNetGoogle Scholar
  138. [GN01]
    V. Gaitsgory and M.-T. Nguyen. Averaging of three time scale singularly perturbed control systems. Syst. Contr. Lett., 42(5): 395–403, 2001.zbMATHMathSciNetGoogle Scholar
  139. [GN02]
    V. Gaitsgory and M.-T. Nguyen. Multiscale singularly perturbed control systems: limit occupational measures sets and averaging. SIAM J. Contr. Optim., 41(3):954–974, 2002.zbMATHMathSciNetGoogle Scholar
  140. [GNJ89]
    Z.-M. Gu, N.N. Nefedov, and R.E. O’Malley Jr. On singular singularly perturbed initial value problems. SIAM J. Appl. Math., 49(1):1–25, 1989.zbMATHMathSciNetGoogle Scholar
  141. [Gol92]
    N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. Westview Press, 1992.Google Scholar
  142. [Gra99]
    G. Grammel. Limits of nonlinear discrete-time control systems with fast subsystems. Syst. Contr. Lett., 36(4):277–283, 1999.zbMATHMathSciNetGoogle Scholar
  143. [Gra04]
    G. Grammel. On nonlinear control systems with multiple time scales. J. Dyn. Contr. Sys., 10(1):11–28, 2004.zbMATHMathSciNetGoogle Scholar
  144. [Gre37]
    G. Green. On the motion of waves in a variable canal of small depth and width. Trans. Cambridge Phil. Soc., 6:457–462, 1837.Google Scholar
  145. [Gro77]
    P.P.N. De Groen. Spectral properties of second-order singularly perturbed boundary value problems with turning points. J. Math. Anal. Appl., 57(1):119–145, 1977.zbMATHMathSciNetGoogle Scholar
  146. [Gro80]
    P.P.N. De Groen. The nature of resonance in a singular perturbation problem of turning point type. SIAM J. Math. Anal., 11(1):1–22, 1980.zbMATHMathSciNetGoogle Scholar
  147. [GS77]
    J.L. Gervais and B. Sakita. WKB wave function for systems with many degrees of freedom: a unified view of solitons and pseudoparticles. Phys. Rev. D, 16(12):3507–3514, 1977.MathSciNetGoogle Scholar
  148. [Gua13]
    H. Guan. An averaging theorem for a perturbed KdV equation. Nonlinearity, 26(6):1599–1621, 2013.zbMATHMathSciNetGoogle Scholar
  149. [GV10]
    Y.A. Godin and B. Vainberg. On the determination of the boundary impedance from the far field pattern. SIAM J. Appl. Math., 70(7):2273–2280, 2010.zbMATHMathSciNetGoogle Scholar
  150. [GW92]
    M. Ghil and G. Wolansky. Non-hamiltonian perturbations of integrable systems and resonance trapping. SIAM J. Appl. Math., 52(4):1148–1171, 1992.zbMATHMathSciNetGoogle Scholar
  151. [Hab91a]
    R. Haberman. Phase shift modulations for stable, oscillatory, traveling, strongly nonlinear waves. Stud. Appl. Math., 84(1):57–69, 1991.zbMATHMathSciNetGoogle Scholar
  152. [Hab91b]
    R. Haberman. Standard form and a method of averaging for strongly nonlinear oscillatory dispersive traveling waves. SIAM J. Appl. Math., 51(6):1638–1652, 1991.zbMATHMathSciNetGoogle Scholar
  153. [Hal13]
    B.C. Hall. Quantum Theory for Mathematicians. Springer, 2013.Google Scholar
  154. [Has71]
    A.H. Nayfeh S.D. Hassan. The method of multiple scales and non-linear dispersive waves. J. Fluid Mech., 48:463–475, 1971.zbMATHMathSciNetGoogle Scholar
  155. [Hen70]
    J. Henrard. On a perturbation theory using Lie transforms. Celest. Mech., 3(1):107–120, 1970.zbMATHMathSciNetGoogle Scholar
  156. [Hin91]
    E.J. Hinch. Perturbation Methods. CUP, 1991.Google Scholar
  157. [HJ01]
    G.A. Hagedorn and A. Joye. A time-dependent Born–Oppenheimer approximation with exponentially small error estimates. Comm. Math. Phys., 223(3):583–626, 2001.zbMATHMathSciNetGoogle Scholar
  158. [HK99]
    H. Haario and L. Kalachev. Model reductions and identifications for multiphase phenomena. Math. Engrg. Indust., 7(4):457–478, 1999.zbMATHMathSciNetGoogle Scholar
  159. [HKN01a]
    A. Harkin, T.J. Kaper, and A. Nadim. Coupled pulsation and translation of two gas bubbles in a liquid. J. Fluid Mech., 445:377–411, 2001.zbMATHMathSciNetGoogle Scholar
  160. [HKO68]
    G.H. Handelman, J.B. Keller, and R.E. O’Malley. Loss of boundary conditions in the asymptotic solution of linear ordinary differential equations, I eigenvalue problems. Comm. Pure Appl. Math., 21(3):243–261, 1968.zbMATHMathSciNetGoogle Scholar
  161. [HLM92]
    S.P. Hastings, C. Lu, and A.D. MacGillivray. A boundary value problem with multiple solutions from the theory of laminar flow. SIAM J. Math. Anal., 23(1):201–208, 1992.zbMATHMathSciNetGoogle Scholar
  162. [HM77]
    J. Henrard and K.R. Meyer. Averaging and bifurcations in symmetric systems. SIAM J. Appl. Math., 32(1):133–145, 1977.zbMATHMathSciNetGoogle Scholar
  163. [HM09b]
    S.P. Hastings and J.B. McLeod. An elementary approach to a model problem of Lagerstrom. SIAM J. Math. Anal., 40(6):2421–2436, 2009.zbMATHMathSciNetGoogle Scholar
  164. [Hol99]
    M.H. Holmes. The method of multiple scales. In Analyzing Multiscale Phenomena using Singular Perturbation Methods, pages 23–46. AMS, 1999.Google Scholar
  165. [Hop75]
    F.C. Hoppenstaedt. Analysis of some problems having matched asymptotic expansion solutions. SIAM Rev., 17:123–135, 1975.MathSciNetGoogle Scholar
  166. [How10]
    C.J. Howls. Exponential asymptotics and boundary-value problems: keeping both sides happy at all orders. Proc. R. Soc. A, 466(2121):2771–2794, 2010.zbMATHMathSciNetGoogle Scholar
  167. [Hsi65]
    P.F. Hsieh. A turning point problem for a system of linear ordinary differential equations of the third order. Arch. Rat. Mech. Anal., 19(2):117–148, 1965.zbMATHGoogle Scholar
  168. [HTB90b]
    C. Hunter, M. Tajdari, and S.D. Boyer. On Lagerstrom’s model of slow incompressible viscous flow. SIAM J. Appl. Math., 50(1):48–63, 1990.zbMATHMathSciNetGoogle Scholar
  169. [HV97]
    R.J.A.G. Huveneers and F. Verhulst. A metaphor for adiabatic evolution to symmetry. SIAM J. Appl. Math., 57(5):1421–1442, 1997.zbMATHMathSciNetGoogle Scholar
  170. [Ito84]
    M. Ito. A remark on singular perturbation methods. Hiroshima Math. J., 14:619–629, 1984.Google Scholar
  171. [IW87]
    S. Iyer and C.M. Will. Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D, 35(12):3621, 1987.Google Scholar
  172. [Iwa08]
    M. Iwasa. Solution of reduced equations derived with singular perturbation methods. Phys. Rev. E, 78:066213, 2008.MathSciNetGoogle Scholar
  173. [Jak13]
    P. Jakobsen. Introduction to the method of multiple scales. arXiv:1312.3651, pages 1–63, 2013.Google Scholar
  174. [Jan03]
    M. Janowicz. Method of multiple scales in quantum optics. Phys. Rep., 375(5):327–410, 2003.zbMATHMathSciNetGoogle Scholar
  175. [Jef24]
    H. Jeffreys. On certain approximate solutions of linear differential equations of the second order. Proc. London Math. Soc., 23:428–436, 1924.zbMATHMathSciNetGoogle Scholar
  176. [JF96]
    E.M. De Jager and J. Furu. The Theory of Singular Perturbations. North-Holland, 1996.Google Scholar
  177. [JMS11]
    S. Jin, P. Markowich, and C. Sparber. Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer., 20:121–209, 2011.zbMATHMathSciNetGoogle Scholar
  178. [Joh05]
    R.S. Johnson. Singular Perturbation Theory. Springer, 2005.Google Scholar
  179. [Kal13]
    V.I. Kalachev. On the algebraic fundamentals of singular perturbation theory. Differential Equat., 49(3):397–401, 2013.Google Scholar
  180. [Kat83a]
    W.L. Kath. Conditions for sustained resonance. II. SIAM J. Appl. Math., 43:579–583, 1983.Google Scholar
  181. [Kat83b]
    W.L. Kath. Necessary conditions for sustained re-entry roll resonance. SIAM J. Appl. Math., 43: 314–324, 1983.zbMATHMathSciNetGoogle Scholar
  182. [KB37]
    N.M. Krylov and N.N. Bogoliubov. Introduction to Nonlinear Mechanics. Izd. AN UkSSR, 1937. (in Russian).Google Scholar
  183. [KC96]
    J. Kevorkian and J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer, 1996.Google Scholar
  184. [Kev66]
    J. Kevorkian. Von Zeipel method and the two-variable expansion procedure. Astronomical J., 71:878, 1966.Google Scholar
  185. [Kev87]
    J. Kevorkian. Perturbation techniques for oscillatory systems with slowly varying coefficients. SIAM Rev., 29(3):391–461, 1987.zbMATHMathSciNetGoogle Scholar
  186. [Kif92]
    Yu. Kifer. Averaging in dynamical systems and large deviations. Invent. Math., 110(2):337–370, 1992.zbMATHMathSciNetGoogle Scholar
  187. [Kif01a]
    Yu. Kifer. Averaging and climate models. In Stochastic Climate Models, pages 171–188. Birkhäuser, 2001.Google Scholar
  188. [Kif03]
    Yu. Kifer. L 2 diffusion approximation for slow motion in averaging. Stoch. Dyn., 3(2):213–246, 2003.zbMATHMathSciNetGoogle Scholar
  189. [Kif04a]
    Yu. Kifer. Averaging principle for fully coupled dynamical systems and large deviations. Ergodic Theory Dyn. Syst., 24(3): 847–871, 2004.zbMATHMathSciNetGoogle Scholar
  190. [Kif04b]
    Yu. Kifer. Some recent advances in averaging. In Modern Dynamical Systems and Applications, pages 385–403. CUP, 2004.Google Scholar
  191. [Kif08]
    Yu. Kifer. Convergence, nonconvergence and adiabatic transitions in fully coupled averaging. Nonlinearity, 21(3):T27, 2008.Google Scholar
  192. [Kir12]
    E. Kirkinis. The renormalization group: a perturbation method for the graduate curriculum. SIAM Rev., 54(2):374–388, 2012.zbMATHMathSciNetGoogle Scholar
  193. [KL93]
    B. Kreiss and J. Lorenz. Manifolds of slow solutions for highly oscillatory problems. Indiana Univ. Math. J., 42(4):1169–1191, 1993.zbMATHMathSciNetGoogle Scholar
  194. [KL94]
    B. Kreiss and J. Lorenz. On the existence of slow manifolds for problems with different timescales. Philosophical Transactions: Physical Sciences and Engineering, 346(1679):159–171, 1994.zbMATHMathSciNetGoogle Scholar
  195. [Kne94]
    C. Knessl. On the distribution of the maximum number of broken machines for the repairman problem. SIAM J. Appl. Math., 54(2):508–547, 1994.zbMATHMathSciNetGoogle Scholar
  196. [KO92]
    L.V. Kalachev and I.A. Obukhov. Asymptotic behavior of a solution of the Poisson equation in a model of a three-dimensional semiconductor structure. Comput. Math. Math. Phys., 32(9):1361–1366, 1992.MathSciNetGoogle Scholar
  197. [Kol74]
    F.W. Kollett. Two-timing methods valid on expanding intervals. SIAM J. Math. Anal., 5(4):613–625, 1974.zbMATHMathSciNetGoogle Scholar
  198. [Kon03]
    R.A. Konoplya. Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach. Phys. Rev. D, 68(2):024018, 2003.Google Scholar
  199. [Kor06]
    S.A. Kordyukova. Approximate group analysis and multiple time scales method for the approximate Boussinesq equation. Nonlinear Dynam., 46(1):73–85, 2006.zbMATHMathSciNetGoogle Scholar
  200. [Kou97]
    M.A. Kouritzin. Averaging for fundamental solutions of parabolic equations. J. Differential Equat., 136(1):35–75, 1997.zbMATHMathSciNetGoogle Scholar
  201. [Kra26]
    H.A. Kramers. Wellenmechanik und halbzählige Quantisierung. Zeitschrift für Physik, 39(10):828–840, 1926.zbMATHGoogle Scholar
  202. [Kri89]
    G.A. Kriegsmann. Bifurcation in classical bipolar transistor oscillator circuits. SIAM J. Appl. Math., 49(2):390–403, 1989.MathSciNetGoogle Scholar
  203. [Kro91]
    M.S. Krol. On the averaging method in nearly time-periodic advection–diffusion problems. SIAM J. Appl. Math., 51(6):1622–1637, 1991.zbMATHMathSciNetGoogle Scholar
  204. [KS03]
    L.V. Kalachev and T.I. Seidman. Singular perturbation analysis of a stationary diffusion/reaction system whose solution exhibits a corner-type behavior in the interior of the domain. J. Math. Anal. Appl., 288(2):722–743, 2003.zbMATHMathSciNetGoogle Scholar
  205. [KS05]
    L.V. Kalachev and K.R. Schneider. Global behavior and asymptotic reduction of a chemical kinetics system with continua of equilibria. J. Math. Chem., 37(1):57–74, 2005.zbMATHMathSciNetGoogle Scholar
  206. [Kue10a]
    C. Kuehn. Characterizing slow exit points. Electron. J. Differential Equations, 2010(106):1–20, 2010.MathSciNetGoogle Scholar
  207. [KW79]
    G.A. Kriegsmann and M. Williams. On the tracing of light rays through deformed glass rods with radially graded refractive indices. SIAM J. Appl. Math., 36(2):263–272, 1979.zbMATHMathSciNetGoogle Scholar
  208. [Lag88]
    P.A. Lagerstrom. Matched Asymptotic Expansions: Ideas and Techniques. Springer, 1988.Google Scholar
  209. [LC72]
    P.A. Lagerstrom and R.G. Casten. Basic concepts underlying singular perturbation techniques. SIAM Rev., 14(1):63–120, 1972.zbMATHMathSciNetGoogle Scholar
  210. [Les98]
    A. Lesne. Renormalization Methods: Critical Phenomena, Chaos, Fractal Structures. Wiley, 1998.Google Scholar
  211. [Lev99]
    M. Levi. Geometry and physics of averaging with applications. Physica D, 132(1):150–164, 1999.zbMATHMathSciNetGoogle Scholar
  212. [Lic69]
    W. Lick. Two-variable expansions and singular perturbation problems. SIAM J. Appl. Math., 17(4): 815–825, 1969.zbMATHMathSciNetGoogle Scholar
  213. [Lin88]
    X.-B. Lin. Shadowing lemma and singularly perturbed boundary value problems. SIAM J. Appl. Math., 49(1):26–54, 1988.Google Scholar
  214. [Lio37]
    J. Liouville. Sur le développement des fonctions et séries. J. de Mathématiques Pures et Appliquées, 1: 16–35, 1837.Google Scholar
  215. [LK70]
    R.Y.S. Lynn and J.B. Keller. Uniform asymptotic solutions of second order linear ordinary differential equations with turning points. Comm. Pure Appl. Math., 23(3):379–408, 1970.zbMATHMathSciNetGoogle Scholar
  216. [LK00]
    W.M. Long and L.V. Kalachev. Asymptotic analysis of dissolution of a spherical bubble (case of fast reaction outside the bubble). Rocky Mountain J. Math., 30(1):293–313, 2000.zbMATHMathSciNetGoogle Scholar
  217. [LM88]
    P. Lochak and C. Meunier. Multiphase averaging for classical systems: with applications to adiabatic theorems. Springer, 1988.Google Scholar
  218. [LM94a]
    C.G. Lange and R.M. Miura. Singular perturbation analysis of boundary value problems for differential-difference equations. V. Small shifts with layer behaviour. SIAM J. Appl. Math., 54(1):249–272, 1994.Google Scholar
  219. [LM94b]
    C.G. Lange and R.M. Miura. Singular perturbation analysis of boundary value problems for differential-difference equations. VI. Small shifts with rapid oscillations. SIAM J. Appl. Math., 54(1):273–283, 1994.Google Scholar
  220. [LMH92]
    C. Lu, A.D. MacGillivray, and S.P. Hastings. Asymptotic behaviour of solutions of a similarity equation for laminar flows in channels with porous walls. IMA J. Appl. Math., 49(2):139–162, 1992.zbMATHMathSciNetGoogle Scholar
  221. [LN13]
    M.J. Luczak and J.R. Norris. Averaging over fast variables in the fluid limit for Markov chains: application to the supermarket model with memory. Ann. Appl. Probab., 23(3):957–986, 2013.zbMATHMathSciNetGoogle Scholar
  222. [Lon87]
    L.N. Long. Uniformly-valid asymptotic solutions to the Orr-Sommerfeld equation using multiple scales. J. Eng. Math., 21(3):167–178, 1987.zbMATHGoogle Scholar
  223. [LP99]
    A. Luongo and A. Paolone. On the reconstitution problem in the multiple time-scale method. Nonlinear Dynam., 19(2):133–156, 1999.zbMATHMathSciNetGoogle Scholar
  224. [LR84a]
    P.A. Lagerstrom and D.A. Reinelt. Note on logarithmic switchback terms in regular and singular perturbation expansions. SIAM J. Appl. Math., 44(3):451–462, 1984.zbMATHMathSciNetGoogle Scholar
  225. [Mac78]
    A.D. MacGillivray. On a model equation of Lagerstrom. SIAM J. Appl. Math., 34(4):804–812, 1978.zbMATHMathSciNetGoogle Scholar
  226. [Mac79]
    A.D. MacGillivray. The existence of an overlap domain for a singular perturbation problem. SIAM J. Appl. Math., 36(1):106–114, 1979.zbMATHMathSciNetGoogle Scholar
  227. [Mac80]
    A.D. MacGillivray. On the switchback term in the asymptotic expansion of a model singular perturbation problem. J. Math. Anal. Appl., 77(2):612–625, 1980.zbMATHMathSciNetGoogle Scholar
  228. [Mae07b]
    P. De Maesschalck. Gevrey properties of real planar singularly perturbed systems. J. Differential Equat., 238:338–365, 2007.zbMATHGoogle Scholar
  229. [Maj03]
    A.J. Majda. Introduction to PDEs and Waves for the Atmosphere and Ocean. AMS, 2003.Google Scholar
  230. [Mar70]
    R.A. Marcus. Extension of the WKB method to wave functions and transition probability amplitudes (S-matrix) for inelastic or reactive collisions. Chem. Phys. Lett., 7(5):525–532, 1970.Google Scholar
  231. [Mas94]
    V.P. Maslov. The Complex WKB Method for Nonlinear Equations: Linear theory. Springer, 1994.Google Scholar
  232. [Mat01]
    K. Matthies. Time-averaging under fast periodic forcing of parabolic partial differential equations: exponential estimates. J. Differential Equat., 174(1):133–180, 2001.zbMATHMathSciNetGoogle Scholar
  233. [McK55]
    R.W. McKelvey. The solutions of second order linear ordinary differential equations about a turning point of order two. Trans. Amer. Math. Soc., 79(1):103–123, 1955.zbMATHMathSciNetGoogle Scholar
  234. [Med05]
    G.S. Medvedev. Reduction of a model of an excitable cell to a one-dimensional map. Physica D, 202(1):37–59, 2005.zbMATHMathSciNetGoogle Scholar
  235. [Mey67]
    R.E. Meyer. On the approximation of double limits by single limits and the Kaplun extension theorem. J. Inst. Math. Appl., 3:245–249, 1967.zbMATHMathSciNetGoogle Scholar
  236. [MG53]
    S.C. Miller and R.H. Good. A WKB-type approximation to the Schrödinger equation. Phys. Rev., 91:174, 1953.zbMATHMathSciNetGoogle Scholar
  237. [Mil06]
    P.D. Miller. Applied Asymptotic Analysis. AMS, 2006.Google Scholar
  238. [Miu76]
    R.M. Miura. The Korteweg-de Vries equation: a survey of results. SIAM Rev., 18(3):412–459, 1976.zbMATHMathSciNetGoogle Scholar
  239. [MK74]
    R.M. Miura and M.D. Kruskal. Application of a nonlinear WKB method to the Korteweg-DeVries equation. SIAM J. Appl. Math., 26:376–395, 1974.zbMATHMathSciNetGoogle Scholar
  240. [MLK94]
    A.D. MacGillivray, B. Liu, and N.D. Kazarinoff. Asymptotic analysis of the peeling-off point of a French duck. Methods and Applications of Analysis, 1(4):488–509, 1994.zbMATHMathSciNetGoogle Scholar
  241. [MO03]
    B. Mudavanhu and R.E. O’Malley. A new renormalization method for the asymptotic solution of weakly nonlinear vector systems. SIAM J. Appl. Math., 63(2):373–397, 2003.MathSciNetGoogle Scholar
  242. [Mon86]
    J.T. Montgomery. Existence and stability of periodic motion under higher order averaging. J. Differential Equat., 64(1):67–78, 1986.zbMATHGoogle Scholar
  243. [Mor66]
    J.A. Morrison. Comparison of the modified method of averaging and the two variable expansion procedure. SIAM Rev., 8:66–85, 1966.zbMATHMathSciNetGoogle Scholar
  244. [Mor86]
    I.M. Moroz. Amplitude expansions and normal forms in a model for thermohaline convection. Stud. Appl. Math., 74(2):155–170, 1986.zbMATHMathSciNetGoogle Scholar
  245. [MP98]
    T.A. Mel’nik and V.A. Plotnikov. Averaging of quasidifferential equations with fast and slow variables. Siberian Math. J., 39(5):947–952, 1998.MathSciNetGoogle Scholar
  246. [MP08]
    R.O. Moore and K. Promislow. The semistrong limit of multipulse interaction in a thermally driven optical system. J. Differential Equat., 245(6):1616–1655, 2008.zbMATHMathSciNetGoogle Scholar
  247. [MPY11]
    K.R. Meyer, J.F. Palacián, and P. Yanguas. Geometric averaging of Hamiltonian systems: periodic solutions, stability, and KAM tori. SIAM J. Appl. Dyn. Syst., 10(3):817–856, 2011.zbMATHMathSciNetGoogle Scholar
  248. [MR77]
    B.J. Matkowsky and E.L. Reiss. Singular perturbations of bifurcations. SIAM J. Appl. Math., 33(2):230–255, 1977.zbMATHMathSciNetGoogle Scholar
  249. [MR80]
    E.F. Mishchenko and N.Kh. Rozov. Differential Equations with Small Parameters and Relaxation Oscillations (translated from Russian). Plenum Press, 1980.Google Scholar
  250. [MS03c]
    K. Matthies and A. Scheel. Exponential averaging for Hamiltonian evolution equations. Trans. Amer. Math. Soc., 355:747–773, 2003.zbMATHMathSciNetGoogle Scholar
  251. [MS03d]
    G. Métivier and S. Schochet. Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equat., 187(1):106–183, 2003.zbMATHGoogle Scholar
  252. [Mur83]
    J. Murdock. Some asymptotic estimates for higher order averaging and a comparison with iterated averaging. SIAM J. Math. Anal., 14(3):421–424, 1983.zbMATHMathSciNetGoogle Scholar
  253. [Mur84]
    J.D. Murray. Asymptotic Analysis. Springer, 1984.Google Scholar
  254. [Mur87]
    J.A. Murdock. Perturbations: Theory and Methods. SIAM, 1987.Google Scholar
  255. [MW96]
    J. Murdock and L.C. Wang. Validity of the multiple scale method for very long intervals. Z. Angew. Math. Phys., 47(5):760–789, 1996.zbMATHMathSciNetGoogle Scholar
  256. [Nay81]
    A.H. Nayfeh. Introduction to Perturbation Techniques. Wiley, 1981.Google Scholar
  257. [Nay04]
    A.H. Nayfeh. Perturbation Methods. Wiley, 2004.Google Scholar
  258. [Nay05]
    A.H. Nayfeh. Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dynam., 40:61–102, 2005.zbMATHMathSciNetGoogle Scholar
  259. [Nei84]
    A.I. Neishtadt. The separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech., 48(2):133–139, 1984.MathSciNetGoogle Scholar
  260. [Nei03]
    A.I. Neishtadt. On averaging in two-frequency systems with small Hamiltonian and much smaller non-Hamiltonian perturbations. Mosc. Math. J., 3:1039–1052, 2003.zbMATHMathSciNetGoogle Scholar
  261. [Nes93]
    A.V. Nesterov. A modification of the boundary function method for singularly perturbed partial differential equations. Math. Notes, 54(1):705–709, 1993.zbMATHMathSciNetGoogle Scholar
  262. [Neu83]
    J.C. Neu. Resonantly interacting waves. SIAM J. Appl. Math., 43:141–156, 1983.zbMATHMathSciNetGoogle Scholar
  263. [NM95]
    A.H. Nayfeh and D.T. Mook. Nonlinear Oscillations. Wiley, 1995.Google Scholar
  264. [NW99]
    M.E. Newman and D.J. Watts. Renormalization group analysis of the small-world network model. Phys. Lett. A, 263(4):341–346, 1999.zbMATHMathSciNetGoogle Scholar
  265. [OC12]
    D. O’Malley and J.H. Cushman. Two-scale renormalization-group classification of diffusive processes. Phys. Rev. E, 86:011126, 2012.Google Scholar
  266. [OCN99]
    S.S. Oueini, C.-M. Chin, and A.H. Nayfeh. Dynamics of a cubic nonlinear vibration absorber. Nonlinear Dyn., 20:283–295, 1999.zbMATHGoogle Scholar
  267. [OK68]
    R.E. O’Malley and J.B. Keller. Loss of boundary conditions in the asymptotic solution of linear ordinary differential equations, II boundary value problems. Comm. Pure Appl. Math., 21(3):263–270, 1968.zbMATHMathSciNetGoogle Scholar
  268. [OK09]
    R.E. O’Malley and E. Kirkinis. Examples illustrating the use of renormalization techniques for singularly perturbed differential equations. Stud. Appl. Math., 122:105–122, 2009.zbMATHMathSciNetGoogle Scholar
  269. [OK11]
    R.E. O’Malley and E. Kirkinis. Two-timing and matched asymptotic expansions for singular perturbation problems. European J. Appl. Math., 22(6):613–629, 2011.zbMATHMathSciNetGoogle Scholar
  270. [Olv61]
    F.W.J. Olver. Error bounds for the Liouville–Green (or WKB) approximation. Proc. Cambridge Philos. Soc., 57:790–810, 1961.zbMATHMathSciNetGoogle Scholar
  271. [O’M69]
    R.E. O’Malley. On a boundary value problem for a nonlinear differential equation with a small parameter. SIAM J. Appl. Math., 17(3):569–581, 1969.zbMATHMathSciNetGoogle Scholar
  272. [O’M70a]
    R.E. O’Malley. A non-linear singular perturbation problem arising in the study of chemical flow reactors. IMA J. Appl. Math., 6(1):12–20, 1970.zbMATHGoogle Scholar
  273. [O’M83]
    R.E. O’Malley. Shock and transition layers for singularly perturbed second-order vector systems. SIAM J. Appl. Math., 43(4):935–943, 1983.zbMATHMathSciNetGoogle Scholar
  274. [O’M88]
    R.E. O’Malley. On nonlinear singularly perturbed initial value problems. SIAM Rev., 30(2):193–212, 1988.zbMATHMathSciNetGoogle Scholar
  275. [O’M91]
    R.E. O’Malley. Singular Perturbation Methods for Ordinary Differential Equations. Springer, 1991.Google Scholar
  276. [O’M00]
    R.E. O’Malley. On the asymptotic solution of the singularly perturbed boundary value problems posed by Bohé. J. Math. Anal. Appl., 242(1):18–38, 2000.zbMATHMathSciNetGoogle Scholar
  277. [O’M08]
    R.E. O’Malley. Singularly rerturbed linear two-point boundary value problems. SIAM Rev., 50(3): 459–482, 2008.zbMATHMathSciNetGoogle Scholar
  278. [OW04]
    C.H. Ou and R. Wong. Shooting method for nonlinear singularly perturbed boundary-value problems. Stud. Appl. Math., 112(2):161–200, 2004.zbMATHMathSciNetGoogle Scholar
  279. [OW06]
    R.E. O’Malley and D.B. Williams. Deriving amplitude equations for weakly-nonlinear oscillators and their generalizations. J. Comput. Appl. Math., 190(1):3–21, 2006.zbMATHMathSciNetGoogle Scholar
  280. [Per69]
    L.M. Perko. Higher order averaging and related methods for perturbed periodic and quasi-periodic systems. SIAM J. Appl. Math., 17(4):698–724, 1969.zbMATHMathSciNetGoogle Scholar
  281. [Per81]
    S.C. Persek. Hierarchies of iterated averages for systems of ordinary differential equations with a small parameter. SIAM J. Math. Anal., 12(3):413–420, 1981.zbMATHMathSciNetGoogle Scholar
  282. [Per82]
    S.C. Persek. Asymptotic stability and the method of iterated averages for almost periodic systems. SIAM J. Math. Anal., 13(5):828–841, 1982.zbMATHMathSciNetGoogle Scholar
  283. [Per84]
    S.C. Persek. Iterated averaging for periodic systems with hidden multi-scale slow times. Pacific J. Math., 112(1):211–236, 1984.zbMATHMathSciNetGoogle Scholar
  284. [PH78]
    S.C. Persek and F.C. Hoppensteadt. Iterated averaging methods for systems of ordinary differential equations with a small parameter. Comm. Pure Appl. Math., 31(2):133–156, 1978.zbMATHMathSciNetGoogle Scholar
  285. [PM00]
    J.F. Painter and R.E. Meyer. Turning-point connection at close quarters. SIAM J. Math. Anal., 13(4):541–554, 2000.MathSciNetGoogle Scholar
  286. [PR60]
    L.S. Pontryagin and L.V. Rodygin. Approximate solution of a system of ordinary differential equations involving a small parameter in the derivatives. Soviet Math. Dokl., 1:237–240, 1960.zbMATHMathSciNetGoogle Scholar
  287. [PR12]
    G. Papamikos and M. Robnik. WKB approach applied to 1D time-dependent nonlinear Hamiltonian oscillators. J. Phys. A: Math. Theor., 45:015206, 2012.MathSciNetGoogle Scholar
  288. [PS08]
    G.A. Pavliotis and A.M. Stuart. Multiscale Methods: Averaging and Homogenization. Springer, 2008.Google Scholar
  289. [PT00]
    A.V. Pronin and D.V.E. Treschev. Continuous averaging in multi-frequency slow–fast systems. Reg. Chaotic Dyn., 5(2):157–170, 2000.zbMATHMathSciNetGoogle Scholar
  290. [PTW05]
    M. Percu, R. Temam, and D. Wirosoetisno. Renormalization group method applied to the primitive equations. J. Differential Equat., 208(1):215–257, 2005.Google Scholar
  291. [PZ03]
    D.E. Pelinovsky and V. Zharnitsky. Averaging of dispersion-managed solitons: existence and stability. SIAM J. Appl. Math., 63(3):745–776, 2003.zbMATHMathSciNetGoogle Scholar
  292. [Ran94]
    R.H. Rand. Topics in Nonlinear Dynamics with Computer Algebra. Gordon and Breach, 1994.Google Scholar
  293. [Rau12]
    J. Rauch. Hyperbolic Partial Differential Equations and Geometric Optics. AMS, 2012.Google Scholar
  294. [RE89]
    J. Rinzel and B. Ermentrout. Analysis of neural excitability and oscillations. In C. Koch and I. Segev, editors, Methods of Neural Modeling: From Synapses to Networks, pages 135–169. MIT Press, 1989.Google Scholar
  295. [Rei71]
    E.L. Reiss. On multivariable asymptotic expansions. SIAM Rev., 13(2):189–196, 1971.zbMATHMathSciNetGoogle Scholar
  296. [Rei80]
    E.L. Reiss. A new asymptotic method for jump phenomena. SIAM J. Appl. Math., 39(3):440–455, 1980.zbMATHMathSciNetGoogle Scholar
  297. [RH12]
    M. Rafei and W.T. Van Horssen. Solving systems of nonlinear difference equations by the multiple scales perturbation method. Nonlinear Dyn., 69:1509–1516, 2012.zbMATHGoogle Scholar
  298. [Rob83]
    C. Robinson. Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J. Math. Anal., 14(5):847–860, 1983.zbMATHMathSciNetGoogle Scholar
  299. [RS75b]
    S. Rosenblat and J. Shepherd. On the asymptotic solution of the Lagerstrom model equation. SIAM J. Appl. Math., 29:110–120, 1975.zbMATHMathSciNetGoogle Scholar
  300. [RS96]
    J.-P. Ramis and R. Schäffke. Gevrey separation of fast and slow variables. Nonlinearity, 9:353–384, 1996.zbMATHMathSciNetGoogle Scholar
  301. [Rub77]
    L.A. Rubenfeld. The passage of weakly coupled nonlinear oscillators through internal resonance. Stud. Appl. Math., 57:77–92, 1977.zbMATHMathSciNetGoogle Scholar
  302. [Rub78]
    L.A. Rubenfeld. On a derivative-expansion technique and some comments on multiple scaling in the asymptotic approximation of solutions of certain differential equations. SIAM Rev., 20:79–105, 1978.zbMATHMathSciNetGoogle Scholar
  303. [RW77]
    L.A. Rubenfeld and B. Willner. Uniform asymptotic solutions for linear second order ordinary differential equations with turning points: formal theory. SIAM J. Appl. Math., 32(1):21–38, 1977.zbMATHMathSciNetGoogle Scholar
  304. [San79]
    J.A. Sanders. On the passage through resonance. SIAM J. Math. Anal., 10(6):1220–1243, 1979.zbMATHMathSciNetGoogle Scholar
  305. [San80]
    J.A. Sanders. Asymptotic approximations and extension of time-scales. SIAM J. Math. Anal., 11(4):758–770, 1980.zbMATHMathSciNetGoogle Scholar
  306. [San83a]
    J.A. Sanders. On the fundamental theorem of averaging. SIAM J. Math. Anal., 14(1):1–10, 1983.zbMATHMathSciNetGoogle Scholar
  307. [Sar78]
    W. Sarlet. On a common derivation of the averaging method and the two-timescale method. Celestial Mech., 17(3):299–311, 1978.zbMATHMathSciNetGoogle Scholar
  308. [SB85]
    P.R. Sethna and K.R. Meyer A.K. Bajaj. On the method of averaging, integral manifolds and systems with symmetry. SIAM J. Appl. Math., 45(3):343–359, 1985.zbMATHMathSciNetGoogle Scholar
  309. [SC86]
    J.A. Sanders and R. Cushman. Limit cycles in the Josephson equation. SIAM J. Math. Anal., 17(3):495–511, 1986.zbMATHMathSciNetGoogle Scholar
  310. [Sch88]
    S. Schecter. Stable manifolds in the method of averaging. Trans. Amer. Math. Soc., 308(1):159–176, 1988.MathSciNetGoogle Scholar
  311. [Sch95b]
    C.G. Schroer. First order adiabatic approximation for a class of classical slow–fast systems with ergodic fast dynamics. In Hamiltonian Systems with Three or More Degrees of Freedom, pages 563–567. Kluwer, 1995.Google Scholar
  312. [Set95]
    P.R. Sethna. On averaged and normal form equations. Nonlinear Dyn., 7:1–10, 1995.MathSciNetGoogle Scholar
  313. [SF07]
    C. Sourdis and P.C. Fife. Existence of heteroclinic orbits for a corner layer problem in anisotropic interfaces. Adv. Differential Equat., 12(6):623–668, 2007.zbMATHMathSciNetGoogle Scholar
  314. [Sha94]
    R. Shankar. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66(1):129–192, 1994.MathSciNetGoogle Scholar
  315. [Sib62a]
    Y. Sibuya. Asymptotic solutions of a system of linear ordinary differential equations containing a parameter. Funkcial. Ekvac., 4:83–113, 1962.zbMATHMathSciNetGoogle Scholar
  316. [Sib62b]
    Y. Sibuya. Formal solutions of a linear ordinary differential equation of the n-th order at a turning point. Funkcial. Ekvac., 4:115–139, 1962.zbMATHMathSciNetGoogle Scholar
  317. [Sib63b]
    Y. Sibuya. Simplification of a linear ordinary differential equation of the n-th order at a turning point. Arch. Rat. Mech. Anal., 13:206–221, 1963.zbMATHMathSciNetGoogle Scholar
  318. [Sib81]
    Y. Sibuya. A theorem concerning uniform simplification at a transition point and the problem of resonance. SIAM J. Math. Anal., 12(5):653–668, 1981.zbMATHMathSciNetGoogle Scholar
  319. [Sib00]
    Y. Sibuya. The Gevrey asymptotics in the case of singular perturbations. J. Differential Equat., 165:255–314, 2000.zbMATHMathSciNetGoogle Scholar
  320. [SK97]
    T.I. Seidman and L.V. Kalachev. A one-dimensional reaction/diffusion system with a fast reaction. J. Math. Anal. Appl., 209(2):392–414, 1997.zbMATHMathSciNetGoogle Scholar
  321. [Ski81]
    L.A. Skinner. Note on the Lagerstrom singular perturbation models. SIAM J. Appl. Math., 41(2): 362–364, 1981.zbMATHMathSciNetGoogle Scholar
  322. [Ski87]
    L.A. Skinner. Uniform solution of boundary layer problems exhibiting resonance. SIAM J. Appl. Math., 47(2):225–231, 1987.zbMATHMathSciNetGoogle Scholar
  323. [Ski94]
    L.A. Skinner. Matched expansion solutions of the first-order turning point problem. SIAM J. Math. Anal., 25(5):1402–1411, 1994.zbMATHMathSciNetGoogle Scholar
  324. [Ski11]
    L.A. Skinner. Singular Perturbation Theory. Springer, 2011.Google Scholar
  325. [Skr12]
    Y. Skrynnikov. Solving initial value problem by matching asymptotic expansions. SIAM J. Appl. Math., 72(1):405–416, 2012.zbMATHMathSciNetGoogle Scholar
  326. [SLW99]
    A.L. Sanchez, A. Linan, and F.A. Williams. Chain-branching explosions in mixing layers. SIAM J. Appl. Math., 59(4):1335–1355, 1999.zbMATHMathSciNetGoogle Scholar
  327. [Smi75]
    D.R. Smith. The multivariable method in singular perturbation analysis. SIAM Rev., 17(2):221–273, 1975.zbMATHMathSciNetGoogle Scholar
  328. [SPT05]
    A. Samoilenko, M. Pinto and S. Trofimchuk. Krylov-Bogolyubov averaging of asymptotically autonomous differential equations. Proc. Amer. Math. Soc., 133:145–154, 2005.zbMATHMathSciNetGoogle Scholar
  329. [SS04c]
    B.K. Spears and A.J. Szeri. Topology and resonances in a quasiperiodically forced oscillator. Physica D, 197(1):69–85, 2004.zbMATHMathSciNetGoogle Scholar
  330. [SV96]
    R. Spigler and M. Vianello. WKB-type approximations for second-order differential equations in C -algebras. Proc. Amer. Math. Soc., 124(6):1763–1771, 1996.zbMATHMathSciNetGoogle Scholar
  331. [SVM07]
    J.A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in Nonlinear Dynamical Systems. Springer, 2007.Google Scholar
  332. [SW86]
    C. Schmeiser and R. Weiss. Asymptotic analysis of singular singularly perturbed boundary value problems. SIAM J. Math. Anal., 17(3):560–579, 1986.zbMATHMathSciNetGoogle Scholar
  333. [Tia03]
    H. Tian. Asymptotic expansion for the solution of singularly perturbed delay differential equations. J. Math. Anal. Appl., 281(2):678–696, 2003.zbMATHMathSciNetGoogle Scholar
  334. [Tre96]
    D. Treschev. An averaging method for Hamiltonian systems, exponentially close to integrable ones. J. Nonlinear Sci., 6(1):6–14, 1996.zbMATHMathSciNetGoogle Scholar
  335. [Tre97]
    D. Treschev. The method of continuous averaging in the problem of separation of fast and slow motions. Reg. Chaotic Dyn., 2(3):9–20, 1997.Google Scholar
  336. [Tre07]
    V.A. Trenogin. The development and applications of the asymptotic method of Lyusternik and Vishik. Russ. Math. Surv., 25(4):119, 2007.Google Scholar
  337. [Vas63]
    A.B. Vasilieva. Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives. Russian Math. Surveys, 18:13–84, 1963.Google Scholar
  338. [Vas76]
    A.B. Vasilieva. The development of the theory of ordinary differential equations with a small parameter multiplying the highest derivative during the period 1966–1976. Russian Math. Surveys, 31(6):109–131, 1976.Google Scholar
  339. [VBK95]
    A.B. Vasil’eva, V.F. Butuzov, and L.V. Kalachev. The Boundary Function Method for Singular Perturbation Problems. SIAM, 1995.Google Scholar
  340. [VC93]
    A.F. Vakakis and C. Cetinkaya. Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry. SIAM J. Appl. Math., 53(1):265–282, 1993.zbMATHMathSciNetGoogle Scholar
  341. [vGKS05]
    S. van Gils, M. Krupa, and P. Szmolyan. Asymptotic expansions using blow-up. ZAMP, 56:369–397, 2005.zbMATHGoogle Scholar
  342. [Vit79]
    M. Vitins. Error bounds in the method of averaging based on properties of average motion. SIAM J. Math. Anal., 10:331–336, 1979.MathSciNetGoogle Scholar
  343. [Vor12]
    A. Voros. Zeta-regularization for exact-WKB resolution of a general 1D Schrödinger equation. J. Phys. A: Math. Theor., 45:374007, 2012.MathSciNetGoogle Scholar
  344. [Wal90a]
    G. Wallet. Singularité analytique et perturbation singulière en dimension 2. Bull. Soc. Math. France, 122:185–208, 1990.MathSciNetGoogle Scholar
  345. [Wal90b]
    G. Wallet. Surstabilité pour une equation différentielle analytique en dimension 1. Ann. Inst. Fourier, 120:557–595, 1990.MathSciNetGoogle Scholar
  346. [Wei12]
    S. Weinberg. Lectures on Quantum Mechanics. CUP, 2012.Google Scholar
  347. [Wen26]
    G. Wentzel. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Zeitschrift für Physik, 38(6):518–529, 1926.zbMATHGoogle Scholar
  348. [Wil75]
    K.G. Wilson. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys., 47(4):773–840, 1975.Google Scholar
  349. [Wil81]
    M. Williams. Another look at Ackerberg–O’Malley resonance. SIAM J. Appl. Math., 41(2):288–293, 1981.zbMATHMathSciNetGoogle Scholar
  350. [Wil83]
    K.G. Wilson. The renormalization group and critical phenomena. Rev. Mod. Phys., 55(3):583–600, 1983.Google Scholar
  351. [WK74]
    K.G. Wilson and J. Kogut. The renormalization group and the ε expansion. Phys. Rep., 12(2):75–199, 1974.Google Scholar
  352. [WKB97]
    S. Weibel, T.J. Kaper, and J. Baillieul. Global dynamics of a rapidly forced cart and pendulum. Nonlinear Dyn., 13(2):131–170, 1997.zbMATHMathSciNetGoogle Scholar
  353. [WLW08]
    Z. Wang, W. Lin, and G. Wang. Differentiability and its asymptotic analysis for nonlinear singularly perturbed boundary value problem. Nonlinear Anal., 69(7):2236–2250, 2008.zbMATHMathSciNetGoogle Scholar
  354. [Wol77]
    D.J. Wollkind. Singular perturbation techniques: a comparison of the method of matched asymptotic expansions with that of multiple scales. SIAM Rev., 19(3):502–516, 1977.zbMATHMathSciNetGoogle Scholar
  355. [Woo93]
    S.L. Woodruff. The use of an invariance condition in the solution of multiple-scale singular perturbation problems: ordinary differential equations. Stud. Appl. Math., 90(3):225–248, 1993.zbMATHMathSciNetGoogle Scholar
  356. [Woo95]
    S.L. Woodruff. A uniformly valid asymptotic solution to a matrix system of ordinary differential equations and a proof of its validity. Stud. Appl. Math., 94(4):393–413, 1995.zbMATHMathSciNetGoogle Scholar
  357. [WR76]
    B. Willner and L.A. Rubenfeld. Uniform asymptotic solution for a linear ordinary differential equation with one μ-th order turning point: analytic theory. Comm. Pure Appl. Math., 29(4):343–367, 1976.zbMATHMathSciNetGoogle Scholar
  358. [XH00]
    J.X. Xin and J.M. Hyman. Stability, relaxation, and oscillation of biodegradation fronts. SIAM J. Appl. Math., 61(2):472–505, 2000.zbMATHMathSciNetGoogle Scholar
  359. [ZJ07]
    J. Zinn-Justin. Phase Transitions and Renormalization Group. OUP, 2007.Google Scholar
  360. [ZJJ04]
    J. Zinn-Justin and U.D. Jentschura. Multi-instantons and exact results I: conjectures, WKB expansions, and instanton interactions. Ann. Phys., 313:197–267, 2004.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations