Tracking Invariant Manifolds

  • Christian Kuehn
Part of the Applied Mathematical Sciences book series (AMS, volume 191)


The main goal of this chapter is to discuss the tracking of invariant manifolds when they transition from a fast to a slow motion and vice versa. That is, we would like to understand how trajectories or more general objects enter and leave the vicinity of a normally hyperbolic critical manifold. The main application is to show how the geometric theory of fast–slow systems can be used to prove the persistence of candidate orbits for \(0 <\varepsilon \ll 1\).


  1. [AAA12]
    B. Ambrosio and M.A. Aziz-Alaoui. Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Comput. Math. Appl., 64(5):934–943, 2012.Google Scholar
  2. [AG13]
    G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.Google Scholar
  3. [AK13c]
    F. Achleitner and C. Kuehn. Traveling waves for a bistable equation with nonlocal-diffusion. arXiv:1312.6304, pages 1–45, 2013.Google Scholar
  4. [aKM89]
    E. Yanagida amd K. Maginu. Stability of double-pulse solutions in nerve axon equations. SIAM J. Appl. Math., 49(4):1158–1173, 1989.Google Scholar
  5. [AMR88]
    R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis and Applications. Springer, 1988.Google Scholar
  6. [AW74]
    D.G. Aronson and H.F. Weinberger. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In Partial Differential Equations and Related Topics, volume 446 of Lecture Notes in Mathematics, pages 5–49. Springer, 1974.Google Scholar
  7. [Bat94]
    F. Battelli. Heteroclinic orbits in singular systems: a unifying approach. J. Dyn. Diff. Eq., 6(1): 147–173, 1994.zbMATHMathSciNetGoogle Scholar
  8. [BD02]
    D.C. Bell and B. Deng. Singular perturbation of n-front travelling waves in the FitzHugh–Nagumo equations. Nonl. Anal.: Real World Appl., 3:515–541, 2002.Google Scholar
  9. [Bos95]
    A. Bose. Symmetric and antisymmetric pulses in parallel coupled nerve fibres. SIAM J. Appl. Math., 55(6):1650–1674, 1995.zbMATHMathSciNetGoogle Scholar
  10. [BP01]
    F. Battelli and K.J. Palmer. Transverse intersection of invariant manifolds in singular systems. J. Different. Equat., 177:77–120, 2001.MathSciNetGoogle Scholar
  11. [BP03]
    F. Battelli and K.J. Palmer. Singular perturbations, transversality, and Sil’nikov saddle-focus homoclinic orbits. J. Dynam. Different. Equat., 15:357–425, 2003.zbMATHMathSciNetGoogle Scholar
  12. [BP08]
    F. Battelli and K.J. Palmer. Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems. Ukrainian Math. J., 60(1):28–55, 2008.zbMATHMathSciNetGoogle Scholar
  13. [Bru96]
    P. Brunovsky. Tracking invariant manifolds without differential forms. Acta Math. Univ. Comenianae, LXV(1):23–32, 1996.Google Scholar
  14. [Bru98]
    P. Brunovsky. S-shaped bifurcation of a singularly perturbed boundary value problem. J. Differential Equat., 145(1):52–100, 1998.zbMATHMathSciNetGoogle Scholar
  15. [Bru99]
    P. Brunovsky. C r-inclination theorems for singularly perturbed equations. J. Differential Equat., 155(1):133–152, 1999.zbMATHMathSciNetGoogle Scholar
  16. [BS99a]
    W.-J. Beyn and M. Stiefenhofer. A direct approach to homoclinic orbits in the fast dynamics of singularly perturbed systems. J. Dyn. Diff. Equat., 11(4):671–709, 1999.zbMATHMathSciNetGoogle Scholar
  17. [Car77]
    G.A. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differential Equat., 23:335–367, 1977.zbMATHMathSciNetGoogle Scholar
  18. [CC12]
    C.-N. Chen and Y.S. Choi. Standing pulse solutions to FitzHugh–Nagumo equations. Arch. Rational Mech. Anal., 206: 741–777, 2012.zbMATHMathSciNetGoogle Scholar
  19. [CDF90]
    S.-N. Chow, B. Deng, and B. Fiedler. Homoclinic bifurcation at resonant eigenvalues. J. Dyn. Diff. Eq., 2(2):177–244, 1990.zbMATHMathSciNetGoogle Scholar
  20. [CDT90]
    S.-N. Chow, B. Deng, and D. Terman. The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits. SIAM J. Math. Anal., 21(1):179–204, 1990.zbMATHMathSciNetGoogle Scholar
  21. [CKK+09]
    A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J.D.M. Rademacher. Unfolding a tangent equilibrium-to-periodic heteroclinic cycle. SIAM J. Appl. Dyn. Sys., 8(3): 1261–1304, 2009.zbMATHMathSciNetGoogle Scholar
  22. [CL55]
    E.A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill, 1955.Google Scholar
  23. [CL95]
    S.N. Chow and H. Leiva. Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differential Equat., 120(2):429–477, 1995.zbMATHMathSciNetGoogle Scholar
  24. [Cop78]
    W.A. Coppel. Dichotomies in Stability Theory. Springer, 1978.Google Scholar
  25. [Cro87]
    J. Cronin, editor. Mathematical Aspects of Hodgkin–Huxley Neural Theory. CUP, 1987.Google Scholar
  26. [Den90]
    B. Deng. Homoclinic bifurcations with nonhyperbolic equilibria. SIAM J. Math. Anal., 21(3):693–720, 1990.zbMATHMathSciNetGoogle Scholar
  27. [Den91]
    B. Deng. The existence of infinitely many traveling front and back waves in the FitzHugh–Nagumo equations. SIAM J. Appl. Math., 22(6):1631–1650, 1991.zbMATHGoogle Scholar
  28. [Den93a]
    B. Deng. Homoclinic twisting bifurcations and cusp horseshoe maps. J. Dyn. Diff. Eq., 5(3):417–467, 1993.zbMATHGoogle Scholar
  29. [Den93b]
    B. Deng. On Silnikov’s homoclinic saddle-focus theorem. J. Differential Equat., 102:305–329, 1993.zbMATHGoogle Scholar
  30. [Den95b]
    B. Deng. Sil’nikov-hopf bifurcations. J. Differential Equat., 119:1–23, 1995.zbMATHGoogle Scholar
  31. [DH00b]
    A. Doelman and G. Hek. Homoclinic saddle-node bifurcations in singularly perturbed systems. J. Dyn. Diff. Eq., 12(1):169–215, 2000.zbMATHMathSciNetGoogle Scholar
  32. [DRS07]
    E.N. Dancer, X. Ren, and S. Shusen. On multiple radial solutions of a singularly perturbed nonlinear elliptic system. SIAM J. Math. Anal., 38(6):2005–2041, 2007.zbMATHMathSciNetGoogle Scholar
  33. [Eck92]
    W. Eckhaus. Singular perturbations of homoclinic orbits in \(\mathbb{R}^{4}\). SIAM J. Math. Anal., 23(5):1269–1290, 1992.zbMATHMathSciNetGoogle Scholar
  34. [EFF82]
    J.W. Evans, N. Fenichel, and J.A. Feroe. Double impulse solutions in nerve axon equations. SIAM J. Appl. Math., 42(2): 219–234, 1982.zbMATHMathSciNetGoogle Scholar
  35. [EL07]
    B. Eisenberg and W. Liu. Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal., 38(6):1932–1966, 2007.zbMATHMathSciNetGoogle Scholar
  36. [Feč00]
    M. Fečkan. Bifurcation of multi-bump homoclinics in systems with normal and slow variables. Electron. J. Differential Equations, 41:1–17, 2000.Google Scholar
  37. [Fer78]
    J.A. Feroe. Temporal stability of solitary impulse solutions of a nerve equation. Biophys. J., 21(2): 103–110, 1978.Google Scholar
  38. [Fer81]
    J.A. Feroe. Traveling waves of infinitely many pulses in nerve equations. Math. Biosci., 55(3):189–203, 1981.zbMATHMathSciNetGoogle Scholar
  39. [Fer82]
    J.A. Feroe. Existence and stability of multiple impulse solutions of a nerve equation. SIAM J. Appl. Math., 42(2):235–246, 1982.zbMATHMathSciNetGoogle Scholar
  40. [Fit55]
    R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics, 17:257–269, 1955.Google Scholar
  41. [Fit60]
    R. FitzHugh. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol., 43:867–896, 1960.Google Scholar
  42. [Fit61]
    R. FitzHugh. Impulses and physiological states in models of nerve membranes. Biophys. J., 1:445–466, 1961.Google Scholar
  43. [FK96]
    A.C. Fowler and G. Kember. The Lorenz-Krishnamurthy slow manifold. J. Atmospheric Sci., 53(10):1433–1437, 1996.MathSciNetGoogle Scholar
  44. [GC04]
    B. Guo and H. Chen. Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schrödinger equation. Comm. Nonl. Sci. Numer. Simul., 9(4):431–441, 2004.zbMATHGoogle Scholar
  45. [GH83]
    J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.zbMATHGoogle Scholar
  46. [GK09b]
    J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: The singular limit. Discr. Cont. Dyn. Syst. S, 2(4):851–872, 2009.zbMATHMathSciNetGoogle Scholar
  47. [Gru98]
    J. Gruendler. Homoclinic solutions and chaos in ordinary differential equations with singular perturbations. Trans. Amer. Math. Soc., 350(9):3797–3814, 1998.zbMATHMathSciNetGoogle Scholar
  48. [GS93]
    I. Gasser and P. Szmolyan. A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal., 24(4):968–986, 1993.zbMATHMathSciNetGoogle Scholar
  49. [GS95]
    I. Gasser and P. Szmolyan. Detonation and deflagration waves with multistep reaction schemes. SIAM J. Appl. Math., 55(1): 175–191, 1995.zbMATHMathSciNetGoogle Scholar
  50. [GS01a]
    I. Gasser and P. Szmolyan. The frozen flow and the equilibrium limits in a polyatomic gas with relaxation effects. Math. Mod. Meth. Appl. Sci., 11(1):87–104, 2001.zbMATHMathSciNetGoogle Scholar
  51. [GTGN97]
    S.V. Gonchenko, D.V. Turaev, P. Gaspard, and G. Nicolis. Complexity in the bifurcation structure of homoclinic loops to a saddle-focus. Nonlinearity, 10:409–423, 1997.zbMATHMathSciNetGoogle Scholar
  52. [Has75]
    S.P. Hastings. Some mathematical problems from neurobiology. The American Mathematical Monthly, 82(9):881–895, 1975.zbMATHMathSciNetGoogle Scholar
  53. [Has76a]
    S.P. Hastings. On the existence of homoclinic and periodic orbits in the FitzHugh–Nagumo equations. Quart. J. Math. Oxford, 2(27):123–134, 1976.MathSciNetGoogle Scholar
  54. [Has76b]
    S.P. Hastings. On travelling wave solutions of the Hodgkin–Huxley equations. Arch. Rat. Mech. Anal., 60(3):229–257, 1976.zbMATHMathSciNetGoogle Scholar
  55. [Has82]
    S.P. Hastings. Single and multiple pulse waves for the FitzHugh–Nagumo. SIAM J. Appl. Math., 42(2):247–260, 1982.zbMATHMathSciNetGoogle Scholar
  56. [HK00]
    A.J. Homburg and B. Krauskopf. Resonant homoclinic flip bifurcations. J. Dyn. Diff. Eq., 12(4): 807–850, 2000.zbMATHMathSciNetGoogle Scholar
  57. [HKKO98]
    M. Hayes, T.J. Kaper, N. Kopell, and K. Ono. On the application of geometric singular perturbation theory to some classical two point boundary value problems. Int. J. Bif. Chaos, 8(2): 189–209, 1998.zbMATHMathSciNetGoogle Scholar
  58. [HKN01b]
    A.J. Homburg, H. Kokubu, and V. Naudot. Homoclinic-doubling cascades. Arch. Rational Mech. Anal., 160:195–243, 2001.zbMATHMathSciNetGoogle Scholar
  59. [HS10b]
    A.J. Homburg and B. Sandstede. Homoclinic and heteroclinic bifurcations in vector fields. In H. Broer, F. Takens, and B. Hasselblatt, editors, Handbook of Dynamical Systems III, pages 379–524. Elsevier, 2010.Google Scholar
  60. [HW93]
    G. Haller and S. Wiggins. Orbits homoclinic to resonances: the Hamiltonian case. Physica D, 66(3):298–346, 1993.zbMATHMathSciNetGoogle Scholar
  61. [HW95]
    G. Haller and S. Wiggins. N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems. Arch. Rat. Mach. Anal., 130(1):25–101, 1995.zbMATHMathSciNetGoogle Scholar
  62. [HYY09]
    C.-H. Hsu, T.-H. Yang, and C.-R. Yang. Diversity of traveling wave solutions in FitzHugh–Nagumo type equations. J. Differential Equat., 247(4):1185–1205, 2009.zbMATHMathSciNetGoogle Scholar
  63. [IN94]
    T. Ikeda and Y. Nishiura. Pattern selection for two breathers. SIAM J. Appl. Math., 54(1):195–230, 1994.zbMATHMathSciNetGoogle Scholar
  64. [Jän01]
    K. Jänich. Vector Analysis. Springer, 2001.Google Scholar
  65. [JK94b]
    C.K.R.T. Jones and N. Kopell. Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Differential Equat., 108(1):64–88, 1994.zbMATHMathSciNetGoogle Scholar
  66. [JKK96]
    C.K.R.T. Jones, T.J. Kaper, and N. Kopell. Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal., 27(2):558–577, 1996.zbMATHMathSciNetGoogle Scholar
  67. [JKL01]
    C.K.R.T. Jones, N. Kopell, and R. Langer. Construction of the FitzHugh–Nagumo pulse using differential forms. In Multiple-Time-Scale Dynamical Systems, pages 101–113. Springer, 2001.Google Scholar
  68. [Jon84]
    C.K.R.T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 286(2): 431–469, 1984.zbMATHMathSciNetGoogle Scholar
  69. [Jon95]
    C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995.Google Scholar
  70. [JR98]
    C.K.R.T. Jones and J.E. Rubin. Existence of standing pulse solutions to an inhomogeneous reaction–diffusion system. J. Dyn. Diff. Eq., 10(1):1–35, 1998.zbMATHMathSciNetGoogle Scholar
  71. [JT09]
    C.K.R.T. Jones and S.-K. Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discr. Cont. Dyn. Syst. S, 2(4):967–1023, 2009.zbMATHMathSciNetGoogle Scholar
  72. [Kap98]
    T. Kapitula. Bifurcating bright and dark solitary waves for the perturbed cubic-quintic nonlinear Schrödinger equation. Proc. R. Soc. Edinburgh A, 128(3):585–629, 1998.zbMATHMathSciNetGoogle Scholar
  73. [Kaz00b]
    B. Kazmierczak. Travelling waves in a system modelling laser sustained plasma. Z. Angew. Math. Phys., 51(2):304–317, 2000.zbMATHMathSciNetGoogle Scholar
  74. [KFR01]
    Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi. Belyakov homoclinic bifurcations in a tritrophic food chain model. SIAM J. Appl. Math., 62(2):462–487, 2001.zbMATHMathSciNetGoogle Scholar
  75. [KJ01]
    T.J. Kaper and C.K.R.T. Jones. A primer on the exchange lemma for fast–slow systems. In Multiple-Time-Scale Dynamical Systems, pages 65–88. Springer, 2001.Google Scholar
  76. [KJK00]
    P.G. Kevrekidis, C.K.R.T. Jones, and T. Kapitula. Exponentially small splitting of heteroclinc orbits: from the rapidly forced pendulum to discrete solitons. Phys. Lett. A, 269(2): 120–129, 2000.zbMATHMathSciNetGoogle Scholar
  77. [KK96]
    T.J. Kaper and G. Kovacic. Multi-bump orbits homoclinic to resonance bands. Trans. Amer. Math. Soc., 348:3835–3888, 1996.zbMATHMathSciNetGoogle Scholar
  78. [KKO96a]
    M. Kisaka, H. Kokubu, and H. Oka. Bifurcations to n-homoclinic orbits and n-periodic orbits in vector fields. J. Dyn. Diff. Eq., 5(2):305–357, 1996.MathSciNetGoogle Scholar
  79. [KKO96b]
    H. Kokubu, M. Komuro, and H. Oka. Multiple homoclinic bifurcations from orbit-flip. I. Successive homoclinic doublings. Int. J. Bif. Chaos, 6(5):833–850, 1996.Google Scholar
  80. [KL88]
    H. Kurland and M. Levi. Transversal heteroclinic intersections in slowly varying systems. In Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits, pages 29–38. Springer, 1988.Google Scholar
  81. [KMR95]
    Y.A. Kuznetsov, S. Muratori, and S. Rinaldi. Homoclinic bifurcations in slow–fast second order systems. Nonl. Anal.: Theory, Methods & Appl., 25(7):747–767, 1995.Google Scholar
  82. [Kov92]
    G. Kovacic. Dissipative dynamics of orbits homoclinic to a resonance band. Phys. Lett. A, 167(2): 143–150, 1992.MathSciNetGoogle Scholar
  83. [Kov93]
    G. Kovacic. Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems. J. Dyn. Diff. Eq., 5(4):559–597, 1993.zbMATHMathSciNetGoogle Scholar
  84. [Kov95]
    G. Kovacic. Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems. SIAM J. Math. Anal., 26(6):1611–1643, 1995.zbMATHMathSciNetGoogle Scholar
  85. [KT84]
    G.A. Klaasen and W.C. Troy. Stationary wave solutions of a system of reaction–diffusion equations derived from the FitzHugh–Nagumo equations. SIAM J. Appl. Math., 44(1):96–110, 1984.zbMATHMathSciNetGoogle Scholar
  86. [Kuz04]
    Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.zbMATHGoogle Scholar
  87. [Lee06]
    J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006.Google Scholar
  88. [Lin90a]
    X.-B. Lin. Heteroclinic bifurcation and singularly perturbed boundary value problems. J. Differential Equat., 84:319–382, 1990.zbMATHGoogle Scholar
  89. [Lin09]
    X.-B. Lin. Algebraic dichotomies with an application to the stability of Riemann solutions of conservation laws. J. Differential Equat., 11(1):2924–2965, 2009.Google Scholar
  90. [Liu00]
    D. Liu. Exchange lemmas for singular perturbation problems with certain turning points. J. Differential Equat., 167:134–180, 2000.zbMATHGoogle Scholar
  91. [Liu05]
    W. Liu. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math., 65(3):754–766, 2005.zbMATHMathSciNetGoogle Scholar
  92. [Liu06]
    W. Liu. Geometric singular perturbations for multiple turning points: invariant manifolds and exchange lemmas. J. Dyn. Diff. Eq., 18(3):667–691, 2006.zbMATHGoogle Scholar
  93. [LV06]
    W. Liu and E. Van Vleck. Turning points and traveling waves in FitzHugh–Nagumo type equations. J. Differential Equat., 225(2):381–410, 2006.zbMATHGoogle Scholar
  94. [LW10a]
    W. Liu and B. Wang. Poisson–Nernst–Planck systems for narrow tubular-like membrane channels. J. Dyn. Diff. Eq., 22(3):413–437, 2010.zbMATHGoogle Scholar
  95. [McK70]
    H.P. McKean. Nagumo’s equation. Adv. Math., 4:209–223, 1970.zbMATHMathSciNetGoogle Scholar
  96. [MR90]
    V. Moll and S.I. Rosencrans. Calculation of the threshold surface for nerve equations. SIAM J. Appl. Math., 50:1419–1441, 1990.zbMATHMathSciNetGoogle Scholar
  97. [MS96d]
    D. McLaughlin and J. Shatah. Melnikov analysis for PDE’s. In P. Deift, C.D. Levermore, and C.E. Wayne, editors, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), pages 51–100. AMS, 1996.Google Scholar
  98. [Mun97]
    J.R. Munkres. Analysis on Manifolds. Westview Press, 1997.Google Scholar
  99. [NAY62]
    J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 50:2061–2070, 1962.Google Scholar
  100. [Nii96]
    S. Nii. N-homoclinic bifurcations for homoclinic orbits changing their twisting. J. Dyn. Diff. Eq., 8(4):549–572, 1996.zbMATHMathSciNetGoogle Scholar
  101. [Pal82]
    K.J. Palmer. Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations. J. Differential Equat., 46(3):324–345, 1982.zbMATHGoogle Scholar
  102. [Pal84]
    K.J. Palmer. Exponential dichotomies and transversal homoclinic points. J. Differential Equat., 55: 225–256, 1984.zbMATHGoogle Scholar
  103. [Pal88]
    K.J. Palmer. Exponential dichotomies and Fredholm operators. Proc. Amer. Math. Soc., 104:149–156, 1988.zbMATHMathSciNetGoogle Scholar
  104. [Rad05]
    J.D.M. Rademacher. Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit. J. Differential Equat., 218:390–443, 2005.zbMATHMathSciNetGoogle Scholar
  105. [Rin75]
    J. Rinzel. Spatial stability of traveling wave solutions of a nerve conduction equation. Biophys. J., 15(10):975–988, 1975.Google Scholar
  106. [Rin77]
    J. Rinzel. Repetitive activity and Hopf bifurcation under point-stimulation for a simple FitzHugh–Nagumo nerve conduction model. J. Math. Biol., 5(4):363–382, 1977.MathSciNetGoogle Scholar
  107. [RK73]
    J. Rinzel and J.B. Keller. Traveling wave solutions of a nerve conduction equation. Biophys. J., 13(12):1313–1337, 1973.Google Scholar
  108. [RT82a]
    J. Rinzel and D. Terman. Propagation phenomena in a bistable reaction–diffusion system. SIAM J. Appl. Math., 42(5):1111–1137, 1982.zbMATHMathSciNetGoogle Scholar
  109. [Sak90]
    K. Sakamoto. Invariant manifolds in singular perturbation problems for ordinary differential equations. Proc. Royal Soc. Ed., 116:45–78, 1990.zbMATHMathSciNetGoogle Scholar
  110. [San95]
    B. Sandstede. Constructing dynamical systems having homoclinic bifurcation points of codimension two. J. Dyn. Diff. Eq., 9(2):269–288, 1995.MathSciNetGoogle Scholar
  111. [San98]
    B. Sandstede. Stability of N-fronts bifurcating from a twisted heteroclinic loop and an application to the FitzHugh–Nagumo equation. SIAM J. Math. Anal., 29(1):183–207, 1998.zbMATHMathSciNetGoogle Scholar
  112. [SBJM00]
    B. Sandstede, S. Balasuriya, C.K.R.T. Jones, and P. Miller. Melnikov theory for finite-time vector fields. Nonlinearity, 13(4):1357, 2000.Google Scholar
  113. [Sch08a]
    S. Schecter. Exchange lemmas 1: Deng’s lemma. J. Differential Equat., 245(2):392–410, 2008.zbMATHMathSciNetGoogle Scholar
  114. [Sch08b]
    S. Schecter. Exchange lemmas 2: general exchange lemma. J. Differential Equat., 245(2):411–441, 2008.zbMATHMathSciNetGoogle Scholar
  115. [Shi65]
    L.P. Shilnikov. A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl., 6:163–166, 1965.Google Scholar
  116. [SP96]
    P. Soravia and E. Panagiotis. Phase-field theory for FitzHugh–Nagumo-type systems. SIAM J. Math. Anal., 27(5):1341–1359, 1996.zbMATHMathSciNetGoogle Scholar
  117. [Spi99]
    M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish, 1999. Volumes 1–5.Google Scholar
  118. [ST01]
    C. Soto-Trevino. A geometric method for periodic orbits in singularly-perturbed systems. In C.K.R.T. Jones, editor, Multiple Time Scale Dynamical Systems, volume 122 of The IMA Volumes in Mathematics and its Applications, pages 141–202. Springer, 2001.Google Scholar
  119. [STK96]
    C. Soto-Trevino and T.J. Kaper. Higher-order Melnikov theory for adiabatic systems. J. Math. Phys., 37:6220–6250, 1996.zbMATHMathSciNetGoogle Scholar
  120. [Szm91]
    P. Szmolyan. Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Differential Equat., 92:252–281, 1991.zbMATHMathSciNetGoogle Scholar
  121. [Szm92]
    P. Szmolyan. Analysis of a singularly perturbed traveling-wave problem. SIAM J. Appl. Math., 52(2):485–493, 1992.zbMATHMathSciNetGoogle Scholar
  122. [Tin94]
    S.-K. Tin. On the dynamics of tangent spaces near normally hyperbolic manifolds and singularly perturbed boundary value problems. PhD thesis - Brown University, 1994.Google Scholar
  123. [Tin95]
    S.-K. Tin. Transversality of double-pulse homoclinic orbits in the inviscid Lorenz-Krishnamurthy system. Physica D, 83(4):383–408, 1995.zbMATHMathSciNetGoogle Scholar
  124. [TK88]
    J.J. Tyson and J.P. Keener. Singular perturbation theory of traveling waves in excitable media (a review). Physica D, 32(3):327–361, 1988.zbMATHMathSciNetGoogle Scholar
  125. [TKJ94]
    S.-K. Tin, N. Kopell, and C.K.R.T. Jones. Invariant manifolds and singularly perturbed boundary value problems. SIAM J. Numer. Anal., 31(6):1558–1576, 1994.zbMATHMathSciNetGoogle Scholar
  126. [Van08]
    J. Vanneste. Asymptotics of a slow manifold. SIAM J. Appl. Dyn. Sys., 7(4):1163–1190, 2008.zbMATHMathSciNetGoogle Scholar
  127. [Wec02]
    M. Wechselberger. Extending Melnikov-theory to invariant manifolds on non-compact domains. Dynamical Systems, 17(3):215–233, 2002.zbMATHMathSciNetGoogle Scholar
  128. [WK05]
    S. Wieczorek and B. Krauskopf. Bifurcations of n-homoclinic orbits in optically injected lasers. Nonlinearity, 18:1095–1125, 2005.zbMATHMathSciNetGoogle Scholar
  129. [XHZ05b]
    F. Xie, M. Han, and W. Zhang. Singular homoclinic bifurcations in a planar fast–slow system. J. Dyn. Contr. Syst., 11(3):433–448, 2005.zbMATHMathSciNetGoogle Scholar
  130. [Xie12]
    F. Xie. On a class of singular boundary value problems with singular perturbation. J. Differential Equat., 252:2370–2387, 2012.zbMATHGoogle Scholar
  131. [Yan87]
    E. Yanagida. Branching of double pulse solutions from single pulse solutions in nerve axon equation. J. Differential Equat., 66:243–262, 1987.zbMATHMathSciNetGoogle Scholar
  132. [Yan88]
    E. Yanagida. Existence of periodic travelling wave solutions of reaction–diffusion systems with fast–slow dynamics. J. Differential Equat., 76:115–134, 1988.zbMATHMathSciNetGoogle Scholar
  133. [Yan89]
    E. Yanagida. Stability of travelling front solutions of the FitzHugh–Nagumo equations. Math. Comput. Modelling, 12(3):289–301, 1989.zbMATHMathSciNetGoogle Scholar
  134. [ZE10]
    E.P. Zemskov and I.R. Epstein. Wave propagation in a FitzHugh–Nagumo-type model with modified excitability. Phys. Rev. E, 82:026207, 2010.MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations