Normal Forms

  • Christian Kuehn
Part of the Applied Mathematical Sciences book series (AMS, volume 191)


Having developed the main theorems of perturbations of invariant manifolds, we aim to bring a fast–slow system into normal form . As this book was written, there was no complete general theory for what a “normal form” for a fast–slow system should be.


Normal Form Invariant Manifold Slow Variable Slow Flow Coordinate Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AB02]
    O. Alvarez and M. Bardi. Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim., 40(4):1159–1188, 2002.CrossRefMathSciNetGoogle Scholar
  2. [Abe85a]
    E.H. Abed. Multiparameter singular perturbation problems: iterative expansions and asymptotic stability. Syst. Contr. Lett., 5(4):279–282, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [Abe86a]
    E.H. Abed. Decomposition and stability for multiparameter singular perturbation problems. IEEE Transactions on Automatic Control, 31(10):925–934, 1986.zbMATHCrossRefGoogle Scholar
  4. [Abe86b]
    E.H. Abed. Strong D-stability. Syst. Contr. Lett., 7(3):207–212, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [ACV13]
    M. Avendano-Camacho and Yu. Vorobiev. On the global structure of normal forms for slow–fast Hamiltonian systems. Russ. J. Math. Phys., pages 138–148, 2013.Google Scholar
  6. [AG97b]
    Z. Artstein and V. Gaitsgory. Tracking fast trajectories along a slow dynamics: a singular perturbations approach. SIAM J. Contr. Optim., 35:1487, 1997.zbMATHMathSciNetGoogle Scholar
  7. [AG00]
    Z. Artstein and V. Gaitsgory. The value function of singularly perturbed control systems. Appl. Math. Optim., 41:425–445, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [AG13]
    G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.Google Scholar
  9. [AH78]
    D. Altshuler and A.H. Haddad. Near optimal smoothing for singularly perturbed linear systems. Automatica, 14:81–87, 1978.zbMATHCrossRefGoogle Scholar
  10. [AK00]
    A.N. Atassi and H.K. Khalil. Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Syst. Contr. Lett., 39(3):183–191, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Ard80]
    M.D. Ardema. Nonlinear singularly perturbed optimal control problems with singular arcs. Automatica, 16:99–104, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Arn73]
    V.I. Arnold. Ordinary Differential Equations. MIT Press, 1973.Google Scholar
  13. [Arn92]
    V.I. Arnold. Catastrophe Theory. Springer, 1992.Google Scholar
  14. [Arn94]
    V.I. Arnold. Encyclopedia of Mathematical Sciences: Dynamical Systems V. Springer, 1994.Google Scholar
  15. [Art05]
    Z. Artstein. Bang-bang controls in the singular perturbations limit. Control and Cybernetics, 34(3): 645–663, 2005.zbMATHMathSciNetGoogle Scholar
  16. [Art09]
    Z. Artstein. Pontryagin Maximum Principle for coupled slow and fast systems. Control and Cybernetics, 38(4):1003–1019, 2009.zbMATHMathSciNetGoogle Scholar
  17. [AZSPS82]
    S. Ahmed-Zaid, P. Sauer, M. Pai, and M. Sarioglu. Reduced order modeling of synchronous machines using singular perturbation. IEEE Trans. Circ. Syst., 29(11):782–786, 1982.zbMATHCrossRefGoogle Scholar
  18. [Bal82]
    M.J. Balas. Reduced-order feedback control of distributed parameter systems via singular perturbation methods. J. Math. Anal. Appl., 87:281–294, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [BB87]
    A. Bensoussan and G.L. Blankenship. Singular perturbations in stochastic control. In Singular Perturbations and Asymptotic Analysis in Control Systems, volume 90 of Lecture Notes in Control and Information Sciences, pages 171–260. Springer, 1987.Google Scholar
  20. [BD86]
    S.V. Belokopytov and M.G. Dmitriev. Direct scheme in optimal control problems with fast and slow motions. Syst. Contr. Lett., pages 129–135, 1986.Google Scholar
  21. [BDMNC96]
    J.P. Barbot, M. Djemai, S. Monaco, and D. Normand-Cyrot. Analysis and control of nonlinear singularly perturbed systems under sampling. Control and Dynamic Systems, 79:203–246, 1996.CrossRefGoogle Scholar
  22. [Ben82]
    E. Benoît. Systems lents-rapides dans \(\mathbb{R}^{3}\) et leurs canards. In Third Snepfenried geometry conference, volume 2, pages 159–191. Soc. Math. France, 1982.Google Scholar
  23. [Ben84]
    A. Bensoussan. On some singular perturbation problems arising in stochastic control. Stoch. Anal. Appl., 2:13–53, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [BG88]
    I. Borno and Z. Gajic. Parallel algorithms for optimal control of weakly coupled and singularly perturbed jump linear systems. Automatica, 31(7):985–988, 1988.CrossRefMathSciNetGoogle Scholar
  25. [BG92]
    J.J.W. Bruce and P.J. Giblin. Curves and Singularities: a geometrical introduction to singularity theory. CUP, 1992.Google Scholar
  26. [BG07b]
    V.S. Borkar and V. Gaitsgory. Singular perturbations in ergodic control of diffusions. SIAM J. Control Optim., 46:1562–1577, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [Bla81]
    G. Blankenship. Singularly perturbed difference equations in optimal control problems. IEEE Trans. Auto. Contr., 1981:911–917, 1981.CrossRefMathSciNetGoogle Scholar
  28. [BP91]
    V.N. Bogaevski and A. Povzner. Algebraic Methods in Nonlinear Perturbation Theory. Springer, 1991.Google Scholar
  29. [Cam78]
    S.L. Campbell. Singular perturbation of autonomous linear systems, II. J. Differential Equat., 29(3):362–373, 1978.zbMATHCrossRefGoogle Scholar
  30. [CD96]
    P.D. Christofides and P. Daoutidis. Compensation of measurable disturbances for two-time-scale nonlinear systems. Automatica, 32(11):1553–1573, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [CG00]
    C. Coumarbatch and Z. Gajic. Exact decomposition of the algebraic Riccati equation of deterministic multimodeling optimal control problems. IEEE Trams. Aut. Contr., 45(4):790–794, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [Chi10]
    C. Chicone. Ordinary Differential Equations with Applications. Texts in Applied Mathematics. Springer, 2nd edition, 2010.Google Scholar
  33. [Cho77]
    J.H. Chow. Preservation of controllability in linear time-invariant perturbed systems. Int. J. Contr., 25(5):697–704, 1977.zbMATHCrossRefGoogle Scholar
  34. [Cho78]
    J.H. Chow. Asymptotic stability of a class of non-linear singularly perturbed systems. J. Frank. Inst., 305(5):275–281, 1978.zbMATHCrossRefGoogle Scholar
  35. [Cho79]
    J.H. Chow. A class of singularly perturbed, nonlinear, fixed-endpoint control problems. J. Optim. Theor. Appl., 29(2):231–251, 1979.zbMATHCrossRefGoogle Scholar
  36. [Chr00]
    P.D. Christofides. Robust output feedback control of nonlinear singularly perturbed systems. Automatica, 36(1):45–52, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [CK76]
    J.H. Chow and P.V. Kokotovic. A decomposition of near-optimum regulators for systems with slow and fast modes. IEEE Trans. Aut. Contr., 21(5):701–705, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [CK78a]
    J.H. Chow and P.V. Kokotovic. Near-optimal feedback stabilization of a class of nonlinear singularly perturbed systems. SIAM J. Contr. Optim., 16(5):756–770, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [CK78b]
    J.H. Chow and P.V. Kokotovic. Two-time-scale feedback design of a class of nonlinear systems. IEEE Trans. Aut. Contr., 23(3):438–443, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [CPS90]
    A.J. Calise, J.V.R. Prasad, and B. Siciliano. Design of optimal output feedback compensators in two-time scale systems. IEEE Trans. Auto. Contr., 35(4):488–492, 1990.zbMATHCrossRefGoogle Scholar
  41. [CR79]
    S.L. Campbell and N.J. Rose. Singular perturbation of autonomous linear systems. SIAM J. Math. Anal., 10(3):542–551, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [DG79]
    A.L. Dontchev and T.R. Giocev. Convex singularly perturbed optimal control problem with fixed final state, controllability and convergence. Optimization, 10(3):345–355, 1979.zbMATHMathSciNetGoogle Scholar
  43. [DH82]
    V. Dragan and A. Halanay. Suboptimal stabilization of linear systems with several time scales. Int. J. Contr., 36:109–126, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [DK84]
    M.G. Dmitriev and A.M. Klishevic. Iterative solution of optimal control problems with fast and slow motions. Syst. Contr. Lett., 4(4):223–226, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  45. [DK06]
    M.G. Dmitriev and G.A. Kurina. Singular perturbations in control problems. Autom. Remote Contr., 67:1–43, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  46. [Dmi78]
    M.G. Dmitriev. On a class of singularly. perturbed problems of optimal control. J. Appl. Math. Mech., 42(2):238–242, 1978.Google Scholar
  47. [Don83]
    A.L. Dontchev. Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, volume 52 of Lect. Notes Contr. Inf. Sci. Springer, 1983.Google Scholar
  48. [Don92]
    A.L. Dontchev. Time-scale decomposition of the reachable set of constrained linear systems. Math. Contr. Sign. Syst., 5(3):327–340, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  49. [DS88]
    A.L. Dontchev and J.I. Slavov. Lipschitz properties of the attainable set of singularly perturbed linear systems. Syst. Contr. Lett., 11(5):385–391, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  50. [DV83b]
    A.L. Dontchev and V. Veliov. Singular perturbation in Mayer’s problem for linear systems. SIAM J. Control Optim., 21(4):566–581, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  51. [EA86]
    H. Eyad and L. André. On the stability of multiple time-scale systems. Int. J. Contr., 44:211–218, 1986.zbMATHCrossRefGoogle Scholar
  52. [Fen79]
    N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equat., 31:53–98, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  53. [FFH97]
    A.J. Fossard, J. Foisneau, and T.H. Huynh. Approximate closed-loop optimization of nonlinear systems by singular perturbation technique. In Nonlinear Systems, pages 189–246. Springer, 1997.Google Scholar
  54. [FG76]
    M.I. Freedman and B. Granhoff. Formal asymptotic solution of a singularly perturbed nonlinear optimal control problem. J. Optim. Theor. Appl., 19(2):301–325, 1976.zbMATHCrossRefGoogle Scholar
  55. [FGH01]
    J.A. Filar, V. Gaitsgory, and A.B. Haurie. Control of singularly perturbed hybrid stochastic systems. IEEE Trans. Aut. Contr., 46(2):179–190, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  56. [FK76]
    M.I. Freedman and J.L. Kaplan. Singular perturbations of two-point boundary value problems arising in optimal control. SIAM J. Contr. Optim., 14(2):189–215, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  57. [Fra82]
    B.A. Francis. Convergence in the boundary layer for singularly perturbed equations. Automatica, 18(1):57–62, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  58. [Fri01]
    E. Fridman. A descriptor system approach to nonlinear singularly perturbed optimal control problem. Automatica, 37(4):543–549, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  59. [Fri06a]
    E. Fridman. Robust sampled-data H control of linear singularly perturbed systems. IEEE Transations on Automatic Control, 51(3):470–475, 2006.CrossRefMathSciNetGoogle Scholar
  60. [Gai92]
    V. Gaitsgory. Suboptimization of singularly perturbed control systems. SIAM J. Contr. Optim., 30(5):1228–1249, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  61. [Gai04]
    V. Gaitsgory. On a representation of the limit occupational measures set of a control system with applications to singularly perturbed control systems. SIAM J. Contr. Optim., 43(1):325–340, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  62. [Gaj86]
    Z. Gajić. Numerical fixed-point solution for near-optimum regulators of linear quadratic gaussian control problems for singularly perturbed systems. Int. J. Contr., 43(2):373–387, 1986.zbMATHCrossRefGoogle Scholar
  63. [Gaj88]
    Z. Gajić. The existence of a unique and bounded solution of the algebraic Riccati equation of multimodel estimation and control problems. Syst. Contr. Lett., 10(3):185–190, 1988.zbMATHCrossRefGoogle Scholar
  64. [GG74]
    M. Golubitsky and V. Guillemin. Stable Mappings and their Singularities. Springer, 1974.Google Scholar
  65. [GG88]
    T. Grodt and Z. Gajic. The recursive reduced-order numerical solution of the singularly perturbed matrix differential Riccati equation. IEEE Trans. Aut. Contr., 33(8):751–754, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  66. [GG97]
    V. Gaitsgory and G. Grammel. On the construction of asymptotically optimal controls for singularly perturbed systems. Syst. Contr. Lett., 30(2):139–147, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  67. [GH83]
    J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.zbMATHCrossRefGoogle Scholar
  68. [Gil93]
    R. Gilmore. Catastrophe Theory for Scientists and Engineers. Dover, 1993.Google Scholar
  69. [GK86]
    Z. Gajić and H. Khalil. Multimodel strategies under random disturbances and imperfect partial observations. Automatica, 22(1):121–125, 1986.zbMATHCrossRefGoogle Scholar
  70. [GL01]
    Z. Gajić and M.-T. Lim. Optimal Control of Singularly Perturbed Linear Systems and Applications. Marcel Dekker, 2001.Google Scholar
  71. [GO10]
    E.V. Goncharova and A.I. Ovseevich. Asymptotic estimates for reachable sets of singularly perturbed linear systems. Diff. Uravneniya, 46(12):1737–1748, 2010.zbMATHMathSciNetGoogle Scholar
  72. [GPS90]
    Z. Gajić, D. Petkovski, and X. Shen. Singularly perturbed and weakly coupled linear control systems: a recursive approach. Springer, 1990.Google Scholar
  73. [GS85]
    M. Golubitsky and D. Schaeffer. Singularities and Groups in Bifurcation Theory, volume 1. Springer, 1985.Google Scholar
  74. [GSS85]
    M. Golubitsky, D. Schaeffer, and I. Stewart. Singularities and Groups in Bifurcation Theory, volume 2. Springer, 1985.Google Scholar
  75. [GT03]
    M. Grossglauser and D.N. Tse. A time-scale decomposition approach to measurement-based admission control. IEEE/ACM Trans. Netw., 11(4):550–563, 2003.CrossRefGoogle Scholar
  76. [HK71]
    A. Haddad and P. Kokotovic. Note on singular perturbation of linear state regulators. IEEE Trans. Aut. Contr., 16(3):279–281, 1971.CrossRefGoogle Scholar
  77. [HK77]
    A. Haddad and P. Kokotovic. Stochastic control of linear singularly perturbed systems. IEEE Trans. Aut. Contr., 22(5):815–821, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  78. [HSD03]
    M.W. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, 2nd edition, 2003.Google Scholar
  79. [IK85]
    P. Ioannou and P. Kokotovic. Decentralized adaptive control of interconnected systems with reduced-order models. Automatica, 21(4):401–412, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  80. [Ily97]
    Yu. Ilyashenko. Embedding theorems for local maps, slow–fast systems and bifurcation from Morse–Smale to Morse–Williams. Amer. Math. Soc. Transl., 180(2):127–139, 1997.MathSciNetGoogle Scholar
  81. [ISKB92]
    A. Isidori, S.S. Sastry, P.V. Kokotovic, and C.I. Byrnes. Singularly perturbed zero dynamics of nonlinear systems. IEEE Trans. Auto. Contr., 37(10):1625–1631, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  82. [Jav78a]
    S.H. Javid. The time-optimal control of a class of non-linear singularly perturbed systems. Int. J. Contr., 27(6):831–836, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  83. [JK77]
    S.H. Javid and P.V. Kokotovic. A decomposition of time scales for iterative computation of time-optimal controls. J. Optim. Theor. Appl., 21(4):459–468, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  84. [JKK96]
    C.K.R.T. Jones, T.J. Kaper, and N. Kopell. Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal., 27(2):558–577, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  85. [Jon95]
    C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995.Google Scholar
  86. [Kap99]
    T.J. Kaper. An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In J. Cronin and R.E. O’Malley, editors, Analyzing Multiscale Phenomena Using Singular Perturbation Methods, pages 85–131. Springer, 1999.Google Scholar
  87. [KBG99]
    V. Kecman, S. Bingulac, and Z. Gajic. Eigenvector approach for order-reduction of singularly perturbed linear-quadratic optimal control problems. Automatica, 35(1):151–158, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  88. [KC92]
    H.K. Khalil and F.C. Chen. H -control of two-time-scale systems. Syst. Contr. Lett., 19(1):35–42, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  89. [KCD98]
    A. Kumar, P.D. Christofides, and P. Daoutidis. Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity. Chem. Engineer. Sci., 53(8):1491–1504, 1998.CrossRefGoogle Scholar
  90. [KCG10]
    S. Koskie, C. Coumarbatch, and Z. Gajic. Exact slow–fast decomposition of the singularly perturbed matrix differential Riccati equation. Appl. Math. Comput., 216(5):1401–1411, 2010.zbMATHCrossRefMathSciNetGoogle Scholar
  91. [KG84]
    H.K. Khalil and Z. Gajic. Near-optimum regulators for stochastic linear singularly perturbed systems. IEEE Trans. Aut. Contr., 29(6):531–541, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  92. [KH75]
    P.V. Kokotovic and A. Haddad. Controllability and time-optimal control of systems with slow and fast modes. IEEE Trans. Aut. Contr., 20(1):111–113, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  93. [KH89]
    H.K. Khalil and Y.N. Hu. Steering control of singularly perturbed systems: a composite control approach. Automatica, 25(1):65–75, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  94. [Kha79]
    H.K. Khalil. Stabilization of multiparameter singularly perturbed systems. IEEE Trans. Aut. Contr., 24(5):790–791, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  95. [Kha89]
    H.K. Khalil. Feedback control of nonstandard singularly perturbed systems. IEEE Trans. Aut. Contr., 34(10):1052–1060, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  96. [Kho89]
    K. Khorasani. Robust stabilization of non-linear systems with unmodelled dynamics. Int. J. Control, 50(3):827–844, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  97. [KJ01]
    T.J. Kaper and C.K.R.T. Jones. A primer on the exchange lemma for fast–slow systems. In Multiple-Time-Scale Dynamical Systems, pages 65–88. Springer, 2001.Google Scholar
  98. [KJS76]
    P.V. Kokotovic, R.E. O’Malley Jr, and P. Sannuti. Singular perturbations and order reduction in control theory - an overview. Automatica, 12(2):123–132, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  99. [KK86]
    K. Khorasani and P.V. Kokotovic. A corrective feedback design for nonlinear systems with fast actuators. IEEE Trans Aut. Contr., 31(1):67–69, 1986.zbMATHCrossRefGoogle Scholar
  100. [KKO99]
    P. Kokotovic, H.K. Khalil, and J. O’Reilly. Singular Perturbation Methods in Control: Analysis and Design. SIAM, 1999.Google Scholar
  101. [Kok75]
    P.V. Kokotovic. A Riccati equation for block-diagonalization of ill-conditioned systems. IEEE Trans. Aut. Contr., 20(6):812–814, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  102. [Kok81]
    P.V. Kokotovic. Subsystems, time scales and multimodeling. Automatica, 17(6):789–795, 1981.zbMATHCrossRefGoogle Scholar
  103. [Kok84]
    P.V. Kokotovic. Applications of singular perturbation techniques to control problems. SIAM Rev., 26(4):501–550, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  104. [KP91a]
    Y.M. Kabanov and S.M. Pergamenshchikov. On optimal control of singularly perturbed stochastic differential equations. In Modeling, Estimation and Control of Systems with Uncertainty, pages 200–209. Birkhäuser, 1991.Google Scholar
  105. [KP91b]
    Y.M. Kabanov and S.M. Pergamenshchikov. Optimal control of singularly perturbed stochastic linear systems. Stochastics, 36(2):109–135, 1991.zbMATHMathSciNetGoogle Scholar
  106. [KP97]
    Y.M. Kabanov and S.M. Pergamenshchikov. On convergence of attainability sets for controlled two-scale stochastic linear systems. SIAM J. Contr. Optim., 35(1):134–159, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  107. [KR96]
    Y.M. Kabanov and W.J. Runggaldier. On control of two-scale stochastic systems with linear dynamics in the fast variables. Math. Contr. Sig. Syst., 9(2):107–122, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  108. [KRP85]
    P. Kokotovic, B. Riedle, and L. Praly. On a stability criterion for continuous slow adaptation. Syst. Contr. Lett., 6(1):7–14, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  109. [KS68]
    P. Kokotovic and P. Sannuti. Singular perturbation method for reducing the model order in optimal control design. IEEE Trans. Aut. Contr., 13(4):377–384, 1968.CrossRefGoogle Scholar
  110. [KS01b]
    M. Krupa and P. Szmolyan. Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions. SIAM J. Math. Anal., 33(2):286–314, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  111. [Kun76]
    C.F. Kung. Singular perturbation of an infinite interval linear state regulator problem in optimal control. J. Math. Anal. Appl., 55(2):365–374, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  112. [Kuz04]
    Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.zbMATHCrossRefGoogle Scholar
  113. [KY72]
    P. Kokotovic and R. Yackel. Singular perturbation of linear regulators: basic theorems. IEEE Trans. Aut. Contr., 17(1):29–37, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  114. [LG00]
    M.T. Lim and Z. Gajic. Reduced-order H optimal filtering for systems with slow and fast modes. IEEE Tans. Circ. Syst., 47(2):250–254, 2000.CrossRefGoogle Scholar
  115. [LK84]
    B. Litkouhi and H. Khalil. Infinite-time regulators for singularly perturbed difference equations. Int. J. Contr., 39(3):587–598, 1984.zbMATHCrossRefGoogle Scholar
  116. [LK85a]
    B. Litkouhi and H. Khalil. Multirate and composite control of two-time-scale discrete-time systems. IEEE Trans. Aut. Contr., 30(7):645–651, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  117. [LS83]
    G.S. Ladde and D.D. Siljak. Multiparameter singular perturbations of linear systems with multiple time scales. Automatica, 19(4):385–394, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  118. [Lu76]
    Y.-C. Lu. Singularity Theory and an Introduction to Catastrophe Theory. Springer, 1976.Google Scholar
  119. [Mah82]
    M.S. Mahmoud. Structural properties of discrete systems with slow and fast modes. Large Scale Systems, 3(4):227–236, 1982.zbMATHMathSciNetGoogle Scholar
  120. [Mar85]
    R. Marino. High-gain feedback in non-linear control systems. Int. J. Control, 42(6):1369–1385, 1985.zbMATHCrossRefGoogle Scholar
  121. [MC85]
    D.D. Moerder and A.J. Calise. Two-time scale stabilization of systems with output feedback. J. Guid. Contr. Dyn., 8:731–736, 1985.zbMATHCrossRefGoogle Scholar
  122. [MCS86]
    M.S. Mahmoud, Y. Chen, and M.G. Singh. Discrete two-time-scale systems. Int. J. Syst. Sci., 17(8):1187–1207, 1986.zbMATHCrossRefGoogle Scholar
  123. [MK88]
    R. Marino and P.V. Kokotovic. A geometric approach to nonlinear singularly perturbed control systems. Automatica, 24(1):31–41, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  124. [MKKR94]
    E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, and N.Kh. Rozov. Asymptotic Methods in Singularly Perturbed Systems. Plenum Press, 1994.Google Scholar
  125. [MR80]
    E.F. Mishchenko and N.Kh. Rozov. Differential Equations with Small Parameters and Relaxation Oscillations (translated from Russian). Plenum Press, 1980.Google Scholar
  126. [MS84]
    R. Silva Madriz and S.S. Sastry. Input–output description of linear systems with multiple time-scales. Int. J. Contr., 40(4):699–721, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  127. [Mur02a]
    J. Murdock. Normal Forms and Unfoldings for Local Dynamical Systems. Springer, 2002.Google Scholar
  128. [Nai02]
    D.S. Naidu. Singular perturbations and time scales in control theory and applications: an overview. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 9:233–278, 2002.Google Scholar
  129. [Nay11]
    A.H. Nayfeh. The Method of Normal Forms. Wiley, 2011.Google Scholar
  130. [NP87]
    D.S. Naidu and D.B. Price. Time-scale synthesis of a closed-loop discrete optimal control system. J. Guid. Contr. Dyn., 10(5):417–421, 1987.zbMATHCrossRefGoogle Scholar
  131. [NP88]
    D.S. Naidu and D.B. Price. Singular perturbation and time scale approaches in discrete control systems. J. Guid. Contr. Dyn., 11(6):592–594, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  132. [NR85]
    D.S. Naidu and A.K. Rao. Singular Perturbation Analysis of Discrete Control Systems. Springer, 1985.Google Scholar
  133. [OK75]
    R.E. O’Malley and C.F. Kung. The singularly perturbed linear state regulator problem. II. SIAM J. Contr., 13(2):327–337, 1975.Google Scholar
  134. [Oka87]
    H. Oka. Constrained systems, characteristic surfaces, and normal forms. Japan J. Appl. Math., 4(3):393–431, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  135. [O’M72a]
    R.E. O’Malley. Singular perturbation of the time-invariant linear state regulator problem. J. Differential Equat., 12:117–128, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  136. [O’M72b]
    R.E. O’Malley. The singularly perturbed linear state regulator problem. SIAM J. Contr., 10(3): 399–413, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  137. [O’M74]
    R.E. O’Malley. Boundary layer methods for certain nonlinear singularly perturbed optimal control problems. J. Math. Anal. Appl., 45(2):468–484, 1974.zbMATHCrossRefMathSciNetGoogle Scholar
  138. [O’M75]
    R.E. O’Malley. On two methods of solution for a singularly perturbed linear state regulator problem. SIAM Rev., 17(1):16–37, 1975.CrossRefMathSciNetGoogle Scholar
  139. [O’M76a]
    R.E. O’Malley. A more direct solution of the nearly singular linear regulator problem. SIAM J. Contr. Optim., 14(6):1063–1077, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  140. [O’M78b]
    R.E. O’Malley. Singular perturbations and optimal control. In W.A. Coppel, editor, Mathematical Control Theory, volume 680 of Lect. Notes Math., pages 170–218. Springer, 1978.Google Scholar
  141. [O’R79a]
    J. O’Reilly. Full-order observers for a class of singularly perturbed linear time-varying systems. Int. J. Contr., 30(5):745–756, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  142. [O’R79b]
    J. O’Reilly. Two time-scale feedback stabilization of linear time-varying singularly perturbed systems. J. Frank. Inst., 308(5):465–474, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  143. [O’R80]
    J. O’Reilly. Dynamical feedback control for a class of singularly perturbed linear systems using a full-order observer. Int. J. Contr., 31(1):1–10, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  144. [OSS92]
    H.K. Ozcetin, A. Saberi, and P. Sannuti. Design for H almost disturbance decoupling problem with internal stability via state or measurement feedback-singular perturbation approach. Int. J. Contr., 55(4):901–944, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  145. [Phi80]
    R.G. Phillips. Reduced order modelling and control of two-time-scale discrete systems. Int. J. Contr., 31(4):765–780, 1980.zbMATHCrossRefGoogle Scholar
  146. [Phi83]
    R.G. Phillips. The equivalence of time-scale decomposition techniques used in the analysis and design of linear systems. Int. J. Contr., 37(6):1239–1257, 1983.zbMATHCrossRefGoogle Scholar
  147. [PK81]
    R. Phillips and P. Kokotovic. A singular perturbation approach to modeling and control of Markov chains. IEEE Trans. Aut, Contr., 26(5):1087–1094, 1981.Google Scholar
  148. [Por74a]
    B. Porter. Singular perturbation methods in the design of observers and stabilising feedback controllers for multivariable linear systems. Electronics Lett., 10(23):494–495, 1974.CrossRefGoogle Scholar
  149. [Por74b]
    B. Porter. Singular perturbation methods in the design of stabilizing feedback controllers for multivariable linear systems. Int. J. Contr., 20(4):689–692, 1974.zbMATHCrossRefGoogle Scholar
  150. [Por76]
    B. Porter. Design of stabilizing feedback controllers for a class of multivariable linear systems with slow and fast modes. Int. J. Contr., 23(1):49–54, 1976.zbMATHCrossRefGoogle Scholar
  151. [Por77]
    B. Porter. Singular perturbation methods in the design of full-order observers for multivariable linear systems. Int. J. Contr., 26(4):589–594, 1977.zbMATHCrossRefGoogle Scholar
  152. [Pos78]
    T. Poston. Catastrophe Theory and Its Applications. Dover, 1978.Google Scholar
  153. [PS75a]
    B. Porter and A.T. Shenton. Singular perturbation analysis of the transfer function matrices of a class of multivariable linear systems. Int. J. Contr., 21(4):655–660, 1975.zbMATHCrossRefGoogle Scholar
  154. [PS75b]
    B. Porter and A.T. Shenton. Singular perturbation methods of asymptotic eigenvalue assignment in multivariable linear systems. Int. J. Syst. Sci., 6(1):33–37, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  155. [QG92]
    M.T. Qureshi and Z. Gajic. A new version of the Chang transformation. IEEE Trans. Aut. Contr., 37(6):800–801, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  156. [RK86]
    B. Riedle and P. Kokotovic. Integral manifolds of slow adaptation. IEEE Trans. Aut. Contr., 31(4): 316–324, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  157. [RM00]
    A.V. Rao and K.D. Mease. Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems. Optim. Control Appl. Meth., 21:1–19, 2000.zbMATHCrossRefGoogle Scholar
  158. [Rob08]
    A.J. Roberts. Normal form transforms separate slow and fast modes in stochastic dynamical systems. Physica A, 387:12–38, 2008.CrossRefMathSciNetGoogle Scholar
  159. [Sab87]
    A. Saberi. Output-feedback control with almost-disturbance-decoupling property - a singular perturbation approach. Int. J. Contr., 45(5):1705–1722, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  160. [San74]
    P. Sannuti. Asymptotic series solution of singularly perturbed optimal control problems. Automatica, 10(2):183–194, 1974.zbMATHCrossRefMathSciNetGoogle Scholar
  161. [San75]
    P. Sannuti. Asymptotic expansions of singularly perturbed quasi-linear optimal systems. SIAM J. Contr., 13(3):572–592, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  162. [San77]
    P. Sannuti. On the controllability of singularly perturbed systems. IEEE Trans. Aut. Contr., 22(4):622–624, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  163. [San78]
    P. Sannuti. On the controllability of some singularly perturbed nonlinear systems. J. Math. Anal. Appl., 64(3):579–591, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  164. [San83b]
    P. Sannuti. Direct singular perturbation analysis of high-gain and cheap control problems. Automatica, 19(1):41–51, 1983.zbMATHCrossRefGoogle Scholar
  165. [Sau80]
    P.T. Saunders. An Introduction to Catastrophe Theory. CUP, 1980.Google Scholar
  166. [SD93]
    S. Sen and K.B. Datta. Stability bounds of singularity perturbed systems. IEEE Trans. Aut. Contr., 38(2):302–304, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  167. [SD99]
    P. Shi and V. Dragan. Asymptotic H control of singularly perturbed systems with parametric uncertainties. IEEE Trans. Aut. Contr., 44(9):1738–1742, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  168. [Ser13]
    O.S. Serea. Characterization of the optimal trajectories for the averaged dynamics associated to singularly perturbed control systems. J. Differential Equat., 255:4226–4243, 2013.zbMATHCrossRefMathSciNetGoogle Scholar
  169. [SGS92]
    W.C. Su, Z. Gajic, and X.M. Shen. The exact slow–fast decomposition of the algebraic Riccati equation of singularly perturbed systems. IEEE Trans. Aut. Contr., 37(9):1456–1459, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  170. [Sha04]
    Z.H. Shao. Robust stability of two-time-scale systems with nonlinear uncertainties. IEEE Trans. Aut. Contr., 49(2):258–261, 2004.CrossRefGoogle Scholar
  171. [Shi83]
    J. Shinar. On applications of singular perturbation techniques in nonlinear optimal control. Automatica, 19(2):203–211, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  172. [SHK89]
    S. Sastry, J. Hauser, and P. Kokotovic. Zero dynamics of regularly perturbed systems may be singularly perturbed. Syst. Contr. Lett., 13(4):299–314, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  173. [Sin82]
    R.N.P. Singh. The linear-quadratic-Gaussian problem for singularly perturbed systems. Int. J. Syst. Sci., 13:92–100, 1982.CrossRefGoogle Scholar
  174. [SK69a]
    P. Sannuti and P. Kokotovic. Near-optimum design of linear systems by a singular perturbation method. IEEE Trans. Aut. Contr., 14(1):15–22, 1969.CrossRefGoogle Scholar
  175. [SK69b]
    P. Sannuti and P. Kokotovic. Singular perturbation method for near optimum design of high-order non-linear systems. Automatica, 5(6):773–779, 1969.zbMATHCrossRefMathSciNetGoogle Scholar
  176. [SK84]
    A. Saberi and H. Khalil. Quadratic-type Lyapunov functions for singularly perturbed systems. IEEE Trans. Aut. Contr., 29(6):542–550, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  177. [SK85a]
    A. Saberi and H. Khalil. Stabilization and regulation of nonlinear singularly perturbed systems - composite control. IEEE Trans. Aut. Contr., 30(8):739–747, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  178. [SO87]
    P.M. Sharkey and J. O’Reilly. Exact design manifold control of a class of nonlinear singularly perturbed systems. IEEE Trans. Aut. Contr., 32(10):933–935, 1987.zbMATHCrossRefGoogle Scholar
  179. [SO88]
    P.M. Sharkey and J. O’Reilly. Composite control of non-linear singularly perturbed systems: a geometric approach. Int. J. Contr., 48(6):2491–2506, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  180. [SOK84]
    V.R. Saksena, J. O’Reilly, and P.V. Kokotovic. Singular perturbations and time-scale methods in control theory: survey 1976–1983. Automatica, 20(3):273–293, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  181. [Son93]
    H.M. Soner. Singular perturbations in manufacturing. SIAM J. Contr. Optim., 31:132–146, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  182. [Son98]
    E.D. Sontag. Mathematical Control Theory. Springer, 2nd edition, 1998.Google Scholar
  183. [Son04]
    E.D. Sontag. Some new directions in control theory inspired by systems biology. Syst. Biol., 1(1):9–18, 2004.CrossRefGoogle Scholar
  184. [SPC92]
    B. Siciliano, J.V.R. Prasad, and A.J. Calise. Output feedback two-time scale control of multilink flexible arms. J. Dyn. Syst. Measurem. Contr., 114:70–77, 1992.zbMATHCrossRefGoogle Scholar
  185. [SR88]
    H. Sira-Ramirez. Sliding regimes on slow manifolds of systems with fast actuators. Internat. J. Systems Sci., 19(6):875–887, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  186. [SS83]
    G.P. Syrcos and P. Sannuti. Singular perturbation modelling of continuous and discrete physical systems. Int. J. Contr., 37(5):1007–1022, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  187. [SS87]
    A. Saberi and P. Sannuti. Cheap and singular controls for linear quadratic regulators. IEEE Trans. Aut. Contr., 32(3):208–219, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  188. [Suz81]
    M. Suzuki. Composite controls for singularly perturbed systems. IEEE Trans. Aut. Contr., 26(2): 505–507, 1981.zbMATHCrossRefGoogle Scholar
  189. [SW83]
    P. Sannuti and H. Wason. A singular perturbation canonical form of invertible systems: determination of multivariate root-loci. Int. J. Contr., 37(6):1259–1286, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  190. [SW85]
    P. Sannuti and H. Wason. Multiple time-scale decomposition in cheap control problems - singular control. IEEE Trans. Aut. Contr., 30(7):633–644, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  191. [SW04]
    P. Szmolyan and M. Wechselberger. Relaxation oscillations in \(\mathbb{R}^{3}\). J. Differential Equat., 200:69–104, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  192. [TMN03]
    A.R. Teel, L. Moreau, and D. Nesic. A unified framework for input-to-state stability in systems with two time scales. IEEE Trans. Aut. Contr., 48(9):1526–1544, 2003.CrossRefMathSciNetGoogle Scholar
  193. [TS77]
    D. Teneketzis and N. Sandell. Linear regulator design for stochastic systems by a multiple time-scales method. IEEE Trans. Aut. Contr., 22(4):615–621, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  194. [TS97]
    C.J. Tomlin and S.S. Sastry. Bounded tracking for non-minimum phase nonlinear systems with fast zero dynamics. Int. J. Contr., 68(4):819–848, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  195. [VCCD06]
    N.P. Vora, M.-N. Contou-Carrere, and P. Daoutidis. Model reduction of multiple time scale processes in non-standard singularly perturbed form. In Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, pages 99–113. Springer, 2006.Google Scholar
  196. [VD86]
    A.B. Vasilieva and M.G. Dmitriev. Singular perturbations in optimal control problems. J. Math. Sci., 34(3):1579–1629, 1986.CrossRefGoogle Scholar
  197. [Vid85]
    M. Vidyasagar. Robust stabilization of singularly perturbed systems. Syst. Contr. Lett., 5(6):413–418, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  198. [Vig97]
    A. Vigodner. Limits of singularly perturbed control problems with statistical dynamics of fast motions. SIAM J. Contr. Optim., 35(1):1–28, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  199. [Vor08]
    N.V. Voropaeva. Decomposition of problems of optimal control and estimation for discrete systems with fast and slow variables. Automat. Remote Contr., 69(6):920–928, 2008.zbMATHCrossRefMathSciNetGoogle Scholar
  200. [VS06]
    N.V. Voropaeva and V.A. Sobolev. Decomposition of a linear-quadratic optimal control problem with fast and slow variables. Automat. Remote Contr., 67(8):1185–1193, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  201. [vV81]
    M. van Veldhuizen. D-stability. SIAM J. Numer. Anal., 20:45–64, 1981.CrossRefGoogle Scholar
  202. [Wec98]
    M. Wechselberger. Singularly perturbed folds and canards in \(\mathbb{R}^{3}\). PhD thesis, Vienna University of Technology, Vienna, Austria, 1998.Google Scholar
  203. [WK73]
    R. Wilde and P. Kokotovic. Optimal open-and closed-loop control of singularly perturbed linear systems. IEEE Trans. Aut. Contr., 18(6):616–626, 1973.zbMATHCrossRefMathSciNetGoogle Scholar
  204. [WP74]
    A.E.R. Woodcock and T. Poston. A Geometrical Study of the Elementary Catastrophes, volume 373 of Lecture Notes in Mathematics. Springer, 1974.Google Scholar
  205. [YK73]
    R. Yackel and P. Kokotovic. A boundary layer method for the matrix Riccati equation. IEEE Trans. Aut. Contr., 18:17–24, 1973.zbMATHCrossRefMathSciNetGoogle Scholar
  206. [YKU77]
    K.-K. Young, P. Kokotovic, and V. Utkin. A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Aut. Contr., 22(6):931–938, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  207. [Zee77]
    E.C. Zeeman. Catastrophe Theory: Selected Papers, 1972–1977. Addison-Wesley, 1977.Google Scholar
  208. [ZY05]
    S. Zhu and P. Yu. Computation of the normal forms for general M-DOF systems using multiple time scales. I. Autonomous systems. Commun. Nonlinear Sci. Numer. Simul., 10:869–905, 2005.Google Scholar
  209. [ZY06]
    S. Zhu and P. Yu. Computation of the normal forms for general M-DOF systems using multiple time scales. II. Non-autonomous systems. Commun. Nonlinear Sci. Numer. Simul., 11:45–81, 2006.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations