Advertisement

Applications

  • Christian Kuehn
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 191)

Abstract

In this chapter we touch on several application areas in which time scale separation arises naturally. As you can guess from the rather diverse set of section headings, it is quite reasonable to conjecture that most quantitative sciences that employ mathematical modeling may eventually encounter various multiscale problems. Each section centers on one or two key examples in which one can clearly identify the time scale separation parameter as well as apply many of the methods discussed in this book.

Bibliography

  1. [AB93]
    P. Auger and E. Benoit. A prey-predator model in a multi-patch environment with different time scales. J. Biol. Syst., 1(2):187–197, 1993.Google Scholar
  2. [ABAC05]
    O.E. Akman, D.S. Broomhead, R.V. Abadi, and R.A. Clement. Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. J. Math. Biol., 51(6):661–694, 2005.zbMATHMathSciNetGoogle Scholar
  3. [AE99]
    J.E. Avron and A. Elgart. Adiabatic theorem without a gap condition. Commun. Math. Phys., 203: 445–463, 1999.zbMATHMathSciNetGoogle Scholar
  4. [AFGG12]
    J.E. Avron, M. Fraas, G.M. Graf, and P. Grech. Adiabatic theorems for generators of contracting evolutions. Commun. Math. Phys., 314:163–191, 2012.zbMATHMathSciNetGoogle Scholar
  5. [AG97a]
    Z. Artstein and V. Gaitsgory. Linear-quadratic tracking of coupled slow and fast targets. Math. Control Signals Systems, 10: 1–30, 1997.zbMATHMathSciNetGoogle Scholar
  6. [AG13]
    G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.Google Scholar
  7. [AKN06]
    V.I. Arnold, V.V. Kozlov, and A.I. Neishstadt. Mathematical Aspects of Classical and Celestial Mechanics. Springer, 3rd edition, 2006.Google Scholar
  8. [AKWC80]
    B. Avramovic, P.V. Kokotovic, J.R. Winkleman, and J.H. Chow. Area decomposition for electromechanical models of power systems. Automatica, 16(6):637–648, 1980.zbMATHGoogle Scholar
  9. [ANMC+09]
    K. Al-Naimee, F. Marino, M. Ciszak, R. Meucci, and F.T. Arecchi. Chaotic spiking and incomplete homoclinic scenarios in semiconductor lasers with optoelectric feedback. New Journal of Physics, 11:073022, 2009.Google Scholar
  10. [AP98b]
    P. Auger and D. Pontier. Fast game dynamics coupled to slow population dynamics: a single population with hawk–dove strategies. Aggregation and emergence in population dynamics. Math. Comput. Modelling, 27(4):81–88, 1998.Google Scholar
  11. [AP98c]
    P. Auger and D. Pontier. Fast game theory coupled to slow population dynamics: the case of domestic cat populations. Math. Biosci., 148:65–82, 1998.zbMATHMathSciNetGoogle Scholar
  12. [AS96]
    Y. Ando and M. Suzuki. Control of active suspension systems using the singular perturbation method. Contr. Eng. Prac., 4(3):287–293, 1996.Google Scholar
  13. [ASBT10]
    S. Ahn, B.H. Smith, A. Borisyuk, and D. Terman. Analyzing neuronal networks using discrete-time dynamics. Physica D, 239(9):515–528, 2010.zbMATHMathSciNetGoogle Scholar
  14. [ATB+12]
    D. Anderson, A. Tenzer, G. Barlev, M. Girvan, T.M. Antonsen, and E. Ott. Multiscale dynamics in communities of phase oscillators. Chaos, 22(1):013102, 2012.Google Scholar
  15. [Bar91]
    D. Barkley. A model for fast computer simulation of waves in excitable media. Physica D, 49:61–70, 1991.Google Scholar
  16. [Bar92]
    D. Barkley. Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett., 68(13):2090–2093, 1992.Google Scholar
  17. [Bar97]
    D. Barkley. Fast simulation of waves in three-dimensional excitable media. Int. J. Bif. Chaos, 7(11):2529–2545, 1997.zbMATHMathSciNetGoogle Scholar
  18. [Bat67]
    G.K. Batchelor. An Introduction to Fluid Dynamics. CUP, 1967.Google Scholar
  19. [BB12a]
    C.G. Diniz Behn and V. Booth. A fast–slow analysis of the dynamics of REM sleep. SIAM J. Appl. Dyn. Syst., 11(1):212–242, 2012.zbMATHMathSciNetGoogle Scholar
  20. [BBV08]
    A. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex Networks. CUP, 2008.Google Scholar
  21. [BCMW13]
    M. Burger, L. Caffarelli, P. Markowich, and M.-T. Wolfram. On a Boltzmann type price formation model. Proc. R. Soc. A, 469:1–21, 2013.MathSciNetGoogle Scholar
  22. [BDM99]
    T.J. Burns, R.W. Davis, and E.F. Moore. A perturbation study of particle dynamics in a plane wake flow. J. Fluid Mech., 384(1):1–26, 1999.zbMATHMathSciNetGoogle Scholar
  23. [Ber60]
    P.G. Bergmann. Introduction to the Theory of Relativity. Prentice Hall, 1960.Google Scholar
  24. [Ber91]
    A.J. Bernoff. Spiral wave solutions for reaction–diffusion equations in a fast reaction/slow diffusion limit. Phsica D, 53:125–150, 1991.zbMATHMathSciNetGoogle Scholar
  25. [Ber98a]
    M. Berg. Viscoelastic continuum model of nonpolar solvation. 1. Implications for multiple time scales in liquid dynamics. J. Phys. Chem., 102:17–30, 1998.Google Scholar
  26. [BF28]
    M. Born and V. Fock. Beweis des Adiabatensatzes. Z. Phys., 51:165–169, 1928.zbMATHGoogle Scholar
  27. [BFS08]
    B. Brighi, A. Fruchard, and T. Sari. On the Blasius problem. Adv. Differential Equat., 13(5):509–600, 2008.zbMATHMathSciNetGoogle Scholar
  28. [BG05]
    V.S. Buslaev and E.A. Grinina. Remarks on the quantum adiabatic theorem. St. Petersburg Math. J., 16(4):639–649, 2005.zbMATHMathSciNetGoogle Scholar
  29. [BGGG02]
    V. Bykov, I. Goldfarb, V. Gol’dshtein, and J.B. Greenberg. Thermal explosion in a hot gas mixture with fuel droplets: a two reactant model. Combust. Theor. Model., 6(2):339–359, 2002.Google Scholar
  30. [BJLM05]
    O. Brandman, J.E. Ferrell Jr, R. Li, and T. Meyer. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science, 310:496–498, 2005.zbMATHMathSciNetGoogle Scholar
  31. [BK96]
    G.L. Browning and H.-O. Kreiss. Analysis of periodic updating for systems with multiple timescales. H. Atmos. Sci., 53(2):335–348, 1996.MathSciNetGoogle Scholar
  32. [BK10a]
    A. Birzu and K. Krischer. Resonance tongues in a system of globally coupled FitzHugh–Nagumo oscillators with time-periodic coupling strength. Chaos, 20:043114, 2010.Google Scholar
  33. [BK10b]
    M. Brøns and R. Kaasen. Canards and mixed-mode oscillations in a forest pest model. Theor. Popul. Biol., 77:238–242, 2010.Google Scholar
  34. [BM05]
    J.A. Biello and A.J. Majda. A new multiscale model for the Madden Julian oscillation. J. Atmosph. Sci., 62:1694–1720, 2005.MathSciNetGoogle Scholar
  35. [BM10]
    J.A. Biello and A.J. Majda. Intraseasonal multi-scale moist dynamics of the tropical tropospheres. Commun. Math. Sci., 8(2):519–540, 2010.zbMATHMathSciNetGoogle Scholar
  36. [BMH04]
    E. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16(4):673–715, 2004.zbMATHGoogle Scholar
  37. [BN11]
    C.L. Buckley and T. Nowotny. Multiscale model of an inhibitory network shows optimal properties near bifurcation. Phys. Rev. Lett., 106:238109, 2011.Google Scholar
  38. [BO99]
    C.M. Bender and S.A. Orszag. Asymptotic Methods and Perturbation Theory. Springer, 1999.Google Scholar
  39. [Bor98]
    F. Bornemann. Homogenization in Time of Singularly Perturbed Mechanical Systems. Springer, 1998.Google Scholar
  40. [BPL13]
    J. Banasiak, E.K. Phongi, and M. Lachowicz. A singularly perturbed SIS model with age structure. Math. Biosci. Eng., 10(3):499–521, 2013.zbMATHMathSciNetGoogle Scholar
  41. [BPTW07]
    J. Best, C. Park, D. Terman, and C. Wilson. Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks. J. Comput. Neurosci., 23(2):217–235, 2007.MathSciNetGoogle Scholar
  42. [BR00]
    S. Bornholdt and T. Rohlf. Topological evolution of dynamical networks: global criticality from local dynamics. Phys. Rev. Lett., 84(26):6114–6117, 2000.Google Scholar
  43. [Bre62]
    F.P. Bretherton. Slow viscous motion round a cylinder in a simple shear. J. Fluid Mech., 12:591–613, 1962.zbMATHMathSciNetGoogle Scholar
  44. [Bre13a]
    R. Breban. Role of environmental persistence in pathogen transmission: a mathematical modeling approach. J. Math. Biol., 66(3):535–546, 2013.zbMATHMathSciNetGoogle Scholar
  45. [Brø05]
    M. Brøns. Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperature. Proc. R. Soc. A, 461:2289–2302, 2005.Google Scholar
  46. [BS88]
    S.V. Bogatyrev and V.A. Sobolev. Separating the rapid and slow motions in the problems of the dynamics of systems of rigid bodies and gyroscopes. J. Appl. Math. Mech., 52(1):41–48, 1988.MathSciNetGoogle Scholar
  47. [BS99b]
    H. Boudjellaba and T. Sari. Stability loss delay in harvesting competing populations. J. Differential Equat., 152(2):394–408, 1999.zbMATHMathSciNetGoogle Scholar
  48. [BS03]
    S. Bornholdt and H.G. Schuster, editor. Handbook of Graphs and Networks. Wiley, 2003.Google Scholar
  49. [BS04c]
    V.N. Biktashev and R. Suckley. Non-Tikhonov asymptotic properties of cardiac excitability. Phys. Rev. Lett., 93(16):169103, 2004.Google Scholar
  50. [BUB10]
    C.S. Bretherton, J. Uchida, and P.N. Blossey. Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst., 2(14):1–20, 2010.Google Scholar
  51. [BW12]
    A. Bovier and S.-D. Wang. Multi-time scales in adaptive dynamics: microscopic interpretation of a trait substitution tree model. arXiv:1207.4690v1, pages 1–23, 2012.Google Scholar
  52. [BW13]
    A. Bovier and S.-D. Wang. Trait substitution trees on two time scales analysis. arXiv:1304.4640v1, pages 1–28, 2013.Google Scholar
  53. [Cal88]
    A.J. Calise. Singular perturbation analysis of the atmospheric orbital plane change problem. J. Astronaut. Sci., 36:35–43, 1988.Google Scholar
  54. [Car70]
    G.F. Carrier. Singular perturbation theory and geophysics. SIAM Rev., 12(2):175–193, 1970.Google Scholar
  55. [C.C13]
    C.Cotter. Data assimilation on the exponentially accurate slow manifold. Phil. Trans. R. Soc. A, 317:(20120300), 2013.Google Scholar
  56. [CDD+03]
    S. Conti, A. DeSimone, G. Dolzmann, S. Müller, and F. Otto. Multiscale modeling of materials - the role of analysis. In Trends in Nonlinear Analysis, pages 375–408. Springer, 2003.Google Scholar
  57. [CDKS98]
    K. Christensen, R. Donangelo, B. Koiller, and K. Sneppen. Evolution of random networks. Phys. Rev. Lett., 81(11):2380–2383, 1998.Google Scholar
  58. [CE10]
    M.H. Cortez and S.P. Ellner. Understanding rapid evolution in predator–prey interactions using the theory of fast–slow systems. Am. Nat., 176(5):109–127, 2010.Google Scholar
  59. [CGAP95]
    J.H. Chow, R. Galarza, P. Accari, and W.W. Prince. Inertial and slow coherency aggregation algorithms for power system dynamic model reduction. IEEE Trans. Power Syst., 10(2):680–685, 1995.Google Scholar
  60. [CGP02]
    M. Costa, A.L. Goldberger, and C.K. Peng. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett., 89(6):068102, 2002.Google Scholar
  61. [Che11]
    A. Chen. Modeling a synthetic biological chaotic system: relaxation oscillators coupled by quorum sensing. Nonlinear Dyn., 63:711–718, 2011.Google Scholar
  62. [CHKL03]
    J. Cisternas, P. Holmes, I.G. Kevrekidis, and X. Li. CO oxidation on thin Pt crystals: temperature slaving and the derivation of lumped models. J. Chem. Phys., 118:3312, 2003.Google Scholar
  63. [CHL09]
    F. Castella, J.-P. Hoffbeck, and Y. Lagadeuc. A reduced model for spatially structured predator–prey systems with fast spatial migrations and slow demographic evolutions. Asymptot. Anal., 61(3):125–175, 2009.zbMATHMathSciNetGoogle Scholar
  64. [Cho82]
    J.H. Chow, editor. Time-Scale Modeling of Dynamic Networks with Applications to Power Systems, volume 46 of Lect. Notes Contr. Infor. Sci. Springer, 1982.Google Scholar
  65. [Cho91]
    J.H. Chow. Aggregation properties of linearized two-time-scale power networks. IEEE Trans. Circ. Syst., 38(7):720–730, 1991.Google Scholar
  66. [CK85]
    J.H. Chow and P.V. Kokotovic. Time scale modeling of sparse dynamic networks. IEEE Trans. Aut. Contr., 30(8):714–722, 1985.zbMATHGoogle Scholar
  67. [CKS94]
    W.W. Chow, S.W. Koch, and M. Sargent. Semiconductor Laser Physics. Springer, 1994.Google Scholar
  68. [CL03]
    E.J. Collins and D.S. Leslie. Convergent multiple-timescales reinforcement learning algorithms in normal form games. Ann. Appl. Probab., 13(4):1231–1251, 2003.zbMATHMathSciNetGoogle Scholar
  69. [CM05b]
    K. Christensen and N.R. Moloney. Complexity and Criticality. Imperial College Press, 2005.Google Scholar
  70. [CM07]
    J. Cousteix and J. Mauss. Asymptotic Analysis and Boundary Layers. Springer, 2007.Google Scholar
  71. [Cré07]
    A.-S. Crépin. Using fast and slow processes to manage resources with thresholds. Environ. Resource Econ., 36(2):191–213, 2007.Google Scholar
  72. [CV09]
    F. Clément and A. Vidal. Foliation-based parameter tuning in a model of the GnRH pulse and surge generator. SIAM J. Appl. Dyn. Syst., 8(4):1591–1631, 2009.zbMATHMathSciNetGoogle Scholar
  73. [CWPS90]
    J.H. Chow, J.R. Winkelman, M.A. Pai, and P.W. Sauer. Singular perturbation analysis of large-scale power systems. Int. J. Elec. Power Ener. Syst., 12(2):117–126, 1990.Google Scholar
  74. [Dan13]
    M.J.H. Dantas. Quenching in a class of singularly perturbed mechanical systems. Int. J. Non-Linear Mech., 50:48–57, 2013.Google Scholar
  75. [DBR+13]
    M. Dam, M. Brøns, J.J. Rasmussen, V. Naulin, and G. Xu. Bifurcation analysis and dimension reduction of a predator–prey model for the LH transition. Physics of Plasmas, 20:102302, 2013.Google Scholar
  76. [DFAR13]
    C. DuBois, J. Farnham, E. Aaron, and A. Radunskaya. A multiple time-scale computational model of a tumor and its micro environment. Math. Biosci. Eng., 10:121–150, 2013.zbMATHMathSciNetGoogle Scholar
  77. [DFGR06]
    F. Dercole, R. Ferrière, A. Gragnani, and S. Rinaldi. Coevolution of slow–fast populations: evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics. Proc. R. Soc. B, 273:983–990, 2006.Google Scholar
  78. [DGK98]
    A. Doelman, R.A. Gardner, and T.J. Kaper. Stability analysis of singular patterns in the 1D Gray-Scott model: a matched asymptotics approach. Physica D, 122(1):1–36, 1998.zbMATHMathSciNetGoogle Scholar
  79. [DGK01]
    A. Doelman, R.A. Gardner, and T.J. Kaper. Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J., 50(1):443–507, 2001.zbMATHMathSciNetGoogle Scholar
  80. [DK99]
    J.L.A. Dubbeldam and B. Krauskopf. Self-pulsations of lasers with saturable absorber: dynamics and bifurcations. Optics Communications, 159:325–338, 1999.Google Scholar
  81. [DKL99]
    J.L.A. Dubbeldam, B. Krauskopf, and D. Lenstra. Excitability and coherence resonance in lasers with saturable absorber. Phys. Rev. E, 3(60):6580–6588, 1999.Google Scholar
  82. [DKvdP01]
    A. Doelman, T.J. Kaper, and H. van der Ploeg. Spatially periodic and aperiodic multi-pulse patterns in the one-dimensional Gierer–Meinhardt equation. Meth. Appl. Anal., 8(3):387–414, 2001.zbMATHGoogle Scholar
  83. [DKZ97]
    A. Doelman, T.J. Kaper, and P.A. Zegeling. Pattern formation in the one-dimensional Gray–Scott model. Nonlinearity, 10(2):523–563, 1997.zbMATHMathSciNetGoogle Scholar
  84. [DL96]
    U. Dieckmann and R. Law. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol., 34:579–612, 1996.zbMATHMathSciNetGoogle Scholar
  85. [DL13]
    L. DeVille and E. Lerman. Dynamics on networks I. Modular continuous-time systems. J. Euro. Math. Soc., pages 1–59, 2013. to appear.Google Scholar
  86. [DNCB95]
    B. D’Andréa-Novel, G. Campion, and G. Bastin. Control of wheeled mobile robots not satisfying ideal velocity constraints: a singular perturbation approach. Int. J. Robust Nonl. Contr., 5(4):243–267, 1995.zbMATHGoogle Scholar
  87. [DPS07]
    J. Duan, C. Pötzsche, and S. Siegmund. Slow integral manifolds for Lagrangian fluid dynamics in unsteady geophysical flows. Physica D, 233(1):73–82, 2007.zbMATHMathSciNetGoogle Scholar
  88. [DR08]
    F. Dercole and S. Rinaldi. Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications. Princeton University Press, 2008.Google Scholar
  89. [DRSE04]
    J. Drover, J. Rubin, J. Su, and B. Ermentrout. Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math., 65(1):69–92, 2004.zbMATHMathSciNetGoogle Scholar
  90. [DS89b]
    I. Dvorak and J. Siska. Analysis of metabolic systems with complex slow and fast dynamics. Bull. Math. Biol., 51(2):255–274, 1989.zbMATHGoogle Scholar
  91. [DTBL85]
    M.J. Dauphine-Tanguy, P. Borne, and M. Lebrun. Order reduction of multi-time scale systems using bond graphs, the reciprocal system and the singular perturbation method. J. Frank. Inst., 319:157–171, 1985.Google Scholar
  92. [Dur10b]
    R. Durrett. Random Graph Dynamics. CUP, 2010.Google Scholar
  93. [DvdP02]
    A. Doelman and H. van der Ploeg. Homoclinic stripe patterns. SIAM J. Appl. Dyn. Syst., 1(1):65–104, 2002.zbMATHMathSciNetGoogle Scholar
  94. [DWC+98]
    M.J. Donovan, P. Wenner, N. Chub, J. Tabak, and J. Rinzel. Mechanisms of spontaneous activity in the developing spinal cord and their relevance to locomotion. Ann. New York Acad. Sci., 860(1):130–141, 1998.Google Scholar
  95. [EGF07]
    M. Enculescu, A. Gholami, and M. Falcke. Dynamic regimes and bifurcations in a model of actin-based motility. Phys. Rev. E, 78(3):031915, 2007.Google Scholar
  96. [EGPS99]
    T. Erneux, P. Gavrielides, P. Peterson, and M.P. Sharma. Dynamics of passively Q-switched microchip lasers. IEEE J. Quant. Electr., 35:1247–1256, 1999.Google Scholar
  97. [EJ10]
    E. Endres and H.K. Jenssen. Singularly perturbed ODEs and profiles for stationary symmetric Euler and Navier–Stokes shocks. Discr. Cont. Dyn. Sys., 27(1):133–169, 2010.zbMATHMathSciNetGoogle Scholar
  98. [EJM08]
    E. Endres, H.K. Jenssen, and M. Milliams. Symmetric Euler and Navier–Stokes shocks in stationary barotropic flow on a bounded domain. J. Differential Equat., 245(10):3025–3067, 2008.zbMATHGoogle Scholar
  99. [EJM10]
    E. Endres, H.K. Jenssen, and M. Milliams. Singularly perturbed ODEs and profiles for stationary symmetric Euler and Navier–Stokes shocks. Dynamical Systems, 27(1):133–169, 2010.zbMATHMathSciNetGoogle Scholar
  100. [EK80]
    Y. Estrin and L. Kubin. Criterion for thermomechanical instability of low temperature plastic deformation. Scripta Metallurgica, 14:1359–1364, 1980.Google Scholar
  101. [EK86b]
    G.B. Ermentrout and N. Kopell. Symmetry and phaselocking in chains of weakly coupled oscillators. Comm. Pure Appl. Math., 39(5):623–660, 1986.zbMATHMathSciNetGoogle Scholar
  102. [EKL07]
    H. Erzgräber, B. Krauskopf, and D. Lenstra. Bifurcation analysis of a semiconductor laser with filtered optical feedback. SIAM J. Appl. Dyn. Syst., 6(1):1–28, 2007.zbMATHMathSciNetGoogle Scholar
  103. [ELRL99]
    A. Erisir, D. Lau, B. Rudy, and C.S. Leonard. Function of specific K + channels in sustained high-frequency firing of fast-spiking interneurons. J. Neurophysiol., 82:2476–2489, 1999.Google Scholar
  104. [EM83]
    T. Erneux and P. Mandel. Temporal aspects of absorptive optical bistability. Phys. Rev. A, 28(2): 896–909, 1983.Google Scholar
  105. [EPG00]
    T. Erneux, P. Peterson, and A. Gavrielides. The pulse shape of a passively Q-switched microchip laser. Eur. Phys. J. D, 10(3):423–431, 2000.Google Scholar
  106. [Erm94]
    G.B. Ermentrout. Reduction of conductance-based models with slow synapses to neural nets. Neural Comput., 6(4):679–695, 1994.Google Scholar
  107. [Erm96]
    G.B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural Comput., 8(5):979–1001, 1996.Google Scholar
  108. [Erm98]
    G.B. Ermentrout. Linearization of FI curves by adaptation. Neural Comput., 10(7):1721–1729, 1998.Google Scholar
  109. [Ern88]
    T. Erneux. Q-switching bifurcation in a laser with a saturable absorber. J. Opt. Soc. Amer. B Opt. Phys., 5:1063–1069, 1988.Google Scholar
  110. [ET10]
    G.B. Ermentrout and D.H. Terman. Mathematical Foundations of Neuroscience. Springer, 2010.Google Scholar
  111. [EVM07]
    T. Erneux, E.A. Viktorov, and P. Mandel. Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A, 76(2):023819, 2007.Google Scholar
  112. [FH03]
    A.C. Fowler and P.D. Howell. Intermittency in the transition to turbulence. SIAM J. Appl. Math., 63(4):1184–1207, 2003.zbMATHMathSciNetGoogle Scholar
  113. [FHR09]
    A. Fasano, M.A. Herrero, and M.R. Rodrigo. Slow and fast invasion waves in a model of acid-mediated tumour growth. Math. Biosci., 220:45–56, 2009.zbMATHMathSciNetGoogle Scholar
  114. [Fit60]
    R. FitzHugh. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol., 43:867–896, 1960.Google Scholar
  115. [FN74]
    R.J. Field and R.M. Noyes. Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys., 60:1877–1884, 1974.Google Scholar
  116. [FPR08]
    B.D. Fulcher, A.J.K. Phillips, and P.A. Robinson. Modeling the impact of impulsive stimuli on sleep-wake dynamics. Phys. Rev. E, 78(5):051920, 2008.Google Scholar
  117. [FR98]
    O. De Feo and S. Rinaldi. Singular homoclinic bifurcations in tritrophic food chains. Math. Biosci., 148:7–20, 1998.zbMATHMathSciNetGoogle Scholar
  118. [FSML04]
    Z. Feng, D.L. Smith, F. Ellise McKenzie, and S.A. Levin. Coupling ecology and evolution: malaria and the S-gene across time scales. Math. Biosci., 189(1):1–19, 2004.zbMATHMathSciNetGoogle Scholar
  119. [FYZ04]
    Z. Feng, Y. Yi, and H. Zhu. Fast and slow dynamics of malaria and the S-gene frequency. J. Dyn. Diff. Eq., 16(4):869–896, 2004.zbMATHMathSciNetGoogle Scholar
  120. [GACV06]
    M. Giona, A. Adrover, F. Creta, and M. Valorani. Slow manifold structure in explosive kinetics. 2. Extension to higher dimensional systems. J. Phys. Chem. A, 110(50):13463–13474, 2006.Google Scholar
  121. [GB08]
    T. Gross and B. Blasius. Adaptive coevolutionary networks: a review. Journal of the Royal Society – Interface, 5:259–271, 2008.Google Scholar
  122. [GBC98]
    I.T. Georgiou, A.K. Bajaj, and M. Corless. Slow and fast invariant manifolds, and normal modes in a two degree-of-freedom structural dynamical system with multiple equilibrium states. Int. J. Non-Linear Mech., 33(2):275–300, 1998.zbMATHMathSciNetGoogle Scholar
  123. [GdWNS09]
    C. Germay, N. Van de Wouw, H. Nijmeijer, and R. Sepulchre. Nonlinear drillstring dynamics analysis. SIAM J. Appl. Dyn. Syst., 8(2):527–553, 2009.zbMATHMathSciNetGoogle Scholar
  124. [GE06]
    J. Guckenheimer and S. Ellner. Dynamic Models in Biology. Princeton University Press, 2006.Google Scholar
  125. [Geo99]
    I. Georgiou. On the global geometric structure of the dynamics of the elastic pendulum. Nonlinear Dyn., 18(1):51–68, 1999.zbMATHMathSciNetGoogle Scholar
  126. [Geo05]
    I. Georgiou. Advanced proper orthogonal decomposition tools: using reduced order models to identify normal modes of vibration and slow invariant manifolds in the dynamics of planar nonlinear rods. Nonlinear Dyn., 41(1):69–110, 2005.zbMATHMathSciNetGoogle Scholar
  127. [GGKS99]
    I. Goldfarb, V. Gol’dshtein, G. Kuzmenko, and S. Sazhin. Thermal radiation effect on thermal explosion in gas containing fuel droplets. Combust. Theor. Model., 3(4):769–787, 1999.Google Scholar
  128. [GGZ02]
    I. Goldfarb, V. Gol’dshtein, and A. Zinoviev. Delayed thermal explosion in porous media: method of invariant manifolds. IMA J. Appl. Math., 67(3):263–280, 2002.Google Scholar
  129. [GH04a]
    R.M. Ghigliazza and P. Holmes. A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J. Appl. Dyn. Syst., 3(4):671–700, 2004.zbMATHMathSciNetGoogle Scholar
  130. [GH04b]
    R.M. Ghigliazza and P. Holmes. Minimal models of bursting neurons: how multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM J. Appl. Dyn. Syst., 3(4):636–670, 2004.zbMATHMathSciNetGoogle Scholar
  131. [GH06]
    K.M. Grimsrud and R. Huffaker. Solving multidimensional bioeconomic problems with singular-perturbation reduction methods: Application to managing pest resistance to pesticidal crops. J. Environ. Econ. Manag., 51(3):336–353, 2006.zbMATHGoogle Scholar
  132. [GH13]
    M. Grace and M.-T. Hütt. Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators. J. R. Soc. Interface, 10:20121016, 2013.Google Scholar
  133. [Ghi12]
    M. Ghisi. Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations with weak dissipation. Adv. Differential Equat., 17(1):1–36, 2012.zbMATHMathSciNetGoogle Scholar
  134. [GHK08]
    E.A. Gaffney, J.K. Heath and M.Z. Kwiatkowska. A mass action model of a Fibroblast Growth Factor signaling pathway and its simplification. Bull. Math. Biol., 70(8):2229–2263, 2008.zbMATHMathSciNetGoogle Scholar
  135. [Gin85]
    H. Gingold. An asymptotic decomposition method applied to multi-turning point problems. SIAM J. Math. Anal., 16(1):7–27, 1985.zbMATHMathSciNetGoogle Scholar
  136. [GK81]
    A. Goldbeter and D.E. Koshland. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci USA, 78:6840–6844, 1981.MathSciNetGoogle Scholar
  137. [GK02]
    W. Gerstner and W. Kistler. Spiking Neuron Models. Cambridge University Press, 2002.Google Scholar
  138. [GKMW07]
    T. Götz, A. Klar, N. Marheineke, and R. Wegener. A stochastic model and associated Fokker–Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math., 67(6):1704–1717, 2007.zbMATHMathSciNetGoogle Scholar
  139. [GL93]
    J. Guckenheimer and I.S. Labouriau. Bifurcations of the Hodgkin and Huxley equations; a new twist. Bull. Math. Biol., 55:937–952, 1993.zbMATHGoogle Scholar
  140. [Gli00b]
    V.Y. Glizer. Asymptotic solution of zero-sum linear-quadratic differential game with cheap control for minimizer. Nonl. Diff. Eq. Appl., 7(2):213–258, 2000.MathSciNetGoogle Scholar
  141. [GM72]
    A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetic, 12:30–39, 1972.Google Scholar
  142. [GMCH12]
    L. Giomi, L. Mahadevan, B. Chakraborty, and M.F. Hagan. Banding, excitability and chaos in active nematic suspensions. Nonlinearity, 25(8):2245–2269, 2012.zbMATHMathSciNetGoogle Scholar
  143. [GNW10]
    J.E. Gough, H.I. Nurdin, and S. Wildfeuer. Commutativity of the adiabatic elimination limit of fast oscillatory components and the instantaneous feedback limit in quantum feedback networks. J. Math. Phys., 51:123518, 2010.MathSciNetGoogle Scholar
  144. [Gol91]
    A. Goldbeter. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci USA, 88:9107–9111, 1991.Google Scholar
  145. [Gol97]
    A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. CUP, 1997.Google Scholar
  146. [GOT07]
    G. Gottwald, M. Oliver, and N. Tecu. Long-time accuracy for approximate slow manifolds in a finite dimensional model of balance. J. Nonlinear Sci., 17:283–307, 2007.zbMATHMathSciNetGoogle Scholar
  147. [GR93]
    D. Golomb and J. Rinzel. Dynamics of globally coupled inhibitory neurons with heterogeneity. Phys. Rev. E, 48(6):4810, 1993.Google Scholar
  148. [GR94]
    D. Golomb and J. Rinzel. Clustering in globally coupled inhibitory neurons. Physica D, 72(3):259–282, 1994.zbMATHGoogle Scholar
  149. [GS99]
    I. Georgiou and I.B. Schwartz. Dynamics of large scale coupled structural/mechanical systems: a singular perturbation/proper orthogonal decomposition approach. SIAM J. Appl. Math., 59(4): 1178–1207, 1999.zbMATHMathSciNetGoogle Scholar
  150. [GS00]
    F. Ghorbel and M.W. Spong. Integral manifolds of singularly perturbed systems with application to rigid-link flexible-joint multibody systems. Int. J. Non-Linear Mech., 35(1):133–155, 2000.zbMATHMathSciNetGoogle Scholar
  151. [GS01b]
    I. Georgiou and I.B. Schwartz. Invariant manifolds, nonclassical normal modes, and proper orthogonal modes in the dynamics of the flexible spherical pendulum. Nonlinear Dyn., 25(1):3–31, 2001.zbMATHMathSciNetGoogle Scholar
  152. [GS09b]
    T. Gross and H. Sayama, editors. Adaptive Networks: Theory, Models and Applications. Springer, 2009.Google Scholar
  153. [GS09c]
    I. Gucwa and P. Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discr. Cont. Dyn. Syst. S, 2(4):783–806, 2009.zbMATHMathSciNetGoogle Scholar
  154. [GS11]
    J. Guckenheimer and C. Scheper. A geometric model for mixed-mode oscillations in a chemical system. SIAM J. Appl. Dyn. Sys., 10(1):92–128, 2011.zbMATHMathSciNetGoogle Scholar
  155. [Gun12]
    J. Gunawardena. A linear framework for time-scale separation in nonlinear biochemical systems. PLoS ONE, 7:e36321, 2012.Google Scholar
  156. [GVBM09]
    O.V. Gendelman, A.F. Vakakis, L.A. Bergman, and D.M. McFarland. Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math., 70(5):1655–1677, 2009.MathSciNetGoogle Scholar
  157. [GW12]
    M.N. Galtier and G. Wainrib. Multiscale analysis of slow–fast neuronal learning models with noise. J. Math. Neurosci., 2:13, 2012.MathSciNetGoogle Scholar
  158. [GZ06]
    S. Gil and D.H. Zanette. Coevolution of agents and networks: opinion spreading and community disconnection. Phys. Lett. A, 356:89–94, 2006.zbMATHGoogle Scholar
  159. [GZSS96]
    V. Gol’dshtein, A. Zinoviev, V. Sobolev, and E. Shchepakina. Criterion for thermal explosion with reactant consumption in a dusty gas. Proc. R. Soc. London A, 542(1952):2013–2119, 1996.Google Scholar
  160. [Has78]
    B. Hassard. Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon. J. Theor. Biol., 71(3): 401–420, 1978.MathSciNetGoogle Scholar
  161. [Has10]
    A. Hastings. Timescales, dynamics, and ecological understanding. Ecology, 91:3471–3480, 2010.Google Scholar
  162. [Hau01]
    W. Hauck. Kinks and rotations in long Josephson junctions. Math. Meth. Appl. Sci., 24(15):1189–1217, 2001.zbMATHMathSciNetGoogle Scholar
  163. [Hek10]
    G. Hek. Geometric singular perturbation theory in biological practice. J. Math. Biol., 60:347–386, 2010.MathSciNetGoogle Scholar
  164. [HFKG06]
    P.J. Holmes, R.J. Full, D. Koditschek, and J. Guckenheimer. The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev., 48(2):207–304, 2006.zbMATHMathSciNetGoogle Scholar
  165. [HGEK97]
    A. Hohl, A. Gavrielides, T. Erneux, and V. Kovanis. Localized synchronization in two coupled nonidentical semiconductor lasers. Phys. Rev. Lett., 78(25):4745–4748, 1997.Google Scholar
  166. [HH52d]
    A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117:500–544, 1952.Google Scholar
  167. [HH06]
    R. Huffaker and R. Hotchkiss. Economic dynamics of reservoir sedimentation management: optimal control with singularly perturbed equations of motion. J. Econ. Dyn. Contr., 30(12):2553–2575, 2006.zbMATHMathSciNetGoogle Scholar
  168. [HHL10a]
    J.M. Hong, C.-H. Hsu, and W. Liu. Inviscid and viscous stationary waves of gas flow through contracting–expanding nozzles. J. Differential Equat., 248(1):50–76, 2010.zbMATHMathSciNetGoogle Scholar
  169. [HHL10b]
    J.M. Hong, C.-H. Hsu, and W. Liu. Viscous standing asymptotic states of isentropic compressible flows through a nozzle. Arch. Rat. Mech. Anal., 196(2):575–597, 2010.zbMATHMathSciNetGoogle Scholar
  170. [HI97]
    F.C. Hoppenstaedt and E.M. Izhikevich. Weakly Connected Neural Networks. Springer, 1997.Google Scholar
  171. [HJS12]
    S.-Y. Ha, S. Jung, and M. Slemrod. Fast–slow dynamics of planar particle models for flocking and swarming. J. Differen. Equat., 252:2563–2579, 2012.zbMATHMathSciNetGoogle Scholar
  172. [HKBS07]
    C.J. Honey, R. Kötter, M. Breakspear, and O. Sporns. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci., 104(24):10240–10245, 2007.Google Scholar
  173. [HKO+10]
    E. Harvey, V. Kirk, H.M. Osinga, J. Sneyd, and M. Wechselberger. Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos, 20:045104, 2010.MathSciNetGoogle Scholar
  174. [HKWS11]
    E. Harvey, V. Kirk, M. Wechselberger, and J. Sneyd. Multiple time scales, mixed-mode oscillations and canards in models of intracellular calcium dynamics. J. Nonlinear Sci., 21:639–683, 2011.zbMATHGoogle Scholar
  175. [HL86]
    M.Y. Hussaini and W.D. Lakin. Existence and non-uniqueness of similarity solutions of a boundary-layer problem. Quarterly. J. Mech. Appl. Math., 39:15–24, 1986.zbMATHMathSciNetGoogle Scholar
  176. [HLN87]
    M.Y. Hussaini, W.D. Lakin, and A. Nachman. On similarity solutions of a boundary layer problem with an upstream moving wall. SIAM J. Appl. Math., 47(4):699–709, 1987.zbMATHMathSciNetGoogle Scholar
  177. [HM91]
    S.P. Hastings and J.B. McLeod. On the periodic solutions of a forced second-order equation. J. Nonlinear Sci., 1(2):225–245, 1991.zbMATHMathSciNetGoogle Scholar
  178. [HMJ10]
    H. Hu, M. Martina, and P. Jonas. Fast-spiking hippocampal interneurons dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampus interneurons. Science, 327:52–58, 2010.Google Scholar
  179. [Hop76]
    F.C. Hoppenstaedt. A slow selection analysis of two locus, two allele traits. Theor. Popul. Biol., 9: 68–81, 1976.Google Scholar
  180. [HPK08]
    M. Higuera, J. Porter, and E. Knobloch. Faraday waves, streaming flow, and relaxation oscillations in nearly circular containers. Chaos, 18(1):015104, 2008.Google Scholar
  181. [HR09]
    M. El Hajji and A. Rapaport. Practical coexistence of two species in the chemostat - a slow–fast characterization. Math. Biosci., 218(1):33–39, 2009.zbMATHMathSciNetGoogle Scholar
  182. [HS98]
    H. Hofmann and S.R. Sanders. Speed-sensorless vector torque control of induction machines using a two-time-scale approach. IEEE Trans. Ind. Appl., 34:169–177, 1998.Google Scholar
  183. [HS05]
    A. Huber and P. Szmolyan. Geometric singular perturbation analysis of the Yamada model. SIAM J. Applied Dynamical Systems, 4(3):607–648, 2005.zbMATHMathSciNetGoogle Scholar
  184. [HS08]
    G. Haller and T. Sapsis. Where do inertial particles go in fluid flows? Physica D, 237(5):573–583, 2008.zbMATHMathSciNetGoogle Scholar
  185. [HS10a]
    S.-Y. Ha and M. Slemrod. Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system. J. Dyn. Diff. Eq., 22:325–330, 2010.zbMATHMathSciNetGoogle Scholar
  186. [HS11]
    S.-Y. Ha and M. Slemrod. A fast–slow dynamical systems theory for the Kuramoto type phase model. J. Differential Equat., 251(10):2685–2695, 2011.zbMATHMathSciNetGoogle Scholar
  187. [Hua05]
    Y. Huang. How do cross-migration models arise? Math. Biosci., 195(2):127–140, 2005.zbMATHMathSciNetGoogle Scholar
  188. [IH03]
    E. Izhikevich and F. Hoppensteadt. Slowly coupled oscillators: phase dynamics and synchronization. SIAM J. Appl. Math., 63(6):1935–1953, 2003.zbMATHMathSciNetGoogle Scholar
  189. [IKKB09]
    G. Iñiguez, J. Kertész, K.K. Kaski, and R.A. Barrio. Opinion and community formation in coevolving networks. Phys. Rev. E, 80(6):066119, 2009.Google Scholar
  190. [IKKB11]
    G. Iñiguez, J. Kertész, K.K. Kaski, and R.A. Barrio. Phase change in an opion-dynamics model with separation of time scales. Phys. Rev. E, 83:016111, 2011.MathSciNetGoogle Scholar
  191. [INV00]
    A.P. Itin, A.I. Neishtadt, and A.A. Vasiliev. Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave. Physica D, 141(3):281–296, 2000.zbMATHMathSciNetGoogle Scholar
  192. [IW02]
    D. Iron and M.J. Ward. The dynamics of multispike solutions to the one-dimensional Gierer–Meinhardt model. SIAM J. Appl. Math., 62(6):1924–1951, 2002.zbMATHMathSciNetGoogle Scholar
  193. [IWW01]
    D. Iron, M.J. Ward, and J. Wei. The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Physica D, 150(1):25–62, 2001.zbMATHMathSciNetGoogle Scholar
  194. [Izh03]
    E. Izhikevich. Simple model of spiking neurons. IEEE Trans. Neural Netw., 14(6):1569–1572, 2003.MathSciNetGoogle Scholar
  195. [Izh07]
    E. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, 2007.Google Scholar
  196. [JAB+01]
    G. Jongen, J. Anemüller, D. Bollé, A.C.C. Coolen, and C. Pérez-Vicente. Coupled dynamics of fast spins and slow exchange interactions in the XY spin glass. J. Phys. A, 34(19):3957–3984, 2001.zbMATHMathSciNetGoogle Scholar
  197. [JF96]
    E.M. De Jager and J. Furu. The Theory of Singular Perturbations. North-Holland, 1996.Google Scholar
  198. [JKP91]
    A. Joye, H. Kunz, and C.E. Pfister. Exponential decay and geometric aspect of transition probabilities in the adiabatic limit. Ann. Phys., 208(2):299–332, 1991.zbMATHMathSciNetGoogle Scholar
  199. [Jon95]
    C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995.Google Scholar
  200. [Joy94]
    A. Joye. Proof of the Landau-Zener formula. Asymp. Anal., 9(3):209–258, 1994.zbMATHMathSciNetGoogle Scholar
  201. [JP91a]
    A. Joye and C.E. Pfister. Exponentially small adiabatic invariant for the Schrödinger equation. Comm. Math. Phys., 140(1):15–41, 1991.zbMATHMathSciNetGoogle Scholar
  202. [JP91b]
    A. Joye and C.E. Pfister. Full asymptotic expansion of transition probabilities in the adiabatic limit. J. Phys. A, 24(4):753, 1991.Google Scholar
  203. [JP93]
    A. Joye and C.E. Pfister. Superadiabatic evolution and adiabatic transition probability between two nondegenerate levels isolated in the spectrum. J. Math. Phys., 34(2):454, 1993.Google Scholar
  204. [KA11]
    J. Kumar and G. Ananthakrishna. Multi-scale modeling approach to acoustic emission during plastic deformation. Phys. Rev. Lett., 106:106001, 2011.Google Scholar
  205. [KACW82]
    P.V. Kokotovic, B. Avramovic, J.H. Chow, and J.R. Winkelman. Coherency based decomposition and aggregation. Automatica, 18:47–56, 1982.zbMATHGoogle Scholar
  206. [Kat50]
    T. Kato. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Japan, 5:435–439, 1950.Google Scholar
  207. [KBKW98]
    A.I. Khibnik, Y. Braimanc, T.A.B. Kennedy, and K. Wiesenfeld. Phase model analysis of two lasers with injected field. Physica D, 111(1):295–310, 1998.zbMATHGoogle Scholar
  208. [KC96]
    J. Kevorkian and J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer, 1996.Google Scholar
  209. [KE90]
    N. Kopell and G.B. Ermentrout. Phase transitions and other phenomena in chains of coupled oscillators. SIAM J. Appl. Math., 50(4):1014–1052, 1990.zbMATHMathSciNetGoogle Scholar
  210. [KE03]
    G. Kozyreff and T. Erneux. Singular Hopf bifurcation to strongly pulsating oscillations in lasers containing a saturable absorber. Euro. J. Appl. Math., 14:407–420, 2003.zbMATHMathSciNetGoogle Scholar
  211. [Kel71]
    H.J. Kelley. Flight path optimization with multiple time scales. J. Aircraft, 8(4):238–240, 1971.Google Scholar
  212. [Kha80]
    H.K. Khalil. Multimodel design of a Nash strategy. J. Optim. Theor. Appl., 31(4):553–564, 1980.zbMATHMathSciNetGoogle Scholar
  213. [KK79c]
    H.K. Khalil and P.V. Kokotovic. Feedback and well-posedness of singularly perturbed Nash games. IEEE Trans. Aut. Contr., 24(5):699–708, 1979.zbMATHMathSciNetGoogle Scholar
  214. [KK85]
    K. Khorasani and P.V. Kokotovic. Feedback linearization of a flexible manipulator near its rigid body manifold. Syst. Control Lett., 6(3):187–192, 1985.zbMATHMathSciNetGoogle Scholar
  215. [KKO99]
    P. Kokotovic, H.K. Khalil, and J. O’Reilly. Singular Perturbation Methods in Control: Analysis and Design. SIAM, 1999.Google Scholar
  216. [KM06a]
    R. Klein and A.J. Majda. Systematic multiscale models for deep convection on mesoscales. Theor. Comp. Fluid Dyn., 20:525–551, 2006.MathSciNetGoogle Scholar
  217. [KNE+06]
    T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski. The Q-switching instability in passively mode-locked lasers. Physica D, 219(1):13–21, 2006.zbMATHMathSciNetGoogle Scholar
  218. [Kop00]
    N. Kopell. We got rhythm: Dynamical systems of the nervous system. Notices of the AMS, 47(1):6–16, 2000.zbMATHMathSciNetGoogle Scholar
  219. [KPAK02]
    B.W. Kooi, J.C. Poggiale, P. Auger, and S.A.L.M. Kooijman. Aggregation methods in food chains with nutrient recycling. Ecol. Model., 157(1):69–86, 2002.Google Scholar
  220. [KRS13]
    V. Kelptsyn, O. Romaskevich, and I. Schurov. Josephson effect and slow–fast systems. Nanostructures. Math. Phys. Model., 8(1):31–46, 2013.Google Scholar
  221. [KS70]
    E. Keller and S. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26:399–415, 1970.zbMATHGoogle Scholar
  222. [KS00b]
    M. Kunze and H. Spohn. Adiabatic limit for the Maxwell-Lorentz equations. Ann. Henri Poincaré, 1(4):625–653, 2000.zbMATHMathSciNetGoogle Scholar
  223. [KS01f]
    M. Kunze and H. Spohn. Post-Coulombian dynamics at order c-3. J. Nonlinear Sci., 11(5):321–396, 2001.zbMATHMathSciNetGoogle Scholar
  224. [KS06]
    M. Kunze and H. Spohn. Radiation reaction and center manifolds. SIAM J. Math. Anal., 32(1):30–53, 2006.MathSciNetGoogle Scholar
  225. [KS08a]
    J. Keener and J. Sneyd. Mathematical Physiology 1: Cellular Physiology. Springer, 2008.Google Scholar
  226. [KS08b]
    J. Keener and J. Sneyd. Mathematical Physiology 2: Systems Physiology. Springer, 2008.Google Scholar
  227. [KS13]
    I. Kosiuk and P. Szmolyan. A new type of relaxation oscillations in a model of the mitotic oscillator. preprint, 2013.Google Scholar
  228. [KSS+01]
    M. Krupa, M. Schagerl, A. Steindl, P. Szmolyan, and H. Troger. Relative equilibria of tethered satellite systems and their stability for very stiff tethers. Dynamical Systems, 16(3):253–278, 2001.zbMATHMathSciNetGoogle Scholar
  229. [Kue12b]
    C. Kuehn. Time-scale and noise optimality in self-organized critical adaptive networks. Phys. Rev. E, 85(2):026103, 2012.Google Scholar
  230. [Kue14]
    C. Kuehn. Normal hyperbolicity and unbounded critical manifolds. Nonlinearity, 27(6):1351–1366, 2014.zbMATHMathSciNetGoogle Scholar
  231. [KUR12]
    K.U. Kristiansen, P.L. Uldall, and R.M. Roberts. Numerical modelling of elastic space tethers. Celestial Mech. Dynam. Astronom., 113(2):235–254, 2012.MathSciNetGoogle Scholar
  232. [KVC13]
    M. Krupa, A. Vidal, and F. Clément. A network model of the periodic synchronization process in the dynamics of calcium concentration in GnRH neurons. J. Math. Neurosci., 3(4):1–40, 2013.MathSciNetGoogle Scholar
  233. [KWW05a]
    T. Kolokolnikov, M. J. Ward, and J. Wei. The existence and stability of spike equilibria in the one-dimensional Gray–Scott model: the pulse-splitting regime. Physica D, 202(3):258–293, 2005.zbMATHMathSciNetGoogle Scholar
  234. [KWW05b]
    T. Kolokolnikov, M.J. Ward, and J. Wei. The existence and stability of spike equilibria in the one-dimensional Gray–Scott model: the low feed rate regime. Stud. Appl. Math., 115(1):21–71, 2005.zbMATHMathSciNetGoogle Scholar
  235. [LACFG13]
    M. Lahutte-Auboin, R. Costalat, J.-P. Francoise, and R. Guillevin. Dip and buffering in a fast–slow system associated to brain lactate kinetics. arXiv:1308.0486v1, pages 1–11, 2013.Google Scholar
  236. [LD77]
    W.D. Lakin and P. Van Den Driessche. Time scales in population biology. SIAM J. Appl. Math., 32(3):694–705, 1977.zbMATHGoogle Scholar
  237. [Lee11]
    C.F. Lee. Singular perturbation analysis of a reduced model for collective motion: a renormalization group approach. Phys. Rev. E, 83:031127, 2011.Google Scholar
  238. [LFS+09]
    B.N. Lundstrom, M. Famulare, L.B. Sorensen, W.J. Spain, and A.L. Fairhall. Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons. J. Comput. Neurosci., 27(2):277–290, 2009.MathSciNetGoogle Scholar
  239. [LG13]
    M. Linkerhand and C. Gros. Self-organized stochastic tipping in slow–fast dynamical systems. Math. Mech. Complex Syst., pages 1–16, 2013. to appear.Google Scholar
  240. [LJH78]
    D. Ludwig, D.D. Jones, and C.S. Holling. Qualitative analysis of insect outbreak systems: The spruce budworm and forest. J. Animal Ecol., 47(1):315–332, 1978.Google Scholar
  241. [LL03b]
    J. Lin and F.L. Lewis. Two-time scale fuzzy logic controller of flexible link robot arm. Fuzzy Sets Syst., 139:125–149, 2003.zbMATHMathSciNetGoogle Scholar
  242. [LQY10]
    Y. Li, H. Qian, and Y. Yi. Nonlineaar oscillations and multiscale dynamics in a closed chemical reaction system. J. Dyn. Diff. Eq., 22:491–507, 2010.zbMATHMathSciNetGoogle Scholar
  243. [LR94]
    Y.X. Li and J. Rinzel. Equations for InsP 3 receptor-mediated \([Ca^{2+}]_{i}\) oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J. Theor. Biol., 166(4): 461–473, 1994.Google Scholar
  244. [LS12]
    K.W. Lee and S.N. Singh. Bifurcation of orbits and synchrony in inferior olive neurons. J. Math. Biol., 65:465–491, 2012.zbMATHMathSciNetGoogle Scholar
  245. [LSS13]
    H.K.H. Lentz, T. Selhorst, and I.M. Sokolov. Unfolding accessibility provides a macroscopic approach to temporal networks. Phys. Rev. Lett., 110:118701, 2013.Google Scholar
  246. [LTK+07]
    K. Henzler-Wildman M. Lei, V. Thai, J. Kerns, M. Karplus, and D. Kern. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature, 450:913–918, 2007.Google Scholar
  247. [LTLE95]
    A.M. Levine, G.H.M. Van Tartwijk, D. Lenstra, and T. Erneux. Diode lasers with optical feedback: stability of the maximum gain mode. Phys. Rev. A, 52(5):3436–3439, 1995.Google Scholar
  248. [LVEZE04]
    T. Li, E. Vanden-Eijnden, P. Zhang, and W. E. Stochastic models of polymeric fluids at small Deborah number. J. Non-Newtonian Fluid Mech., 121:117–125, 2004.Google Scholar
  249. [Maj07]
    A.J. Majda. New multiscale models and self-similarity in tropical convection. J. Atmos. Sci., 64(4):1393–1404, 2007.MathSciNetGoogle Scholar
  250. [MAP96]
    A.M. Mandel, M. Akke, and A.G. Palmer. Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales. Biochem., 35(50):16009–16023, 1996.Google Scholar
  251. [Mar86]
    P.A. Markowich. The Stationary Semiconductor Device Equations. Springer, 1986.Google Scholar
  252. [MB04]
    A.J. Majda and J.A. Biello. A multiscale model for tropical intraseasonal oscillations. Proc. Nat. Acad. Sci. USA, 101:4736–4741, 2004.zbMATHMathSciNetGoogle Scholar
  253. [MC86]
    M.R. Maxey and S. Corrsin. Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci., 43(11):1112–1134, 1986.Google Scholar
  254. [McC06]
    C. McCluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Math. Biosci. Eng., 3(4):603–614, 2006.zbMATHMathSciNetGoogle Scholar
  255. [Mey83]
    R.E. Meyer. A view of the triple deck. SIAM J. Appl. Math., 43(4):639–663, 1983.zbMATHMathSciNetGoogle Scholar
  256. [MG13b]
    I. Mirzaev and J. Gunawardena. Laplacian dynamics on general graphs. Bull. Math. Biol., 75(11): 2118–2149, 2013.zbMATHMathSciNetGoogle Scholar
  257. [MGM+91]
    J.A.J. Metz, S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs, and J.S. van Heerwaarden. Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction. In S.J. van Strien and S.M. Verduyn Lunel, editors, Stochastic and Spatial Structures of Dynamical Systems, pages 183–231. North-Holland, 1991.Google Scholar
  258. [Mit09]
    A. Mitrofanova. Efficient systems biology algorithms for biological networks over multiple time-scales: from evolutionary to regulatory time. PhD thesis, Courant Institute of Mathematical Sciences, NYU, New York, USA, 2009.Google Scholar
  259. [MK03]
    A.J. Majda and R. Klein. Systematic multi-scale models for the tropics. J. Atmosph. Sci., 60:393–408, 2003.Google Scholar
  260. [MK12a]
    M.M. McCarthy and N. Kopell. The effect of propofol anesthesia on rebound spiking. SIAM J. Appl. Dyn. Syst., 11(4):1674–1697, 2012.zbMATHGoogle Scholar
  261. [MKHC02]
    D. McMillen, N. Kopell, J. Hasty, and J.J. Collins. Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. USA, 99(2):679–684, 2002.Google Scholar
  262. [MKP97]
    M. Moallem, K. Khorasani, and R.V. Patel. An integral manifold approach for tip-position tracking of flexible multi-link manipulators. IEEE Trans. Robot. Aut., 13(6):823–837, 1997.Google Scholar
  263. [MM13b]
    F. Marino and F. Marin. Coexisting attractors and chaotic canard explosions in a slow–fast optomechanical system. Phys. Rev. E, 87(5):052906, 2013.Google Scholar
  264. [MMKW13]
    J. Mitry, M. McCarthy, N. Kopell, and M. Wechselberger. Excitable neurons, firing threshold manifolds and canards. J. Math. Neurosci., 3:12, 2013.MathSciNetGoogle Scholar
  265. [MNB01]
    S.K. Mazmuder, A.H. Nayfeh, and D. Boroyevich. Theoretical and experimental investigation of the fast-and slow-scale instabilities of a DC-DC converter. IEEE Trans. Power Electron., 16(2):201–216, 2001.Google Scholar
  266. [Moe96]
    R. Moeckel. Transition tori in the five-body problem. J. Differential Equat., 129(2):290–314, 1996.zbMATHMathSciNetGoogle Scholar
  267. [MP96]
    A. Milik and A. Prskawetz. Slow-fast dynamics in a model of population and resource growth. Math. Popul. Stud., 6(2):155–169, 1996.zbMATHGoogle Scholar
  268. [MPdlP12]
    M. Marvá, J.-C. Poggiale, and R. Bravo de la Parra. Reduction of slow–fast periodic systems with applications to population dynamics models. Math. Models Methods Appl. Sci., 22(10):1250025, 2012.Google Scholar
  269. [MPFS96]
    A. Milik, A. Prskawetz, G. Feichtinger, and W.C. Sanderson. Slow-fast dynamics in Wonderland. Environ. Model. Assessm., 1(1):3–17, 1996.Google Scholar
  270. [MR84]
    P.A. Markowich and C.A. Ringhofer. A singularly perturbed boundary value problem modelling a semiconductor device. SIAM J. Appl. Math., 44:213–256, 1984.MathSciNetGoogle Scholar
  271. [MR12a]
    K.L. Maki and Y. Renardy. The dynamics of a viscoelastic fluid which displays thixotropic yield stress behavior. J. Non-Newtonian Fluid Mech., 181:30–50, 2012.Google Scholar
  272. [MRS90]
    P.A. Markowich, C.A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, 1990.Google Scholar
  273. [MRS06]
    J.A.C. Martins, N.V. Rebrova, and V.A. Sobolev. On the (in)-stability of quasi-static paths of smooth systems: definitions and sufficient conditions. Math. Meth. Appl. Sci., 29(6):741–750, 2006.zbMATHMathSciNetGoogle Scholar
  274. [MS86a]
    P.A. Markowich and C. Schmeiser. Uniform asymptotic representation of solutions of the basic semiconductor-device equations. IMA J. Appl. Math., 36(1):43–57, 1986.zbMATHMathSciNetGoogle Scholar
  275. [MS89]
    P.A. Markowich and P. Szmolyan. A system of convection-diffusion equations with small diffusion-coefficient arising in semiconductor physics. J. Differential Equat., 81(2):234–254, 1989.zbMATHMathSciNetGoogle Scholar
  276. [MS01b]
    A. Milik and P. Szmolyan. Multiple time scales and canards in a chemical oscillator. In C.K.R.T. Jones, editor, Multiple Time Scale Dynamical Systems, volume 122, pages 117–140. Springer, 2001.Google Scholar
  277. [MSdlPS09]
    M. Marvá, E. Sánchez, R. Bravo de la Parra, and L. Sanz. Reduction of slow–fast discrete models coupling migration and demography. J. Theoret. Biol., 258(3):371–379, 2009.MathSciNetGoogle Scholar
  278. [MSLG98]
    A. Milik, P. Szmolyan, H. Loeffelmann, and E. Groeller. Geometry of mixed-mode oscillations in the 3-d autocatalator. Int. J. Bif. Chaos, 8(3):505–519, 1998.zbMATHGoogle Scholar
  279. [MT11]
    T.V. Martins and R. Toral. Synchronisation induced by repulsive interactions in a system of van der Pol oscillators. Prog. Theor. Phys., 126(3):353–368, 2011.zbMATHGoogle Scholar
  280. [Mur74]
    J.D. Murray. On the role of myoglobin in muscle respiration. J. Theor. Biol., 47(1):115–126, 1974.Google Scholar
  281. [Mur02b]
    J.D. Murray. Mathematical Biology I: An Introduction. Springer, 3rd edition, 2002.Google Scholar
  282. [Mur03]
    J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, 3rd edition, 2003.Google Scholar
  283. [Mus06]
    A. Mustafin. Two mutually loss-coupled lasers featuring astable multivibrator. Physica D, 218(2):167–176, 2006.zbMATHMathSciNetGoogle Scholar
  284. [Nam03]
    S. Namachchivaya. Spindle speed variation for the suppression of regenerative chatter. J. Nonl. Sci., 13(3):265–288, 2003.zbMATHMathSciNetGoogle Scholar
  285. [Nay70]
    A.H. Nayfeh. Nonlinear stability of a liquid jet. Phys. Fluids, 13:841, 1970.zbMATHGoogle Scholar
  286. [NBB08]
    W.H. Nesse, A. Borisyuk, and P.C. Bressloff. Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation. J. Comput. Neurosci., 25(2):317–333, 2008.MathSciNetGoogle Scholar
  287. [NBW03]
    M.E.J. Newman, A.-L. Barabási, and D.J. Watts. The Structure and Dynamics of Networks. Princeton University Press, 2003.Google Scholar
  288. [NC01]
    D.S. Naidu and A.J. Calise. Singular perturbations and time scales in guidance and control of aerospace systems: a survey. J. Guid. Contr. Dyn., 24(6):1057–1078, 2001.Google Scholar
  289. [NE03]
    W.I. Newman and M. Efroimsky. The method of variation of constants and multiple time scales in orbital mechanics. Chaos, 13(2):476–485, 2003.zbMATHMathSciNetGoogle Scholar
  290. [New03]
    M.E.J. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003.zbMATHMathSciNetGoogle Scholar
  291. [New11]
    M.E.J. Newman. Networks - An Introduction. OUP, 2011.Google Scholar
  292. [NHdlPA11]
    T. Nguyen-Huu, R. Bravo de la Parra, and P. Auger. Approximate aggregation of linear discrete models with two time scales: re-scaling slow processes to the fast scale. J. Difference Equ. Appl., 17(4):621–635, 2011.zbMATHMathSciNetGoogle Scholar
  293. [NHSS07]
    F. Noé, I. Horenko, C. Schütte, and J.C. Smith. Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J. Chem. Phys., 126:(155101), 2007.Google Scholar
  294. [NM+10]
    J. Nowacki,, S.H. Mazlan, H.M. Osinga, and K.T. Tsaneva-Atanasova. The role of large-conductance Calcium-activated K + (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D, 239(9):485–493, 2010.zbMATHMathSciNetGoogle Scholar
  295. [NP03]
    E. Neumann and A. Pikovsky. Slow-fast dynamics in Josephson junctions. Eur. Phys. J. B, 34:293–303, 2003.Google Scholar
  296. [NRT+10]
    J. Nawrath, M.C. Romano, M. Thiel, I. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter. Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales. Phys. Rev. Lett., 104:038701, 2010.Google Scholar
  297. [NS04]
    A.I. Neishtadt and V.V. Sidorenko. Wisdom system: dynamics in the adiabatic approximation. Celestial Mechanics and Dynamical Astronomy, 90(3):307–330, 2004.zbMATHMathSciNetGoogle Scholar
  298. [NT01]
    P. Noble and S. Travadel. Non-persistence of roll-waves under viscous perturbations. Discr. Cont. Dyn. Syst. B, 1(1):61–70, 2001.zbMATHMathSciNetGoogle Scholar
  299. [OCA11]
    E. Olbrich, J.C. Claussen, and P. Achermann. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain. Philos. Trans. R. Soc. Lond. Ser. A, 369(1952):3884–3901, 2011.zbMATHMathSciNetGoogle Scholar
  300. [O’M10]
    R.E. O’Malley. Singular perturbation theory: a viscous flow out of Göttingen. Ann. Rev. Fluid Mech., 42:1–17, 2010.MathSciNetGoogle Scholar
  301. [OM11]
    M. Oh and V. Mateev. Non-weak inhibition and phase resetting at negative values of phase in cells with fast–slow dynamics at hyperpolarized potentials. J. Comput. Neurosci., 31:31–42, 2011.MathSciNetGoogle Scholar
  302. [ØPO03]
    L. Øyehaug, E. Plathe, and S.W. Omholt. Targeted reduction of complex models with time scale hierarchy - a case study. Math. Biosci., 185(2):123–152, 2003.MathSciNetGoogle Scholar
  303. [OS90]
    R.E. O’Malley and C. Schmeiser. The asymptotic solution of a semiconductor device problem involving reverse bias. SIAM J. Appl. Math., 50(2):504–520, 1990.zbMATHMathSciNetGoogle Scholar
  304. [OS99]
    O.A. Oleinik and V.N. Samokhin. Mathematical Models in Boundary Layer Theory. Chapman & Hall, 1999.Google Scholar
  305. [PACNH09]
    J.-C. Poggiale, P. Auger, F. Cordoleani, and T. Nguyen-Huu. Study of a virus-bacteria interaction model in a chemostat: application of geometric singular perturbation theory. Phil. Trans. R. Soc. A, 367:4685–4697, 2009.zbMATHMathSciNetGoogle Scholar
  306. [Pan05]
    R.L. Panton. Incompressible Flow. Wiley, 2005.Google Scholar
  307. [PB81]
    B. Porter and A. Bradshaw. Singular perturbation methods in the design of tracking systems incorporating inner-loop compensators and high-gain error-actuated controllers. Int. J. Syst. Sci., 12(10):1193–1205, 1981.zbMATHMathSciNetGoogle Scholar
  308. [PB93]
    Z. Pan and T. Basar. H -optimal control for singularly perturbed systems. Part I: Perfect state measurements. Automatica, 29(2):401–423, 1993.Google Scholar
  309. [PCA+09]
    P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, and S. Merler. Spontaneous behavioural changes in response to epidemics. J. Theor. Biol., 260(1):31–40, 2009.MathSciNetGoogle Scholar
  310. [PCS93]
    R.W. Penney, A.C.C. Coolen, and D. Sherrington. Coupled dynamics of fast spins and slow interactions in neural networks and spin systems. J. Phys. A, 26(15):3681–3695, 1993.MathSciNetGoogle Scholar
  311. [Per76]
    L.M. Perko. Application of singular perturbation theory to the restricted three body problem. Rocky Mount. J. Math., 6(4):675, 1976.Google Scholar
  312. [PH93]
    A. Panfilov and P. Hogeweg. Spiral breakup in a modified FitzHugh–Nagumo model. Phys. Lett. A, 176(5):295–299, 1993.Google Scholar
  313. [Pin95]
    P.F. Pinsky. Synchrony and clustering in an excitatory neural network model with intrinsic relaxation kinetics. SIAM J. Appl. Math., 55(1):220–241, 1995.zbMATHMathSciNetGoogle Scholar
  314. [PK95]
    A.V. Panfilov and J.P. Keener. Re-entry in three-dimensional Fitzhugh-Nagumo medium with rotational anisotropy. Physica D, 84(3):545–552, 1995.Google Scholar
  315. [PKC82]
    G. Peponides, P. Kokotovic, and J. Chow. Singular perturbations and time scales in nonlinear models of power systems. IEEE Trans. Circ. Syst., 29(11):758–767, 1982.zbMATHMathSciNetGoogle Scholar
  316. [PMHC+10]
    P. Pierobon, J. Miné-Hattab, G. Cappello, J.-L. Viovy, and M. Cosentino Lagomarsino. Separation of time scales in a one-dimensional directed nucleation-growth process. Phys. Rev. E, 82:061904, 2010.Google Scholar
  317. [Pra05]
    L. Prandtl. Über Flüssigkeiten bei sehr kleiner Reibung. In Verh. III - International Math. Kongress, pages 484–491. Teubner, 1905.Google Scholar
  318. [PSS92]
    V. Petrov, S.K. Scott, and K. Showalter. Mixed-mode oscillations in chemical systems. J. Chem. Phys., 97(9):6191–6198, 1992.Google Scholar
  319. [PSSM08]
    D.E. Postnov, O.V. Sosnovtseva, P. Scherbakov, and E. Mosekilde. Multimode dynamics in a network with resource mediated coupling. Chaos, 18, 2008.Google Scholar
  320. [Rak00]
    D.A. Rakhlin. Enhanced diffusion in smoothly modulated superlattices. Phy. Rev. E, 63(1):011112, 2000.Google Scholar
  321. [RBT10]
    M.J. Rempe, J. Best, and D. Terman. A mathematical model of the sleep/wake cycle. J. Math. Biol., 60:615–644, 2010.zbMATHMathSciNetGoogle Scholar
  322. [RCR08]
    V. Rajagopalan, S. Chakraborty, and A. Ray. Estimation of slowly varying parameters in nonlinear systems via symbolic dynamic filtering. Signal Processing, 88:339–348, 2008.zbMATHGoogle Scholar
  323. [RDKL11]
    J. Rankin, M. Desroches, B. Krauskopf, and M. Lowenberg. Canard cycles in aircraft ground dynamics. Nonlin. Dyn., 66(4):681–688, 2011.Google Scholar
  324. [REG11]
    A. García Cantú Ros, J.-S. Mc Ewen, and P. Gaspard. Effect of ultrafast diffusion on adsorption, desorption, and reaction processes over heterogeneous surfaces. Phys. Rev. E, 83:021604, 2011.Google Scholar
  325. [Rei99a]
    S. Reich. Multiple time-scales in classical and quantum-classical molecular dynamics. J. Comput. Phys., 151:49–73, 1999.zbMATHMathSciNetGoogle Scholar
  326. [RG04]
    S. Rinaldi and A. Gragnani. Destabilizing factors in slow–fast systems. Ecol. Model., 180:445–460, 2004.Google Scholar
  327. [RG12]
    S. Revzen and J.M. Guckenheimer. Finding the dimension of slow dynamics in a rhythmic system. J. R. Soc. Interface, 9:957–971, 2012.Google Scholar
  328. [RH13]
    J. Rinzel and G. Huguet. Nonlinear dynamics of neuronal excitability, oscillations, and coincidence detection. Comm. Pure Appl. Math., 66(9):1464–1494, 2013.zbMATHMathSciNetGoogle Scholar
  329. [RHD11]
    M. Raghib, N.A. Hill, and U. Dieckmann. A multiscale maximum entropy moment closure for locally regulated space-time point process models of population dynamics. J. Math. Biol., 62:605–653, 2011.zbMATHMathSciNetGoogle Scholar
  330. [Rin94]
    S. Rinaldi. Laura and Petrarch: an intriguing case of cyclical love dynamics. SIAM J. Appl. Math., 58(4):1205–1221, 1994.MathSciNetGoogle Scholar
  331. [Rin09]
    S. Rinaldi. Synchrony in slow–fast metacommunities. Int. J. Bif. Chaos, 19(7):2447–2453, 2009.zbMATHMathSciNetGoogle Scholar
  332. [R.J72]
    R.J. Field, E. Körös and R.M. Noyes. Oscillations in chemical systems II. Thorough analysis of temporal oscillations in the Ce −BrO3-malonic acid system. J. Am. Chem. Soc., 94:8649–8664, 1972.Google Scholar
  333. [RJM95]
    J. Rubin, C.K.R.T. Jones, and M. Maxey. Settling and asymptotic motion of aerosol particles in a cellular flow field. J. Nonlinear Sci., 5:337–358, 1995.zbMATHMathSciNetGoogle Scholar
  334. [RK02]
    V. Rottschäfer and T.J. Kaper. Blowup in the nonlinear Schrödinger equation near critical dimension. J. Math. Anal. Appl., 268:517–549, 2002.zbMATHMathSciNetGoogle Scholar
  335. [RK03]
    V. Rottschäfer and T.J. Kaper. Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation. Nonlinearity, 16:929–961, 2003.zbMATHMathSciNetGoogle Scholar
  336. [RK06]
    H.G. Rotstein and R. Kuske. Localized and asynchronous patterns via canards in coupled calcium oscillators. Physica D, 215:46–61, 2006.zbMATHMathSciNetGoogle Scholar
  337. [RKS13]
    E. Reznik, T. Kaper, and D. Segré. The dynamics of hybrid metabolic-genetic oscillators. Chaos, 23(1):013132, 2013.Google Scholar
  338. [RKZE03a]
    H.G. Rotstein, N. Kopell, A.M. Zhabotinsky, and I.R. Epstein. A canard mechanism for localization in systems of globally coupled oscillators. SIAM J. Appl. Math., 63(6):1998–2019, 2003.zbMATHMathSciNetGoogle Scholar
  339. [RM63]
    M.L. Rosenzweig and R.H. MacArthur. Graphical representation and stability conditions of predator–prey interactions. American Naturalist, 97:209–223, 1963.Google Scholar
  340. [RM92]
    S. Rinaldi and S. Muratori. Slow-fast limit cycles in predator–prey models. Ecol. Model., 61:287–308, 1992.Google Scholar
  341. [RRE13]
    J.J. Rubin, J.E. Rubin, and G.B. Ermentrout. Analysis of synchronization in a slowly changing environment: how slow coupling becomes fast weak coupling. Phys. Rev. Lett., 110(20):204101, 2013.Google Scholar
  342. [RS75a]
    P. Reddy and P. Sannuti. Optimal control of a coupled-core nuclear reactor by a singular perturbation method. IEEE Trans- Aut. Contr., 20(6):766–769, 1975.Google Scholar
  343. [RS00]
    S. Rinaldi and M. Scheffer. Geometric analysis of ecological models with slow and fast processes. Ecosystems, 3:507–521, 2000.Google Scholar
  344. [RT00]
    J.E. Rubin and D. Terman. Analysis of clustered firing patterns in synaptically coupled networks of oscillators. J. Math. Biol., 41:6, 2000.MathSciNetGoogle Scholar
  345. [RT02a]
    J.E. Rubin and D. Terman. Geometric singular perturbation analysis of neuronal dynamics. In B. Fiedler, editor, Handbook of Dynamical Systems 2, pages 93–146. Elsevier, 2002.Google Scholar
  346. [RT02b]
    J.E. Rubin and D. Terman. Synchronized activity and loss of synchrony among heterogeneous conditional oscillators. SIAM J. Appl. Dyn. Syst., 1:1, 2002.MathSciNetGoogle Scholar
  347. [RVSA06]
    M.I. Rabinovich, P. Varona, A.I. Selverston, and H.D. Abarbanel. Dynamical principles in neuroscience. Rev. Mod. Phys., 78(4):1213–1265, 2006.Google Scholar
  348. [RW07]
    J. Rubin and M. Wechselberger. Giant squid - hidden canard: the 3D geometry of the Hodgin-Huxley model. Biological Cybernetics, 97(1), 2007.Google Scholar
  349. [RW12]
    H.G. Rotstein and H. Wu. Swing, release, and escape mechanisms contribute to the generation of phase-locked cluster patterns in a globally coupled FitzHugh–Nagumo model. Phys. Rev. E, 86:066207, 2012.Google Scholar
  350. [SB82]
    V.R. Saksena and T. Basar. A multimodel approach to stochastic team problems. Automatica, 18(6):713–720, 1982.zbMATHMathSciNetGoogle Scholar
  351. [SB99]
    C. Schütte and F.A. Bornemann. On the singular limit of the quantum-classical molecular dynamics model. SIAM J. Appl. Math., 59(4):1208–1224, 1999.zbMATHMathSciNetGoogle Scholar
  352. [SB03]
    R. Suckley and V. Biktashev. Comparison of asymptotics of heart and nerve excitability. Phys. Rev. E, 68:011902, 2003.MathSciNetGoogle Scholar
  353. [SB11]
    R.D. Simitev and V.N. Biktashev. Asymptotics of conduction velocity restitution in models of electrical excitation in the heart. Bull. Math. Biol., 73(1):72–115, 2011.zbMATHMathSciNetGoogle Scholar
  354. [SC81]
    V.R. Saksena and J.B. Cruz. Nash strategies in decentralized control of multiparameter singularly perturbed large scale systems. Large Scale Syst., 2:219–234, 1981.zbMATHMathSciNetGoogle Scholar
  355. [SC82]
    V.R. Saksena and J.B. Cruz. A multimodel approach to stochastic Nash games. Automatica, 18(3): 295–305, 1982.zbMATHMathSciNetGoogle Scholar
  356. [SC83]
    M.A. Salman and J.B. Cruz. Team-optimal closed-loop Stackelberg strategies for systems with slow and fast modes. Int. J. Contr., 37(6):1401–1416, 1983.zbMATHMathSciNetGoogle Scholar
  357. [SC84]
    V.R. Saksena and J.B. Cruz. Robust Nash strategies for a class of non-linear singularly perturbed problems. Int. J. Contr., 39(2):293–310, 1984.zbMATHMathSciNetGoogle Scholar
  358. [SCCA02]
    B. Song, C. Castillo-Chavez, and J.P. Aparicio. Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. Math. Biosci., 180(1):187–205, 2002.zbMATHMathSciNetGoogle Scholar
  359. [Sch85b]
    C. Schmeiser. Finite deformations of thin beams, asymptotic analysis by singular perturbation methods. IMA J. Appl. Math., 34(2):155–164, 1985.zbMATHMathSciNetGoogle Scholar
  360. [Sch89]
    C. Schmeiser. On strongly reverse biased semiconductor diodes. SIAM J. Appl. Math., 49(6):1734–1748, 1989.zbMATHMathSciNetGoogle Scholar
  361. [SD03]
    B. Sicardy and V. Dubois. Co-orbital motion with slowly varying parameters. Celestial Mech. Dynam. Astronom., 86(4):321–350, 2003.zbMATHMathSciNetGoogle Scholar
  362. [SDT91]
    C. Sueur and G. Dauphin-Tanguy. Bond graph approach to multi-time scale systems analysis. J. Frank. Inst., 328(5):1005–1026, 1991.zbMATHMathSciNetGoogle Scholar
  363. [SFH+01]
    S.S. Sazhin, G. Feng, M.R. Heikal, I. Goldfarb, V. Sol’dshtein, and G. Kuzmenko. Thermal ignition analysis of a monodisperse spray with radiation. Combustion and Flame, 124(4):684–701, 2001.Google Scholar
  364. [SG00]
    H. Schlichting and K. Gersten. Boundary-Layer Theory. Springer, 2000.Google Scholar
  365. [SG13]
    L. Sacerdote and M.T. Giraudo. Stochastic integrate and fire models: a review on mathematical methods and their applications. In Stochastic Biomathematical Models, pages 99–148. Springer, 2013.Google Scholar
  366. [SH08]
    A. Surana and G. Haller. Ghost manifolds in slow–fast systems, with applications to unsteady fluid flow separation. Physica D, 237(10):1507–1529, 2008.zbMATHMathSciNetGoogle Scholar
  367. [She08]
    W.E. Sherwood. Phase response in networks of bursting neurons: modeling central pattern generators. PhD thesis, Cornell University, Ithaca, USA, 2008.Google Scholar
  368. [SHPC09]
    C. Soria-Hoyo, F. Pontiga, and A. Castellanos. A PIC based procedure for the integration of multiple time scale problems in gas discharge physics. J. Comput. Phys., 228(4):1017–1029, 2009.zbMATHMathSciNetGoogle Scholar
  369. [SHX08]
    Y. Shen, Z. Hou, and H. Xin. Transition to burst synchronization in coupled neuron networks. Phys. Rev. E, 77:031920, 2008.Google Scholar
  370. [Sil04]
    W.T. Silfvast. Laser Fundamentals. CUP, 2004.Google Scholar
  371. [SKK87]
    M.W. Spong, K. Khorasani, and P.V. Kokotovic. An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom., 3(4):291–300, 1987.Google Scholar
  372. [SKR08]
    I. Sainz, A.B. Klimov, and L. Roa. Quantum phase transitions in an effective Hamiltonian: fast and slow systems. J. Phys. A, 41:355301, 2008.MathSciNetGoogle Scholar
  373. [SM13]
    D. Soudry and R. Meir. The neuron’s response at extended timescales. arXiv:1301.2631, pages 1–5, 2013.Google Scholar
  374. [Sou13]
    M. Souza. Multiscale analysis for a vector-borne epidemic model. J. Math. Biol., pages 1–14, 2013. accepted, to appear.Google Scholar
  375. [Spo00a]
    H. Spohn. The critical manifold of the Lorentz-Dirac equation. Europhys. Lett., 50(3):287, 2000.Google Scholar
  376. [SS08c]
    L.B. Shaw and I.B. Schwartz. Fluctuating epidemics on adaptive networks. Phys. Rev. E, 77:(066101), 2008.Google Scholar
  377. [SS13a]
    R.I. Saye and J.A. Sethian. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Science, 340:720–724, 2013.MathSciNetGoogle Scholar
  378. [SSL+09]
    I. Surovtsova, N. Simus, T. Lorenz, A. König, S. Sahle, and U. Kummer. Accessible methods for the dynamic time-scale decomposition of biochemical systems. Bioinformatics, 25(21):2816–2823, 2009.Google Scholar
  379. [Sto49]
    H. Stommel. Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8: 24–29, 1949.Google Scholar
  380. [Str01]
    S.H. Strogatz. Exploring complex networks. Nature, 410:268–276, 2001.Google Scholar
  381. [Sub96]
    N.N. Subbotina. Asymptotic properties of minimax solutions of Isaacs-Bellman equations in differential games with fast and slow motions. J. Appl. Math. Mech., 60(6):883–890, 1996.zbMATHMathSciNetGoogle Scholar
  382. [TAWJ08]
    D. Terman, S. Ahn, X. Wang, and W. Just. Reducing neuronal networks to discrete dynamics. Physica D, 237(3):324–338, 2008.zbMATHMathSciNetGoogle Scholar
  383. [TCN03]
    J.J. Tyson, K.C. Chen, and B. Novak. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15:221–231, 2003.Google Scholar
  384. [TG09]
    M. Thomson and J. Gunawardena. Unlimited multistability in multisite phosphorylation systems. Nature, 460:274–277, 2009.Google Scholar
  385. [Tro78]
    W.C. Troy. The bifurcation of periodic solutions in the Hodgkin–Huxley equations. Quart. Appl. Math., 36:73–83, 1978.zbMATHMathSciNetGoogle Scholar
  386. [TS95]
    H.C. Tseng and D.D. Siljak. A learning scheme for dynamic neural networks: equilibrium manifold and connective stability. Neural Networks, 8(6):853–864, 1995.Google Scholar
  387. [Tsa12]
    J.-C. Tsai. Do calcium buffers always slow down the propagation of calcium waves? J. Math. Biol., pages 1–46, 2012. to appear.Google Scholar
  388. [TSO96]
    Y. Tang, J.L. Stephenson, and H.G. Othmer. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys. J., 70:246–263, 1996.Google Scholar
  389. [Tuw03]
    J.M. Tuwankotta. Widely separated frequencies in coupled oscillators with energy-preserving quadratic nonlinearity. Physica D, 182(1):125–149, 2003.zbMATHMathSciNetGoogle Scholar
  390. [TW95]
    D. Terman and D.L. Wang. Global competition and local cooperation in a network of neural oscillators. Physica D, 81:148–176, 1995.zbMATHMathSciNetGoogle Scholar
  391. [ULFN04]
    N. Ulanovsky, L. Las, D. Farkas, and I. Nelken. Multiple time scales of adaptation in auditory cortex neurons. J. Neurosci., 24(46):10440–10453, 2004.Google Scholar
  392. [VB07]
    F. Verhulst and T. Bakri. The dynamics of slow manifolds. J. Indones. Math. Soc., 13:73–90, 2007.zbMATHMathSciNetGoogle Scholar
  393. [vD64]
    M. van Dyke. Perturbation Methods in Fluid Mechanics. Academic Press, 1964.Google Scholar
  394. [vdPD05]
    H. van der Ploeg and A. Doelman. Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction–diffusion equations. Indiana Univ. Math. J., 54(5):1219–1301, 2005.zbMATHMathSciNetGoogle Scholar
  395. [vdSDWE03]
    G. van der Sande, J. Danckaert, I. Weretennicoff, and T. Erneux. Rate equations for vertical-cavity surface-emitting lasers. Phys. Rev. A, 67(1):013809, 2003.Google Scholar
  396. [War96]
    M.J. Ward. Metastable bubble solutions for the Allen–Cahn equation with mass conservation. SIAM J. Appl. Math., 56(5):1247–1279, 1996.zbMATHMathSciNetGoogle Scholar
  397. [WB98]
    H.Y. Wu and S.M. Baer. Analysis of an excitable dendritic spine with an activity-dependent stem conductance. J. Math. Biol., 36(6):569–592, 1998.zbMATHGoogle Scholar
  398. [WBPK00]
    J.A. White, M.I. Banks, R.A. Pearce, and N.J. Kopell. Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABA A) kinetics provide substrate for mixed gamma-theta rhythm. Proc. Natl. Acad. Sci. USA, 97(14):8128–8133, 2000.Google Scholar
  399. [WCAK80]
    J.R. Winkelman, J.H. Chow, J.J. Allemong, and P.V. Kokotovic. Multi-time-scale analysis of a power system. Automatica, 16:35–43, 1980.zbMATHMathSciNetGoogle Scholar
  400. [WCB+81]
    J.R. Winkelman, J.H. Chow, B.C. Bowler, B. Avramovic, and P.V. Kokotovic. An analysis of interarea dynamics of multi-machine systems. IEEE Trans. Power Appar. Syst., 2:754–763, 1981.Google Scholar
  401. [Wie09]
    S. Wieczorek. Stochastic bifurcation in noise-driven lasers and Hopf oscillators. Phys. Rev. E, 79(3):036209, 2009.Google Scholar
  402. [Wil06]
    J.P. Wilber. Invariant manifolds describing the dynamics of a hyperbolic–parabolic equation from nonlinear viscoelasticity. Dynamical Systems, 21(4):465–489, 2006.zbMATHMathSciNetGoogle Scholar
  403. [WK01]
    M.W. Walser and C.H. Keitel. Geometric and algebraic approach to classical dynamics of a particle with spin. Lett. Math. Phys., 55(1):63–70, 2001.zbMATHMathSciNetGoogle Scholar
  404. [WKvdB12]
    Y.-F. Wang, M. Khan, and H.A. van den Berg. Interaction of fast and slow dynamics in endocrine control systems with an application to β-cell dynamics. Math. Biosci., 235(1):8–18, 2012.zbMATHMathSciNetGoogle Scholar
  405. [WM06]
    B.P. Wood and J.R. Miller. Linked selected and neutral loci in heterogeneous environments. J. Math. Biol., 53(6):939–975, 2006.zbMATHMathSciNetGoogle Scholar
  406. [WMH+02]
    M.J. Ward, D. McInerney, P. Houston, D. Gavaghan, and P. Maini. The dynamics and pinning of a spike for a reaction–diffusion system. SIAM J. Appl. Math., 62(4):1297–1328, 2002.zbMATHMathSciNetGoogle Scholar
  407. [WS00]
    D. Wirosoetisno and T.G. Shepherd. Averaging, slaving and balance dynamics in a simple atmospheric model. Physica D, 141:37–53, 2000.zbMATHMathSciNetGoogle Scholar
  408. [WW03]
    M.J. Ward and J. Wei. Hopf bifurcation and oscillatory instabilities of spike solutions for the one-dimensional Gierer–Meinhardt model. J. Nonlinear Sci., 13(2):209–264, 2003.zbMATHMathSciNetGoogle Scholar
  409. [Yam93]
    M. Yamada. A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. IEEE J. Quant. Electr., 29:1330–1336, 1993.Google Scholar
  410. [YLK13]
    N. Yu, Y.X. Li, and R. Kuske. A computational study of spike time reliability in two cases of threshold dynamics. J. Math. Neurosci., 3:11, 2013.MathSciNetGoogle Scholar
  411. [YPMD08]
    P. Yanguas, J.F. Palacián, J.F. Meyer, and H.S. Dumas. Periodic solutions in Hamiltonian systems, averaging, and the lunar problem. SIAM J. Appl. Dyn. Syst., 7(2):311–340, 2008.zbMATHMathSciNetGoogle Scholar
  412. [YTHL11]
    P. Yordanov, S. Tyanova, M.-T. Hütt, and A. Lesne. Asymmetric transition and time-scale separation in interlinked positive feedback loops. Int. J. Bif. Chaos, 21(7):1895–1905, 2011.zbMATHGoogle Scholar
  413. [ZD11]
    A. Zagaris and A. Doelman. Emergence of steady and oscillatory localized structures in a phytoplankton-nutrient model. Nonlinearity, 24(12):3437–3486, 2011.zbMATHMathSciNetGoogle Scholar
  414. [ZDTS09]
    A. Zagaris, A. Doelman, N.N. Pham Thi, and B.P. Sommeijer. Blooming in a non-local, coupled phytoplankton-nutrient model. SIAM J. Appl. Math., 69(4):1174–1204, 2009.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations