Direct Asymptotic Methods

  • Christian Kuehn
Part of the Applied Mathematical Sciences book series (AMS, volume 191)


In this chapter, we shall just attempt to compute asymptotic expansions for fast–slow systems by more or less brute force. It is a very instructive technique: just substitute an asymptotic expansion for the solution and see what happens. In other words, where does such a substitution seem to give a good approximation, and where are modifications required?


Asymptotic Expansion Slow Flow Asymptotic Series Slow Manifold Singular Perturbation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [ADF90]
    F. Awiszus, J. Dehnhardt, and T. Funke. The singularly perturbed Hodgkin–Huxley equations as a tool for the analysis of repetitive nerve activity. J. Math. Biol., 28(2):177–195, 1990.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [AG82]
    C.M. Andersen and J.F. Geer. Power series expansions for the frequency and period of the limit cycle of the van der Pol equation. SIAM J. Appl. Math., 42(3):678–693, 1982.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [AG13]
    G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.Google Scholar
  4. [Ana83]
    K.K. Anand. On relaxation oscillations governed by a second order differential equation for a large parameter and with a piecewise linear function. Canad. Math. Bull., 26(1):80–91, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [Arn94]
    V.I. Arnold. Encyclopedia of Mathematical Sciences: Dynamical Systems V. Springer, 1994.Google Scholar
  6. [AS65]
    M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover, 1965.Google Scholar
  7. [Bal00]
    W. Balser. Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer, 2000.Google Scholar
  8. [BG74]
    H. Bavinck and J. Grasman. The method of matched asymptotic expansions for the periodic solution of the van der Pol equation. Int. J. Nonl. Mech., 9(6):421–434, 1974.CrossRefzbMATHGoogle Scholar
  9. [BM61]
    N.N. Bogoliubov and I.A. Mitropol’skii. Asymptotic methods in the theory of non-linear oscillations. Gordon Breach Science Pub., 1961.Google Scholar
  10. [Bot95]
    S. Bottani. Pulse-coupled relaxation oscillators: from biological synchronization to self-organized criticality. Phys. Rev. Lett., 74:4189–4192, 1995.CrossRefGoogle Scholar
  11. [Bre60]
    H. Bremmer. The scientific work of Balthasar van der Pol. Philips Tech. Rev., 22:36–52, 1960.MathSciNetGoogle Scholar
  12. [Brø12]
    M. Brøns. An iterative method for the canard explosion in general planar systems. arXiv:1209.1109, pages 1–9, 2012.Google Scholar
  13. [Car52]
    M.L. Cartwright. Van der Pol’s equation for relaxation oscillations. In Contributions to the Theory of Nonlinear Oscillations II, pages 3–18. Princeton University Press, 1952.Google Scholar
  14. [CE01]
    R. Curtu and B. Ermentrout. Oscillations in a refractory neural net. J. Math. Biol., 43(1):81–100, 2001.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [CH76]
    C. Comstock and G.C. Hsiao. Singular perturbations for difference equations. Rocky Moun. J. Math., 6(4):561, 1976.Google Scholar
  16. [Che49]
    T.M. Cherry. Uniform asymptotic expansions. J. London Math. Soc., 1(2):121–130, 1949.CrossRefMathSciNetGoogle Scholar
  17. [Che50]
    T.M. Cherry. Uniform asymptotic formulae for functions with transition points. Trans. Amer. Math. Soc., 68(2):224–257, 1950.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [CO74]
    J. Chen and R.E. O’Malley. On the asymptotic solution of a two-parameter boundary value problem of chemical reactor theory. SIAM J. Appl. Math., 26(4):717–729, 1974.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [Coo01]
    S. Coombes. Phase locking in networks of synaptically coupled McKean relaxation oscillators. Physica D, 160(3):173–188, 2001.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [DA67]
    R.T. Davis and K.T. Alfriend. Solutions to van der Pol’s equation using a perturbation method. Int. J. Non-Linear Mech., 2(2):153–162, 1967.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [DG90]
    M.B. Dadfar and J. Geer. Resonances and power series solutions of the forced van der Pol oscillator. SIAM J. Appl. Math., 50(5):1496–1506, 1990.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [DGA84]
    M.B. Dadfar, J. Geer, and C.M. Andersen. Perturbation analysis of the limit cycle of the free van der Pol equation. SIAM J. Appl. Math., 44(5):881–895, 1984.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [Dor47]
    A.A. Dorodnitsyn. Asymptotic solutions of van der Pol’s equation. Prikl. Matem. i Mekhan., 11(3): 313–328, 1947.zbMATHMathSciNetGoogle Scholar
  24. [DS49]
    B.R. Dudley and H.W. Swift. Frictional relaxation oscillations. Philosophical Magazine, 40:849–861, 1949.CrossRefzbMATHGoogle Scholar
  25. [EdJ82]
    W. Eckhaus and E.M. de Jager. Theory and Applications of Singular Perturbations. Springer, 1982.Google Scholar
  26. [EM92]
    S.-I. Ei and M. Mimura. Relaxation oscillations in combustion models of thermal self-ignition. J. Dyn. Diff. Eq., 4(1):191–229, 1992.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [Fin83]
    W.F. Finden. An asymptotic approximation for singular perturbations. SIAM J. Appl. Math., 43(1):107–119, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [FK02]
    D.B. Forger and R.E. Kronauer. Reconciling mathematical models of biological clocks by averaging on approximate manifolds. SIAM J. Appl. Math., 62(4):1281–1296, 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [Fra98]
    S.J. Fraser. Double perturbation series in the differential equations of enzyme kinetics. J. Chem. Phys., 109(2):411–423, 1998.CrossRefGoogle Scholar
  30. [GER78]
    E.D. Gilles, G. Eigenberger, and W. Ruppel. Relaxation oscillations in chemical reactors. AIChE J., 24(5):912–920, 1978.CrossRefMathSciNetGoogle Scholar
  31. [GHW05]
    J. Guckenheimer, K. Hoffman, and W. Weckesser. Bifurcations of relaxation oscillations near folded saddles. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15(11):3411–3421, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [Gil83]
    A.D. MacGillivray. On the leading term of the outer asymptotic expansion of van der Pol’s equation. SIAM J. Appl. Math., 43(6):1221–1239, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [Gil90]
    A.D. MacGillivray. Justification of matching with the transition expansion of van der Pol’s equation. SIAM J. Math. Anal., 21(1):221–240, 1990.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [GJ79]
    J. Grasman and M.J.W. Jansen. Mutually synchronized relaxation oscillators as prototypes of oscillating systems in biology. J. Math. Biol., 7(2):171–197, 1979.CrossRefzbMATHMathSciNetGoogle Scholar
  35. [GK91]
    E.V. Grigor’eva and S.A. Kashchenko. Relaxation oscillations in a system of equations describing the operation of a solid-state laser with a nonlinear element of delaying action. Differential Equations, 27(5):506–512, 1991.zbMATHMathSciNetGoogle Scholar
  36. [GL12]
    J.-M. Ginoux and C. Letellier. Van der Pol and the history of relaxation oscillations: toward the emergence of a concept. Chaos, 22:023120, 2012.CrossRefGoogle Scholar
  37. [GNV84]
    J. Grasman, H. Nijmeijer, and E.J.M. Veling. Singular perturbations and a mapping on an interval for the forced van der Pol relaxation oscillator. Physica D, 13(1):195–210, 1984.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [GP87]
    D.L. González and O. Piro. Global bifurcations and phase portrait of an analytically solvable nonlinear oscillator: relaxation oscillations and saddle-node collisions. Phys. Rev. A, 36(9):4402–4410, 1987.CrossRefMathSciNetGoogle Scholar
  39. [Gra80]
    J. Grasman. Relaxation oscillations of a van der Pol equation with large critical forcing term. Quart. Appl. Math., 38:9–16, 1980.zbMATHMathSciNetGoogle Scholar
  40. [Gra84]
    J. Grasman. The mathematical modeling of entrained biological oscillators. Bull. Math. Biol., 46(3):407–422, 1984.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [Gra87]
    J. Grasman. Asymptotic Methods for Relaxation Oscillations and Applications. Springer, 1987.Google Scholar
  42. [Guc04]
    J. Guckenheimer. Bifurcations of relaxation oscillations. In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, volume 137 of NATO Sci. Ser. II Math. Phys. Chem., pages 295–316. Springer, 2004.Google Scholar
  43. [GV73]
    J. Grasman and E.J.M. Veling. An asymptotic formula for the period of a Volterra-Lotka system. Math. Biosci., 18(1):185–189, 1973.CrossRefzbMATHGoogle Scholar
  44. [Has83]
    S.P. Hastings. Formal relaxation oscillations for a model of a catalytic particle. Quart. Appl. Math., 41(4):395–405, 1983.MathSciNetGoogle Scholar
  45. [Hog03]
    S.J. Hogan. Relaxation oscillations in a system with a piecewise smooth drag coefficient. J. Sound Vibration, 263(2):467–471, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [Hol95]
    M.H. Holmes. Introduction to Perturbation Methods. Springer, 1995.Google Scholar
  47. [How76a]
    F.A. Howes. Effective characterization of the asymptotic behavior of solutions of singularly perturbed boundary value problems. SIAM J. Appl. Math., 30(2):296–306, 1976.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [How76b]
    F.A. Howes. Singular perturbations and differential inequalities, volume 5 of Memoirs of the Amer. Math. Soc. AMS, 1976.Google Scholar
  49. [How78b]
    F.A. Howes. Boundary-interior layer interactions in nonlinear singular perturbation theory, volume 203 of Memoirs of the Amer. Math. Soc. AMS, 1978.Google Scholar
  50. [How79a]
    F.A. Howes. An improved boundary layer estimate for a singularly perturbed initial value problem. Math. Zeitschr., 165(2):135–142, 1979.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [HS09]
    S.-B. Hsu and J. Shi. Relaxation oscillation profile of limit cycle in predator–prey system. Discr. Cont. Dyn. Syst. B, 11(4):893–911, 2009.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [HT90]
    C. Hunter and M. Tajdari. Singular complex periodic solutions of van der Pol’s equation. SIAM J. Appl. Math., 50(6):1764–1779, 1990.CrossRefzbMATHMathSciNetGoogle Scholar
  53. [Izh00b]
    E. Izhikevich. Phase equations for relaxation oscillators. SIAM J. Appl. Math., 60(5):1789–1805, 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  54. [JF96]
    E.M. De Jager and J. Furu. The Theory of Singular Perturbations. North-Holland, 1996.Google Scholar
  55. [Jr60]
    W.A. Harris Jr. Singular perturbations of two-point boundary problems for systems of ordinary differential equations. Arch. Rat. Mech. Anal., 5(1):212–225, 1960.CrossRefzbMATHGoogle Scholar
  56. [Jr62]
    W.A. Harris Jr. Singular perturbations of a boundary value problem for a nonlinear system of differential equations. Duke Math. J., 29(3):429–445, 1962.CrossRefzbMATHMathSciNetGoogle Scholar
  57. [Kar49]
    G. Karreman. Some types of relaxation oscillations as models of all-or-none phenomena. Bull. Math. Biophys., 11(4):311–318, 1949.CrossRefMathSciNetGoogle Scholar
  58. [KK95]
    A.Yu. Kolesov and Yu.S. Kolesov. Relaxation oscillations in mathematical models of ecology. Proc. Steklov Inst. Math., 199(1):1–126, 1995.Google Scholar
  59. [KKK04]
    A. Kuznetsov, M. Kærn, and N. Kopell. Synchrony in a population of hysteresis-based genetic oscillators. SIAM J. Appl. Math., 65(2):392–425, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  60. [KM89]
    A.Yu. Kolesov and E.F. Mishchenko. Existence and stability of the relaxation torus. Russ. Math. Surv., 44(3):204–205, 1989.Google Scholar
  61. [Kol92]
    A.Yu. Kolesov. Specific relaxation cycles of systems of Lotka–Volterra type. Math. USSR-Izvestiya, 38(3):503–523, 1992.CrossRefMathSciNetGoogle Scholar
  62. [Kon08]
    L.I. Kononenko. The influence of the integral manifold shape on the onset of relaxation oscillations. J. Appl. Ind. Math., 2(4):508–512, 2008.CrossRefMathSciNetGoogle Scholar
  63. [KS95]
    N. Kopell and D. Somers. Anti-phase solutions in relaxation oscillators coupled through excitatory interactions. J. Math. Biol., 33(3):261–280, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [KvdGL97]
    B. Krauskopf, W.A. van der Graaf, and D. Lenstra. Bifurcations of relaxation oscillations in an optically injected diode laser. Quantum Semiclass. Optics, 9(5):797–809, 1997.CrossRefMathSciNetGoogle Scholar
  65. [LaS49]
    J. LaSalle. Relaxation oscillations. Quart. Appl. Math., 7:1–19, 1949.MathSciNetGoogle Scholar
  66. [LE88]
    S.A. Lomov and A.G. Eliseev. Asymptotic integration of singularly perturbed problems. Russ. Math. Surv., 43(3):1–63, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  67. [Lef57]
    S. Lefschetz. Differential Equations: Geometric Theory. Interscience Publishers, 1957.Google Scholar
  68. [Lom92]
    S.A. Lomov. Introduction to the General Theory of Singular Perturbations. AMS, 1992.Google Scholar
  69. [LR60]
    C.C. Lin and A.L. Rabenstein. On the asymptotic solutions of a class of ordinary differential equations of the fourth order: I. Existence of regular formal solutions. Trans. Amer. Math. Soc., 94(1):24–57, 1960.Google Scholar
  70. [LR84b]
    P. Lundberg and L. Rahm. A nonlinear convective system with oscillatory behaviour for certain parameter regimes. J. Fluid Mech., 139:237–260, 1984.CrossRefzbMATHMathSciNetGoogle Scholar
  71. [LS42]
    N. Levinson and O.K. Smith. A general equation for relaxation oscillations. Duke Math. J., 9(2): 382–403, 1942.CrossRefzbMATHMathSciNetGoogle Scholar
  72. [LS86]
    J. Lorenz and R. Sanders. Second order nonlinear singular perturbation problems with boundary conditions of mixed type. SIAM J. Math. Anal., 17(3):580–594, 1986.CrossRefzbMATHMathSciNetGoogle Scholar
  73. [LT13]
    E. Lee and D. Terman. Stable antiphase oscillations in a network of electrically coupled model neurons. SIAM J. Appl. Dyn. Syst., 12(1):1–27, 2013.CrossRefzbMATHMathSciNetGoogle Scholar
  74. [LZSK12]
    C.R. Laing, Y. Zou, B. Smith, and I.G. Kevrekidis. Managing heterogeneity in the study of neural oscillator dynamics. J. Math. Neurosci., 2:5, 2012.CrossRefMathSciNetGoogle Scholar
  75. [Mac68]
    B.D. MacMillan. Asymptotic methods for systems of differential equations in which some variables have very short response times. SIAM J. Appl. Math., 16(4):704–722, 1968.CrossRefMathSciNetGoogle Scholar
  76. [Mil06]
    P.D. Miller. Applied Asymptotic Analysis. AMS, 2006.Google Scholar
  77. [Min47]
    N. Minorsky. Introduction to Non-Linear Mechanics. Topological Methods. Analytical Methods. Non-Linear Resonance. Relaxation Oscillations. Ann Arbor [Mich.]: J.W. Edwards, 1947.Google Scholar
  78. [Min62]
    N. Minorsky. Nonlinear Oscillations. Van Nostrand, 1962.Google Scholar
  79. [Mis58]
    E.F. Mishchenko. Asymptotic theory of relaxation oscillations described by systems of second order. Mat. Sb. N.S. (in Russian), 44(86):457–480, 1958.Google Scholar
  80. [Mis61]
    E.F. Mishchenko. Asymptotic calculation of periodic solutions of systems of differential equations containing small parameters in the derivatives. AMS Transl. Ser., 2(18):199–230, 1961.Google Scholar
  81. [MK93b]
    E.F. Mishchenko and A.Yu. Kolesov. Asymptotical theory of relaxation oscillations. Proc. Steklov Inst. Math., 197:1–93, 1993.MathSciNetGoogle Scholar
  82. [MKKR94]
    E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, and N.Kh. Rozov. Asymptotic Methods in Singularly Perturbed Systems. Plenum Press, 1994.Google Scholar
  83. [MLSA07]
    R. Mankin, T. Laasa, E. Soika, and A. Ainsaar. Noise-controlled slow–fast oscillations in predator–prey models with the Beddington functional response. Eur. Phys. J. B, 59:259–269, 2007.CrossRefGoogle Scholar
  84. [MR80]
    E.F. Mishchenko and N.Kh. Rozov. Differential Equations with Small Parameters and Relaxation Oscillations (translated from Russian). Plenum Press, 1980.Google Scholar
  85. [MR83]
    P.A. Markowich and C.A. Ringhofer. Singular perturbation problems with a singularity of the second kind. SIAM J. Math. Anal., 14(5):897–914, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  86. [Nip83]
    K. Nipp. An extension of Tikhonov’s theorem in singular perturbations for the planar case. Z. Angew. Math. Phys., 34(3):277–290, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  87. [OF80]
    R.E. O’Malley and J.E. Flaherty. Analytical and numerical methods for nonlinear singular singularly-perturbed initial value problems. SIAM J. Appl. Math., 38(2):225–248, 1980.CrossRefzbMATHMathSciNetGoogle Scholar
  88. [O’M68a]
    R.E. O’Malley. A boundary value problem for certain nonlinear second order differential equations with a small parameter. Arch. Rat. Mech. Anal., 29(1):66–74, 1968.zbMATHMathSciNetGoogle Scholar
  89. [O’M70c]
    R.E. O’Malley. Singular perturbations of a boundary value problem for a system of nonlinear differential equations. J. Differential Equat., 8:431–447, 1970.CrossRefzbMATHMathSciNetGoogle Scholar
  90. [O’M76b]
    R.E. O’Malley. Phase-plane solutions to some singular perturbation problems. J. Math. Anal. Appl., 54(2):449–466, 1976.CrossRefzbMATHMathSciNetGoogle Scholar
  91. [O’M78a]
    R.E. O’Malley. On singular singularly-perturbed initial value problems. Applicable Analysis, 8(1): 71–81, 1978.CrossRefzbMATHMathSciNetGoogle Scholar
  92. [O’M79]
    R.E. O’Malley. A singular singularly-perturbed linear boundary value problem. SIAM J. Math. Anal., 10(4):695–708, 1979.CrossRefzbMATHMathSciNetGoogle Scholar
  93. [PB11]
    Y. Pomeau and M. Le Berre. Critical speed-up vs critical slow-down: a new kind of relaxation oscillation with application to stick-slip phenomena. arXiv:1107.3331, pages 1–8, 2011.Google Scholar
  94. [PR64]
    S.S. Pul’kin and N.H. Rozov. The asymptotic theory of relaxation oscillations in systems with one degree of freedom. I. Calculation of the phase trajectories. Vestnik Moskov. Univ. Ser. I Mat. Meh. (in Russian), 1964(2):70–82, 1964.Google Scholar
  95. [QGNR97]
    D. Quinn, B. Gladman, P. Nicholson, and R. Rand. Relaxation oscillations in tidally evolving satellites. Celestial Mech. Dynam. Astronom., 67(2):111–130, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  96. [Rab57]
    A.L. Rabenstein. Asymptotic solutions of u iv +λ 2(zu″ +α u′ +β u) = 0 for large | λ | . Arch. Rat. Mech. Anal., 1(1):418–435, 1957.CrossRefMathSciNetGoogle Scholar
  97. [Roz62]
    N.H. Rozov. Asymptotic calculation of nearly discontinuous solutions of a second-order system of differential equations. Dokl. Akad. Nauk SSSR (in Russian), 145:38–40, 1962.Google Scholar
  98. [Roz64]
    N.H. Rozov. On the asymptotic theory of relaxation oscillations in systems with one degree of freedom. II. Calculation of the period of the limit cycle. Vestnik Moskov. Univ. Ser. I Mat. Meh. (in Russian), 1964(3):56–65, 1964.Google Scholar
  99. [RS93]
    P.F. Rowast and A.I. Selverston. Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. J. Neurophysiol., 70(3):1030–1053, 1993.Google Scholar
  100. [RWV11]
    A. Rasmussen, J. Wyller and J.O. Vik. Relaxation oscillations in spruce-budworm interactions. Nonlinear Anal. Real World Appl., 12:304–319, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  101. [Sib63a]
    Y. Sibuya. Asymptotic solutions of initial value problems of ordinary differential equations with a small parameter in the derivative, I. Arch. Rat. Mech. Anal., 14:304–311, 1963.CrossRefzbMATHMathSciNetGoogle Scholar
  102. [SK93b]
    D. Somers and N. Kopell. Rapid synchronization through fast threshold modulation. Biol. Cybern., 68(5):393–407, 1993.CrossRefGoogle Scholar
  103. [SK95a]
    D. Somers and N. Kopell. Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D, 89(1):169–183, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  104. [SM08]
    I. Siekmann and H. Malchow. Local collapses in the Truscott–Brindley model. Math. Model. Nat. Phenom., 3(4):114–130, 2008.CrossRefMathSciNetGoogle Scholar
  105. [Smi85]
    D.R. Smith. Singular-Perturbation Theory: An Introduction with Applications. CUP, 1985.Google Scholar
  106. [SS13b]
    R. Singh and S. Sinha. Spatiotemporal order, disorder, and propagating defects in homogeneous system of relaxation oscillators. Phys. Rev. E, 87:012907, 2013.CrossRefGoogle Scholar
  107. [SY10]
    F.J. Solis and C. Yebra. Modeling the pursuit in natural systems: a relaxed oscillation approach. Math. Comput. Modelling, 52(7):956–961, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  108. [TL97]
    D. Terman and E. Lee. Partial synchronization in a network of neural oscillators. SIAM J. Appl. Math., 57(1):252–293, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  109. [TLRB11]
    D. Terman, E. Lee, J. Rinzel, and T. Bem. Stability of anti-phase and in-phase locking by electrical coupling but not fast inhibition alone. SIAM J. Appl. Dyn. Syst., 10(3):1127–1153, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  110. [Tro76]
    W.C. Troy. Bifurcation phenomena in FitzHugh’s nerve conduction equations. J. Math. Anal. Appl., 54(3):678–690, 1976.CrossRefzbMATHMathSciNetGoogle Scholar
  111. [Tys84]
    J.J. Tyson. Relaxation oscillations in the revised Oregonator. J. Chem. Phys., 80(12):6079–6082, 1984.CrossRefMathSciNetGoogle Scholar
  112. [Was02]
    W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Dover, 2002.Google Scholar
  113. [Wes39]
    A.J. Wesselink. Stellar variability and relaxation oscillations. Astrophys. J., 89:659–668, 1939.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations