Advertisement

Infinite Dimensions

  • Christian Kuehn
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 191)

Abstract

Generalizing the geometric viewpoint of fast–slow ODEs to truly infinite- dimensional dynamical systems is notoriously difficult. However, there has been quite a bit of progress in recent years.

Bibliography

  1. [AB02]
    O. Alvarez and M. Bardi. Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim., 40(4):1159–1188, 2002.MathSciNetGoogle Scholar
  2. [AB03]
    O. Alvarez and M. Bardi. Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Rat. Mech. Anal., 170(1):17–61, 2003.zbMATHMathSciNetGoogle Scholar
  3. [ABF91]
    N.D. Alikakos, P.W. Bates, and G. Fusco. Slow motion for the Cahn–Hilliard equation in one space dimension. J. Differential Equat., 90(1):81–135, 1991.zbMATHMathSciNetGoogle Scholar
  4. [ABF97]
    N.D. Alikakos, L. Bronsard, and G. Fusco. Slow motion in the gradient theory of phase transitions via energy and spectrum. Calc. Var. Partial Diff. Equat., 6(1):39–66, 1997.MathSciNetGoogle Scholar
  5. [ABM07]
    O. Alvarez, M. Bardi, and C. Marchi. Multiscale problems and homogenization for second-order Hamilton–Jacobi equations. J. Differential Equat., 243(2):349–387, 2007.zbMATHMathSciNetGoogle Scholar
  6. [ACM08b]
    M.H. Adhikari, E.A. Coutsias, and J.K. McIver. Periodic solutions of a singularly perturbed delay differential equation. Physica D, 237:3307–3321, 2008.zbMATHMathSciNetGoogle Scholar
  7. [AF94]
    N.D. Alikakos and G. Fusco. Slow dynamics for the Cahn–Hilliard equation in higher space dimension part I: spectral estimates. Comm. Partial Diff. Equat., 19(9):1387–1447, 1994.MathSciNetGoogle Scholar
  8. [AF98]
    N.D. Alikakos and G. Fusco. Slow dynamics for the Cahn–Hilliard equation in higher space dimensions: the motion of bubbles. Arch. Rat. Mech. Anal., 141(1):1–61, 1998.zbMATHMathSciNetGoogle Scholar
  9. [AF09]
    B. Ambrosio and J.-P. Francoise. Propagation of bursting oscillations. Phil. Trans. R. Soc. A, 367: 4863–4875, 2009.zbMATHMathSciNetGoogle Scholar
  10. [AG13]
    G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.Google Scholar
  11. [AKN00]
    A. Andreini, M. Kamenskii, and P. Nistri. A result on the singular perturbation theory for differential inclusions in Banach spaces. Top. Meth. Nonl. Anal. J. Juliuz Schauder Center, 15: 1–15, 2000.zbMATHMathSciNetGoogle Scholar
  12. [AKST07]
    Z. Artstein, I.G. Kevrekidis, M. Slemrod, and E.S. Titi. Slow observables of singularly perturbed differential equations. Nonlinearity, 20(11):2463–2481, 2007.zbMATHMathSciNetGoogle Scholar
  13. [All92]
    G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6):1482–1518, 1992.zbMATHMathSciNetGoogle Scholar
  14. [AM06]
    A. Ambrosetti and A. Malchiodi. Perturbation Methods and Semilinear Elliptic Problems on \(\mathbb{R}^{n}\). Birkhäuser, 2006.Google Scholar
  15. [AMP+12]
    S. Arnrich, A. Mielke, M.A. Peletier, G. Savaré, and M. Veneroni. Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction. Calc. Var. Partial Differential Equat., 44:419–454, 2012.zbMATHGoogle Scholar
  16. [AMR02]
    M. De Angelis, A.M. Monte, and P. Renno. On fast and slow times in models with diffusion. Math. Models Methods Appl. Sci., 12:1741–1749, 2002.zbMATHMathSciNetGoogle Scholar
  17. [Art98]
    Z. Artstein. Stability in the presence of singular perturbations. Nonlinear Analysis, 34:817–827, 1998.zbMATHMathSciNetGoogle Scholar
  18. [Art99a]
    Z. Artstein. Invariant measures of differential inclusions applied to singular perturbations. J. Differential Equat., 152:289–307, 1999.zbMATHMathSciNetGoogle Scholar
  19. [AS01]
    Z. Artstein and M. Slemrod. On singularly perturbed retarded functional differential equations. J. Differential Equat., 171:88–109, 2001.zbMATHMathSciNetGoogle Scholar
  20. [BCD08]
    M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, 2008.Google Scholar
  21. [BDS99]
    P.W. Bates, E.N. Dancer, and J. Shi. Multi-spike stationary solutions of the Cahn–Hilliard equation in higher-dimension and instability. Adv. Differential Equat., 4(1):1–70, 1999.zbMATHMathSciNetGoogle Scholar
  22. [BF70]
    M. Berger and L. Fraenkel. On the asymptotic solution of a nonlinear Dirichlet problem. Indiana Univ. Math. J., 19:553–585, 1970.zbMATHMathSciNetGoogle Scholar
  23. [BF71]
    M. Berger and L. Fraenkel. On singular perturbations of nonlinear operator equations. Indiana Univ. Math. J., 20:623–631, 1971.zbMATHMathSciNetGoogle Scholar
  24. [BF90]
    P.W. Bates and P.C. Fife. Spectral comparison principles for the Cahn–Hilliard and phase-field equations, and time scales for coarsening. Physica D, 43(2):335–348, 1990.zbMATHMathSciNetGoogle Scholar
  25. [BF93]
    P.W. Bates and P.C. Fife. The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J. Appl. Math., 53(4):990–1008, 1993.zbMATHMathSciNetGoogle Scholar
  26. [BF00]
    P.W. Bates and G. Fusco. Equilibria with many nuclei for the Cahn–Hilliard equation. J. Differential Equat., 160(2):283–356, 2000.zbMATHMathSciNetGoogle Scholar
  27. [BH92]
    L. Bronsard and D. Hilhorst. On the slow dynamics for the Cahn–Hilliard equation in one space dimension. Proc. R. Soc. A, 439(1907):669–682, 1992.zbMATHMathSciNetGoogle Scholar
  28. [BJ89]
    P.W. Bates and C.K.R.T. Jones. Invariant manifolds for semilinear partial differential equations. In U. Kirchgraber and H.O. Walther, editors, Dynamics Reported, volume 2, pages 1–37. Wiley, 1989.Google Scholar
  29. [BK82]
    G.L. Browning and H.-O. Kreiss. Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math., 42(4):704–718, 1982.zbMATHMathSciNetGoogle Scholar
  30. [BK90]
    L. Bronsard and R.V. Kohn. On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl. Math., 43(8):983–997, 1990.zbMATHMathSciNetGoogle Scholar
  31. [BLP11]
    A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures. Chelsea, 2011.Google Scholar
  32. [BLZ98]
    P.W. Bates, K. Lu, and C. Zeng. Existence and persistence of invariant manifolds for semiflows in Banach spaces. Mem. Amer. Math. Soc., 135, 1998.Google Scholar
  33. [BLZ00]
    P.W. Bates, K. Lu, and C. Zeng. Invariant foliations near normally hyperbolic invariant manifolds for semiflows. Transactions of the AMS, 352(10):4641–4676, 2000.zbMATHMathSciNetGoogle Scholar
  34. [BLZ08]
    P.W. Bates, K. Lu, and C. Zeng. Approximately invariant manifolds and global dynamics of spike states. Invent. Math., 174:355–433, 2008.zbMATHMathSciNetGoogle Scholar
  35. [BNS01]
    V.F. Butuzov, N.N. Nefedov, and K.R. Schneider. Singularly perturbed elliptic problems in the case of exchange of stabilities. J. Differential Equat., 169(2):373–395, 2001.zbMATHMathSciNetGoogle Scholar
  36. [BP89]
    N.S. Bakhvalov and G.P. Panasenko. Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials. Kluwer, 1989.Google Scholar
  37. [BS97]
    F.A. Bornemann and C. Schütte. Homogenization of Hamiltonian systems with a strong constraining potential. Physica D, 102(1):57–77, 1997.zbMATHMathSciNetGoogle Scholar
  38. [But07]
    V.F. Butuzov. Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation. Comp. Math. Math. Phys., 47(4):620–628, 2007.MathSciNetGoogle Scholar
  39. [BV92]
    A.V. Babin and M.I. Vishik. Attractors of Evolution Equations. North-Holland, 1992.Google Scholar
  40. [BX95]
    P.W. Bates and J.P. Xun. Metastable patterns for the Cahn–Hilliard equation: Part II. Layer dynamics and slow invariant manifold. J. Differential Equat., 117(1):165–216, 1995.Google Scholar
  41. [BX98]
    P.W. Bates and J.P. Xun. Metastable patterns for the Cahn–Hilliard equation, part I. J. Differential Equat., 111(2):421–457, 1998.MathSciNetGoogle Scholar
  42. [Cam80a]
    S.L. Campbell. Singular linear systems of differential equations with delays. Applic. Anal., 11(2): 129–136, 1980.zbMATHGoogle Scholar
  43. [CCLCP13]
    A.N. Carvalho, J.W. Cholewa, G. Lozada-Cruz, and M.R.T. Primo. Reduction of infinite dimensional systems to finite dimensions: compact convergence approach. SIAM J. Math. Anal., 45(2):600–638, 2013.zbMATHMathSciNetGoogle Scholar
  44. [CFG89]
    P. Constantin, C. Foias, and J.D. Gibbon. Finite dimensional attractor for the laser equations. Nonlinearity, 2:241–269, 1989.zbMATHMathSciNetGoogle Scholar
  45. [CFNT89]
    P. Constantin, C. Foias, B. Nicolaenko, and R. Temam. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, 1989.Google Scholar
  46. [CH93]
    M.C. Cross and P.C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65(3): 851–1112, 1993.Google Scholar
  47. [CH08]
    C. Chicone and M.T. Heitzman. The field theory two-body problem in acoustics. Gen. Relativ. Gravit., 40:1087–1107, 2008.zbMATHMathSciNetGoogle Scholar
  48. [Che92]
    X. Chen. Generation and propagation of interfaces for reaction–diffusion equations. J. Differential Equat., 96(1):116–141, 1992.zbMATHGoogle Scholar
  49. [Chi03]
    C. Chicone. Inertial and slow manifolds for delay differential equations. J. Differential Equat., 190:364–406, 2003.zbMATHMathSciNetGoogle Scholar
  50. [Chi04]
    C. Chicone. Inertial flows, slow flows, and combinatorial identities for delay equations. J. Dyn. Diff. Eq., 16(3):805–831, 2004.zbMATHMathSciNetGoogle Scholar
  51. [CHM77]
    D.S. Cohen, F.C. Hoppensteadt, and R.M. Miura. Slowly modulated oscillations in nonlinear diffusion processes. SIAM J. Appl. Math., 33(2):217–229, 1977.zbMATHMathSciNetGoogle Scholar
  52. [CK99]
    D. Cao and T. Küpper. On the existence of multipeaked solutions to a semilinear Neumann problem. Duke Math. J., 97(2):261–300, 1999.zbMATHMathSciNetGoogle Scholar
  53. [CKMR01]
    C. Chicone, S.M. Kopeikin, B. Mashhoon, and D.G. Retzloff. Delay equations and radiation damping. Phys. Lett. A, 285:17–26, 2001.zbMATHGoogle Scholar
  54. [CNO06]
    S. Conti, B. Niethammer, and F. Otto. Coarsening rates in off-critical mixtures. SIAM J. Math. Anal., 37(6):1732–1741, 2006.zbMATHMathSciNetGoogle Scholar
  55. [Com71a]
    C. Comstock. Singular perturbations of elliptic equations. I. SIAM J. Appl. Math., 20(3):491–502, 1971.Google Scholar
  56. [Com71b]
    C. Comstock. Singular perturbations of elliptic equations. II. In Analytic Theory of Differential Equations, pages 200–206. Springer, 1971.Google Scholar
  57. [Con89]
    P. Constantin. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, 1989.Google Scholar
  58. [Con90]
    J. B. Conway. A Course in Functional Analysis. Springer, 1990.Google Scholar
  59. [CP89]
    J. Carr and R.L. Pego. Metastable patterns in solutions of u t = ε 2 u xxf(u). Comm. Pure Appl. Math., 42(5):523–576, 1989.zbMATHMathSciNetGoogle Scholar
  60. [CP90]
    J. Carr and R.L. Pego. Invariant manifolds for metastable patterns in u t = ε 2 u xxf(u). Proc. R. Soc. Edinburgh A, 116(1):133–160, 1990.zbMATHMathSciNetGoogle Scholar
  61. [CSE09]
    S.A. Campbell, E. Stone, and T. Erneux. Delay induced canards in a model of high speed machining. Dynamical Systems, 24(3):373–392, 2009.zbMATHMathSciNetGoogle Scholar
  62. [DBL13]
    M. Dobson, C. Le Bris, and F. Legoll. Symplectic schemes for highly oscillatory Hamiltonian systems: the homogenization approach beyond the constant frequency case. IMA J. Numer. Anal., 33:30–56, 2013.zbMATHMathSciNetGoogle Scholar
  63. [DD03]
    T. Donchev and A.L. Dontchev. Singular perturbations in infinite-dimensional control systems. SIAM J. Contr. Optim., 42(5):1795–1812, 2003.zbMATHMathSciNetGoogle Scholar
  64. [DDS96]
    A. Dontchev, T. Donchev, and I. Slavov. A Tikhonov-type theorem for singularly perturbed differential inclusions. Nonl. Anal., Theory, Meth. & Appl., 26(9):1547–1554, 1996.Google Scholar
  65. [dPMP05]
    M. del Pino, M. Musso, and A. Pistoia. Supercritical boundary bubbling in a semilinear Neumann problem. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(1):45–82, 2005.zbMATHGoogle Scholar
  66. [DPS73]
    F.W. Dorr, S.V. Parter, and L.F. Shampine. Applications of the maximum principle to singular perturbation problems. SIAM Rev., 15(1):43–88, 1973.zbMATHMathSciNetGoogle Scholar
  67. [Dri68]
    R.D. Driver. On Ryabov’s asymptotic characterization of the solutions of quasi-linear differential equations with small delays. SIAM Rev., 10(3):329–341, 1968.zbMATHMathSciNetGoogle Scholar
  68. [Dri76]
    R.D. Driver. Linear differential systems with small delays. J. Diff. Eq., 21:148–166, 1976.zbMATHMathSciNetGoogle Scholar
  69. [DS90]
    A.L. Dontchev and J.I. Slavov. Upper semicontinuity of solutions of singularly perturbed differential inclusions. In System Modelling and Optimization, volume 143 of Lect. Notes Contr. Inf. Sci., pages 273–280. Springer, 1990.Google Scholar
  70. [DS95a]
    T. Donchev and I. Slavov. Singularly perturbed functional-differential inclusions. Set-Valued Analysis, 3:113–128, 1995.zbMATHMathSciNetGoogle Scholar
  71. [DS99c]
    T. Donchev and I. Slavov. Averaging method for one-sided Lipschitz differential inclusions with generalized solutions. SIAM J. Contr. Optim., 37(5):1600–1613, 1999.zbMATHMathSciNetGoogle Scholar
  72. [DS09b]
    F. Dkhil and A. Stevens. Traveling wave speeds in rapidly oscillating media. Discr. Cont. Dyn. Syst. A, 26(1):89–108, 2009.MathSciNetGoogle Scholar
  73. [DSSS03]
    A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. Propagation of hexagonal patterns near onset. Euro. J. Appl. Math., 14(1):85–110, 2003.zbMATHMathSciNetGoogle Scholar
  74. [DV83b]
    A.L. Dontchev and V. Veliov. Singular perturbation in Mayer’s problem for linear systems. SIAM J. Control Optim., 21(4):566–581, 1983.zbMATHMathSciNetGoogle Scholar
  75. [E91]
    W. E. A class of homogenization problems in the calculus of variations. Comm. Pure Appl. Math., 44(7):733–759, 1991.Google Scholar
  76. [E92]
    W. E. Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45(3): 301–326, 1992.Google Scholar
  77. [E06]
    W. E. Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math., 52(4):959–972, 2006.Google Scholar
  78. [EA91]
    J. Elezgaray and A. Arneodo. Modeling reaction–diffusion pattern formation in the Couette flow reactor. J. Chem. Phys., 95:323–350, 1991.MathSciNetGoogle Scholar
  79. [Eck72]
    W. Eckhaus. Boundary layers in linear elliptic singular perturbation problem. SIAM Rev., 14(2): 225–270, 1972.zbMATHMathSciNetGoogle Scholar
  80. [EE93]
    B. Engquist and W. E. Large time behavior and homogenization of solutions of two-dimensional conservation laws. Comm. Pure Appl. Math., 46(1):1–26, 1993.Google Scholar
  81. [EFK00]
    S.-I. Ei, K. Fujii, and T. Kunihiro. Renormalization-group method for reduction of evolution equations; invariant manifolds and envelopes. Ann. Phys., 280(2):236–298, 2000.zbMATHMathSciNetGoogle Scholar
  82. [EN00]
    K.-J. Engel and R. Nagel. Semigroups for Linear Evolution Equations. Springer, 2000.Google Scholar
  83. [Eva02]
    L.C. Evans. Partial Differential Equations. AMS, 2002.Google Scholar
  84. [FH89]
    G. Fusco and J.K. Hale. Slow-motion manifolds, dormant instability, and singular perturbations. J. Dyn. Diff. Eq., 1:75–94, 1989.zbMATHMathSciNetGoogle Scholar
  85. [Fif73]
    P.C. Fife. Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech. Anal., 52(3):205–232, 1973.zbMATHMathSciNetGoogle Scholar
  86. [FJK+88]
    C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell, and E.S. Titi. On the computation of inertial manifolds. Phys. Lett. A, 131(7):433–436, 1988.MathSciNetGoogle Scholar
  87. [FK90]
    O.P. Filatov and M.M. Khapaev. Averaging of differential inclusions with “fast” and “slow” variables. Math. Notes, 47(6):596–601, 1990.zbMATHMathSciNetGoogle Scholar
  88. [FM02]
    A.C. Fowler and M.C. Mackey. Relaxation oscillations in a class of delay differential equations. SIAM J. Appl. Math., 63(1):299–323, 2002.zbMATHMathSciNetGoogle Scholar
  89. [Fol99]
    G. Folland. Real Analysis - Modern Techniques and Their Applications. Wiley, 1999.Google Scholar
  90. [Fow05]
    A.C. Fowler. Asymptotic methods for delay equations. J. Engrg. Math., 53(3):271–290, 2005.zbMATHMathSciNetGoogle Scholar
  91. [Fri02a]
    E. Fridman. Effects of small delays on stability of singularly perturbed systems. Automatica, 38(5):897–902, 2002.zbMATHMathSciNetGoogle Scholar
  92. [Fri02d]
    E. Fridman. Stability of singularly perturbed differential–difference systems: a LMI approach. Dyn. Cont. Discr. Impul. Syst. B, 9:201–212, 2002.zbMATHMathSciNetGoogle Scholar
  93. [FS03a]
    B. Fiedler and A. Scheel. Spatio-temporal dynamics of reaction–diffusion patterns. In M. Kirkilionis, S. Krömker, R. Rannacher, and F. Tomi, editors, Trends in Nonlinear Analysis, pages 21–150. Springer, 2003.Google Scholar
  94. [FST88]
    C. Foias, G.R. Sell, and R. Temam. Inertial manifolds for nonlinear evolutionary equations. J. Differential Equat., 73(2):309–353, 1988.zbMATHMathSciNetGoogle Scholar
  95. [FST89]
    C. Foias, G.R. Sell, and E.S. Titi. Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. Dyn. Diff. Eq., 1(2):199–244, 1989.zbMATHMathSciNetGoogle Scholar
  96. [FT91]
    C. Foias and E.S. Titi. Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity, 4(1):135, 1991.Google Scholar
  97. [FV03]
    B. Fiedler and M.I. Vishik. Quantitative homogenization of global attractors for reaction–diffusion systems with rapidly oscillating terms. Asymp.Anal., 34(2):159–185, 2003.Google Scholar
  98. [GANT98]
    B. Garcia-Archilla, J. Novo, and E.S. Titi. Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal., 35(3):941–972, 1998.zbMATHMathSciNetGoogle Scholar
  99. [GKR11a]
    S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Relaxation self-oscillations in neuron systems: I. Differential Equat., 47(7):927–941, 2011.zbMATHMathSciNetGoogle Scholar
  100. [GKR11b]
    S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Relaxation self-oscillations in neuron systems: II. Differential Equat., 47(12): 1697–1713, 2011.zbMATHMathSciNetGoogle Scholar
  101. [GKR12]
    S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Relaxation self-oscillations in neuron systems: III. Differential Equat., 48(2):159–175, 2012.zbMATHMathSciNetGoogle Scholar
  102. [GKR13]
    S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. On a method for mathematical modeling of chemical synapses. Differential Equat., 49(10):1193–1210, 2013.zbMATHMathSciNetGoogle Scholar
  103. [GL99]
    V. Gaitsgory and A. Leizarowitz. Limit occupational measures set for a control system and averaging of singularly perturbed control systems. J. Math. Anal. Appl., 233(2):461–475, 1999.zbMATHMathSciNetGoogle Scholar
  104. [Gli98]
    V.Y. Glizer. Asymptotic solution of a singularly perturbed set of functional-differential equations of Riccati type encountered in the optimal control theory. Nonl. Diff. Eq. Appl., 5(4):491–515, 1998.zbMATHMathSciNetGoogle Scholar
  105. [Gli00a]
    V.Y. Glizer. Asymptotic solution of a boundary-value problem for linear singularly-perturbed functional differential equations arising in optimal control theory. J. Optim. Theor. Appl., 106(2):309–335, 2000.zbMATHMathSciNetGoogle Scholar
  106. [Gli01a]
    V.Y. Glizer. Controllability of singularly perturbed linear time-dependent systems with small state delay. Dynamics and Control, 11(3):261–281, 2001.zbMATHMathSciNetGoogle Scholar
  107. [Gli01b]
    V.Y. Glizer. Euclidean space controllability of singularly perturbed linear systems with state delay. Syst. Contr. Lett., 43(3):181–191, 2001.zbMATHMathSciNetGoogle Scholar
  108. [Gli03a]
    V.Y. Glizer. Asymptotic analysis and solution of a finite-horizon H control problem for singularly-perturbed linear systems with small state delay. J. Optim. Theor. Appl., 117(2):295–325, 2003.zbMATHMathSciNetGoogle Scholar
  109. [Gli03b]
    V.Y. Glizer. Blockwise estimate of the fundamental matrix of linear singularly perturbed differential systems with small delay and its application to uniform asymptotic solution. J. Math. Anal. Appl., 278(2):409–433, 2003.zbMATHMathSciNetGoogle Scholar
  110. [Gli03c]
    V.Y. Glizer. Controllability of nonstandard singularly perturbed systems with small state delay. IEEE Trans. Aut. Contr., 48(7):1280–1285, 2003.MathSciNetGoogle Scholar
  111. [Gli04]
    V.Y. Glizer. On stabilization of nonstandard singularly perturbed systems with small delays in state and control. IEEE Trans. Aut. Contr., 49(6):1012–1016, 2004.MathSciNetGoogle Scholar
  112. [Gli07]
    V.Y. Glizer. Infinite horizon quadratic control of linear singularly perturbed systems with small state delays: an asymptotic solution of Riccati-type equations. IMA J. Math. Contr. Inform., 24(4):435–459, 2007.zbMATHMathSciNetGoogle Scholar
  113. [Gli08]
    V.Y. Glizer. Novel controllability conditions for a class of singularly-perturbed systems with small state delays. J. Optim. Theor. Appl., 137:135–156, 2008.zbMATHMathSciNetGoogle Scholar
  114. [GLMS01]
    I. Gasser, C.D. Levermore, P.A. Markowich, and C. Schmeiser. The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. Eur. J. Appl. Math., 12(4):497–512, 2001.zbMATHMathSciNetGoogle Scholar
  115. [GO11]
    A. Gloria and F. Otto. An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab., 39:779–856, 2011.zbMATHMathSciNetGoogle Scholar
  116. [GPEK00]
    A. Gavrielides, D. Pieroux, T. Erneux, and V. Kovanis. Hopf bifurcation subject to a large delay in a laser system. SIAM J. Appl. Math., 61(3):966–982, 2000.zbMATHMathSciNetGoogle Scholar
  117. [GPP12]
    G. Giacomin, K. Pakdaman, and X. Pellegrin. Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity, 25:1247–1273, 2012.zbMATHMathSciNetGoogle Scholar
  118. [GPPP12]
    G. Giacomin, K. Pakdaman, X. Pellegrin, and C. Poquet. Transitions in active rotator systems: invariant hyperbolic manifold approach. SIAM J. Math. Anal., 44(6):4165–4194, 2012.zbMATHMathSciNetGoogle Scholar
  119. [Gra95]
    C.P. Grant. Slow motion in one-dimensional Cahn–Morral systems. SIAM J. Math. Anal., 26(1):21–34, 1995.zbMATHMathSciNetGoogle Scholar
  120. [Gra96]
    G. Grammel. Singularly perturbed differential inclusions: an averaging approach. Set-Valued Analysis, 4(4):361–374, 1996.zbMATHMathSciNetGoogle Scholar
  121. [Gre69]
    W.M. Greenlee. Singular perturbation of eigenvalues. Arch. Rat. Mech. Anal., 34(2):143–164, 1969.zbMATHMathSciNetGoogle Scholar
  122. [Gri91]
    P. Grindrod. Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations. Clarendon Press, 1991.Google Scholar
  123. [GRMP10]
    C. Grotta-Ragazzo, C. Pereira Malta, and K. Pakdaman. Metastable periodic patterns in singularly perturbed delayed equations. J. Dyn. Diff. Eq., 22(2):203–252, 2010.zbMATHGoogle Scholar
  124. [Gru81]
    L.T. Grujic. Uniform asymptotic stability of non-linear singularly perturbed general and large-scale systems. Int. J. Contr., 33(3):481–504, 1981.zbMATHMathSciNetGoogle Scholar
  125. [Hal66]
    J.K. Hale. Averaging methods for differential equations with retarded arguments and a small parameter. J. Differential Equat., 2:57–73, 1966.zbMATHMathSciNetGoogle Scholar
  126. [Hal09]
    J.K. Hale. Ordinary Differential Equations. Dover, New York, NY, 2009.Google Scholar
  127. [Hen81]
    D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin Heidelberg, Germany, 1981.zbMATHGoogle Scholar
  128. [HGEK99]
    A. Hohl, A. Gavrielides, T. Erneux, and V. Kovanis. Quasiperiodic synchronization for two delay-coupled semiconductor lasers. Phys. Rev. A, 59(5):3941–3949, 1999.Google Scholar
  129. [HL93]
    J.K. Hale and S.M. Verduyn Lunel. Introduction to Functional Differential Equations. Springer, New York, NY, 1993.zbMATHGoogle Scholar
  130. [HM13]
    M.G. Hennessy and A. Münch. A multiple-scale analysis of evaporation induced Marangoni convection. SIAM J. Appl. Math., 73(2):974–1001, 2013.zbMATHMathSciNetGoogle Scholar
  131. [HMO83]
    J.K. Hale, L.T. Magelhaes, and W.M. Oliva. An Introduction to Infinite Dimensional Dynamical Systems – Geometric Theory. Springer, 1983.Google Scholar
  132. [Hop70]
    F.C. Hoppenstaedt. Cauchy problems involving a small parameter. Bull. Amer. Math. Soc., 76:142–146, 1970.MathSciNetGoogle Scholar
  133. [How79b]
    F.A. Howes. Singularly perturbed semilinear elliptic boundary value problems. Comm. Partial Diff. Eq., 4:1–39, 1979.zbMATHMathSciNetGoogle Scholar
  134. [Hoy06]
    R. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, 2006.Google Scholar
  135. [HYL12]
    D. Hu, J. Yang, and X. Liu. Delay-induced vibrational multiresonance in FitzHugh–Nagumo system. Commun. Nonlinear Sci. Numer. Simulat., 17:1031–1035, 2012.MathSciNetGoogle Scholar
  136. [IBS98]
    P. Iannelli, S. Baigent, and J. Stark. Inertial manifolds for dynamics of cells coupled by gap junctions. Dynamics and Stability of Systems, 13(2):187–213, 1998.zbMATHMathSciNetGoogle Scholar
  137. [JK75]
    J. Jarnik and J. Kurzweil. Ryabov’s special solutions of functional differential equations. Boll. Un. Mat. Ital. (4), 11(3):198–208, 1975.Google Scholar
  138. [JK86]
    C.K.R.T. Jones and T. Küpper. On the infinitely many solutions of a semilinear elliptic equation. SIAM J. Math. Anal., 17(4):803–835, 1986.zbMATHMathSciNetGoogle Scholar
  139. [JKT90]
    M.S. Jolly, I.G. Kevrekidis, and E.S. Titi. Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computations. Physica D, 44(1):38–60, 1990.zbMATHMathSciNetGoogle Scholar
  140. [Joh82]
    F. John. Partial Differential Equations. Springer, 1982.Google Scholar
  141. [JS95]
    D.A. Jones and A.M. Stuart. Attractive invariant manifolds under approximation part I: inertial manifolds. J Differential Equat., 123(2):588–637, 1995.zbMATHMathSciNetGoogle Scholar
  142. [Jün09]
    A. Jüngel. Transport Equations for Semiconductors. Springer, 2009.Google Scholar
  143. [Kat80]
    T. Kato. Perturbation Theory for Linear Operators. Springer, 1980.Google Scholar
  144. [KE97]
    R. Kuske and W. Eckhaus. Pattern formation in systems with slowly varying geometry. SIAM J. Appl. Math., 57(1):112–152, 1997.zbMATHMathSciNetGoogle Scholar
  145. [Kee74]
    J.P. Keener. Perturbed bifurcation theory at multiple eigenvalues. Arch. Rat. Mech. Anal., 56(4): 348–366, 1974.zbMATHMathSciNetGoogle Scholar
  146. [Kee86]
    J.P. Keener. A geometrical theory for spiral waves in excitable media. SIAM J. Appl. Math., 46(6): 1039–1056, 1986.zbMATHMathSciNetGoogle Scholar
  147. [Kee88]
    J.P. Keener. The dynamics of three-dimensional scroll waves in excitable media. Physica D, 31(2): 269–276, 1988.zbMATHMathSciNetGoogle Scholar
  148. [Kee00a]
    J.P. Keener. Homogenization and propagation in the bistable equation. Physica D, 136(1):1–17, 2000.zbMATHMathSciNetGoogle Scholar
  149. [Kee00b]
    J.P. Keener. Propagation of waves in an excitable medium with discrete release sites. SIAM J. Appl. Math., 61(1):317–334, 2000.zbMATHMathSciNetGoogle Scholar
  150. [Kha93]
    V.L. Khatskevich. Periodic solutions of monotone differential inclusions with fast and slow variables. Ukrainian Math. J., 45(5):761–772, 1993.zbMATHMathSciNetGoogle Scholar
  151. [KK73]
    J.P. Keener and H.B. Keller. Perturbed bifurcation theory. Arch. Rat. Mech. Anal., 50(3):159–175, 1973.zbMATHMathSciNetGoogle Scholar
  152. [KK93]
    A.Yu. Kolesov and Yu.S. Kolesov. Relaxation cycles in systems with delay. Russ. Acad. Sci. Sbor. Math., 76(2):507–522, 1993.Google Scholar
  153. [KL95]
    N. Kopell and M. Landman. Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis. SIAM J. Appl. Math., 55(5):1297–1323, 1995.zbMATHMathSciNetGoogle Scholar
  154. [KMR98]
    A.Yu. Kolesov, E.F. Mishchenko, and N.Kh. Rozov. Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations. Proc. Steklov Inst. Math., 222:1–189, 1998.MathSciNetGoogle Scholar
  155. [KN03]
    M. Kamenskii and P. Nistri. An averaging method for singularly perturbed systems of semilinear differential inclusions with analytic semigroups. Nonl. Anal., 53:467–480, 2003.zbMATHMathSciNetGoogle Scholar
  156. [KO02]
    R.V. Kohn and F. Otto. Upper bounds on coarsening rates. Comm. Math. Phys., 229(3):375–395, 2002.zbMATHMathSciNetGoogle Scholar
  157. [KP03b]
    M.K. Kadalbajoo and K.C. Patidar. Singularly perturbed problems in partial differential equations: a survey. Appl. Math. Comp., 134(2):371–429, 2003.zbMATHMathSciNetGoogle Scholar
  158. [KP05]
    R. Kuske and L.A. Peletier. A singular perturbation problem for a fourth order ordinary differential equation. Nonlinearity, 18(3):1189, 2005.Google Scholar
  159. [KR11]
    A.Yu. Kolesov and N.Kh. Rozov. The theory of relaxation oscillations for the Hutchinson equation. Sb. Math., 202(5):829–858, 2011.Google Scholar
  160. [KS12]
    G. Karali and C. Sourdis. Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities. Ann. Inst. Henri Poincaré (C), 29(2): 131–170, 2012.Google Scholar
  161. [KSM92]
    P. Kirrmann, G. Schneider, and A. Mielke. The validity of modulation equations for extended systems with cubic nonlinearities. Proc. R. Soc. Edinburgh A, 122(1):85–91, 1992.zbMATHMathSciNetGoogle Scholar
  162. [KT92]
    J.P. Keener and J.J. Tyson. The dynamics of scroll waves in excitable media. SIAM Rev., 34(1):1–39, 1992.zbMATHMathSciNetGoogle Scholar
  163. [Lax02]
    P.D. Lax. Functional Analysis. John Wiley & Sons, 2002.Google Scholar
  164. [Leh02]
    B. Lehman. The influence of delays when averaging slow and fast oscillating systems: overview. IMA J. Math. Control Inform., 19:201–215, 2002.zbMATHMathSciNetGoogle Scholar
  165. [Lin07]
    G. Lin. Periodic solutions for van der Pol equation with time delay. Appl. Math. Comp., 187(2): 1187–1198, 2007.zbMATHGoogle Scholar
  166. [Lio73]
    J.L. Lions. Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Springer, 1973.Google Scholar
  167. [LL03a]
    F. Lin and T.-C. Lin. Multiple time scale dynamics in coupled Ginzburg–Landau equations. Commun. Math. Sci., 1(4): 671–695, 2003.zbMATHMathSciNetGoogle Scholar
  168. [LN05]
    Y. Li and L. Nirenberg. The Dirichlet problem for singularly perturbed elliptic equations. Comm. Pure Appl. Math., 15(6):1162–1222, 2005.MathSciNetGoogle Scholar
  169. [LNT88]
    C.S. Lin, W.M. Ni, and I. Takagi. Large amplitude stationary solutions to a chemotaxis system. J. Differential Equat., 72(1): 1–27, 1988.zbMATHMathSciNetGoogle Scholar
  170. [LNW07]
    C.S. Lin, W.M. Ni, and J.C. Wei. On the number of interior peak solutions for a singularly perturbed Neumann problem. Comm. Pure Appl. Math., 60:252–281, 2007.zbMATHMathSciNetGoogle Scholar
  171. [LSAC08]
    D.J.B. Lloyd, B. Sandstede, D. Avitabile, and A.R. Champneys. Localized hexagon patterns of the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst., 7(3):1049–1100, 2008.zbMATHMathSciNetGoogle Scholar
  172. [LW99a]
    B. Lehman and S.P. Weibel. Averaging theory for delay difference equations with time-varying delays. SIAM J. Appl. Math., 59(4):1487–1506, 1999.zbMATHMathSciNetGoogle Scholar
  173. [LW99b]
    B. Lehman and S.P. Weibel. Fundamental theorems of averaging for functional-differential equations. J. Differential Equat., 152:160–190, 1999.zbMATHMathSciNetGoogle Scholar
  174. [LWW12]
    D. Liang, P. Weng, and J. Wu. Travelling wave solutions in a delayed predator–prey diffusion PDE system point-to-periodic and point-to-point waves. IMA J. Appl. Math., 77(4):516–545, 2012.zbMATHMathSciNetGoogle Scholar
  175. [LY05]
    G. Lin and R. Yuan. Periodic solution for a predator–prey system with distributed delay. Math. Comput. Model., 42(9):959–966, 2005.MathSciNetGoogle Scholar
  176. [LY06a]
    G. Lin and R. Yuan. Periodic solution for equations with distributed delays. Proc. R. Soc. Edinburgh A, 136(6):1317–1325, 2006.zbMATHMathSciNetGoogle Scholar
  177. [LY06b]
    G. Lin and R. Yuan. Travelling waves for the population genetics model with delay. The ANZIAM Journal, 48(1):57–71, 2006.zbMATHMathSciNetGoogle Scholar
  178. [Mal05]
    A. Malchiodi. Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains. Geom. Funct. Anal., 15(6):1162–1222, 2005.zbMATHMathSciNetGoogle Scholar
  179. [MB95]
    J.R. Mika and J. Banasiak. Singularly perturbed evolution equations with applications to kinetic theory. World Scientific, 1995.Google Scholar
  180. [MH01]
    G. Menon and G. Haller. Infinite dimensional geometric singular perturbation theory for the Maxwell-Bloch equations. SIAM J. Math. Anal., 33(2):315–346, 2001.zbMATHMathSciNetGoogle Scholar
  181. [Mie02]
    A. Mielke. The Ginzburg–Landau equation in its role as a modulation equation. In Handbook of Dynamical Systems 2, pages 759–834. Elsevier, 2002.Google Scholar
  182. [MK01]
    G.S. Medvedev and N. Kopell. Synchronization and transient dynamics in the chains of electrically coupled Fitzhugh-Nagumo oscillators. SIAM J. Appl. Math., 61(5):1762–1801, 2001.zbMATHMathSciNetGoogle Scholar
  183. [MP07]
    R. Molle and D. Passaseo. Multispike solutions of nonlinear elliptic equations with critical Sobolev exponent. Comm. Partial Differential Equations, 32:797–818, 2007.zbMATHMathSciNetGoogle Scholar
  184. [MPM08]
    A. Mielke, A. Petrov, and J.A.C. Martins. Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit. J. Math. Anal. Appl., 348:1012–1020, 2008.zbMATHMathSciNetGoogle Scholar
  185. [MPN11]
    J. Mallet-Paret and R.D. Nussbaum. Superstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations. J. Differential Equat., 11(1):4037–4084, 2011.MathSciNetGoogle Scholar
  186. [MPS88]
    J. Mallet-Paret and G.R. Sell. Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Amer. Math. Soc., 1(4):805–866, 1988.MathSciNetGoogle Scholar
  187. [MR71]
    B.J. Matkowsky and E.L. Reiss. On the asymptotic theory of dissipative wave motion. Arch. Rat. Mech. Anal., 42(3):194–212, 1971.zbMATHMathSciNetGoogle Scholar
  188. [MS95]
    A. Mielke and G. Schneider. Attractors for modulation equations on unbounded domains-existence and comparison. Nonlinearity, 8(5):743, 1995.Google Scholar
  189. [MS10]
    S. McCalla and B. Sandstede. Snaking of radial solutions of the multi-dimensional Swift–Hohenberg equation: A numerical study. Physica D, 239:1581–1592, 2010.zbMATHMathSciNetGoogle Scholar
  190. [MSU07]
    K. Matthies, G. Schneider, and H. Uecker. Exponential averaging for traveling wave solutions in rapidly varying periodic media. Math. Nachr., 280(4):408–422, 2007.zbMATHMathSciNetGoogle Scholar
  191. [MSZ00]
    A. Mielke, G. Schneider, and A. Ziegra. Comparison of inertial manifolds and application to modulated systems. Math. Machr., 214:53–70, 2000.zbMATHMathSciNetGoogle Scholar
  192. [MZ08]
    A. Miranville and S. Zelik. Attractors for dissipative partial differential equations in bounded and unbounded domains. In Handbook of Differential Equations: Evolutionary Equations, pages 103–200. Elsevier, 2008.Google Scholar
  193. [Ngu89]
    G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20(3):608–623, 1989.zbMATHMathSciNetGoogle Scholar
  194. [Ni98]
    W.-M. Ni. Diffusion, cross-diffusion and their spike-layer steady states. Notices Amer. Math. Soc., 45(1):9–18, 1998.zbMATHMathSciNetGoogle Scholar
  195. [Ni04]
    W.-M. Ni. Qualitative properties of solutions to elliptic problems. In Stationary Partial Differential Equations, volume 1 of Handbook of Differential Equations, pages 157–233. North-Holland, 2004.Google Scholar
  196. [NM89]
    Y. Nishiura and M. Mimura. Layer oscillations in reaction–diffusion systems. SIAM J. Appl. Math., 49(2):481–514, 1989.zbMATHMathSciNetGoogle Scholar
  197. [NRL86]
    A. Neves, H. Ribeiro, and O. Lopes. On the spectrum of evolution operators generated by hyperbolic systems. J. Funct. Anal., 67:320–344, 1986.zbMATHMathSciNetGoogle Scholar
  198. [O’M71a]
    R.E. O’Malley. Boundary layer methods for nonlinear initial value problems. SIAM Rev., 13(4): 425–434, 1971.zbMATHMathSciNetGoogle Scholar
  199. [OR07]
    F. Otto and M.G. Reznikoff. Slow motion of gradient flows. J. Differential Equat., 237(2):372–420, 2007.zbMATHMathSciNetGoogle Scholar
  200. [OSY92]
    O.A. Oleinik, A.S. Shamaev, and G.A. Yosifian. Mathematical Problems in Elasticity and Homogenization. North-Holland, 1992.Google Scholar
  201. [Paz83]
    A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983.zbMATHGoogle Scholar
  202. [PE94]
    J. Paullet and B. Ermentrout. Stable rotating waves in two-dimensional discrete active media. SIAM J. Appl. Math., 54(6):1720–1744, 1994.zbMATHMathSciNetGoogle Scholar
  203. [Peg89]
    R.L. Pego. Front migration in the nonlinear Cahn–Hilliard equation. Proc. R. Soc. London A, 422(1863):261–278, 1989.zbMATHMathSciNetGoogle Scholar
  204. [PJC+09]
    M. Peil, M. Jacquot, Y.K. Chembo, L. Larger, and T. Erneux. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E, 79(2):026208, 2009.Google Scholar
  205. [PS01]
    V.A. Pliss and G.R. Sell. Perturbations of normally hyperbolic manifolds with applications to the Navier–Stokes equations. J. Differential Equat., 169(2):396–492, 2001.zbMATHMathSciNetGoogle Scholar
  206. [PS07b]
    Y. Peng and Y. Song. Existence of traveling wave solutions for a reaction–diffusion equation with distributed delays. Nonl. Anal.: Theory, Meth. & Appl., 67(8):2415–2423, 2007.Google Scholar
  207. [PS08]
    G.A. Pavliotis and A.M. Stuart. Multiscale Methods: Averaging and Homogenization. Springer, 2008.Google Scholar
  208. [RK02]
    V. Rottschäfer and T.J. Kaper. Blowup in the nonlinear Schrödinger equation near critical dimension. J. Math. Anal. Appl., 268:517–549, 2002.zbMATHMathSciNetGoogle Scholar
  209. [RK03]
    V. Rottschäfer and T.J. Kaper. Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation. Nonlinearity, 16:929–961, 2003.zbMATHMathSciNetGoogle Scholar
  210. [Rob01]
    J.C. Robinson. Infinite-Dimensional Dynamical Systems. CUP, 2001.Google Scholar
  211. [RSK89]
    J. Rubinstein, P. Sternberg, and J.B. Keller. Reaction-diffusion processes and evolution to harmonic maps. SIAM J. Appl. Math., 49(6):1722–1733, 1989.zbMATHMathSciNetGoogle Scholar
  212. [Rud91]
    W. Rudin. Functional Analysis. McGraw-Hill, 1991.Google Scholar
  213. [RW05]
    X. Ren and J. Wei. Nucleation in the FitzHugh–Nagumo system: interface-spike solutions. J. Differential Equat., 209(2):266–301, 2005.zbMATHMathSciNetGoogle Scholar
  214. [SB97]
    C. Schütte and F.A. Bornemann. Homogenization approach to smoothed molecular dynamics. Nonl. Anal., 30:1805–1814, 1997.zbMATHGoogle Scholar
  215. [SB08]
    K. Sriram and S. Bernard. Complex dynamics in the Oregonator model with linear delayed feedback. Chaos, 18(2):023126, 2008.Google Scholar
  216. [Sch95a]
    G. Schneider. Validity and limitation of the Newell-Whitehead equation. Math. Nachr., 176:249–263, 1995.zbMATHMathSciNetGoogle Scholar
  217. [Sch96]
    G. Schneider. The validity of generalized Ginzburg–Landau equations. Math. Meth. Appl. Sci., 19(9):717–736, 1996.zbMATHGoogle Scholar
  218. [Sch98]
    G. Schneider. Justification of modulation equations for hyperbolic systems via normal forms. Nonl. Diff. Eq. Appl. NoDEA, 5(1):69–82, 1998.zbMATHGoogle Scholar
  219. [Sch01]
    G. Schneider. Bifurcation theory for dissipative systems on unbounded cylindrical domains - an introduction to the mathematical theory of modulation equations. ZAMM Z. Angew. Math. Mech., 81(8): 507–522, 2001.zbMATHMathSciNetGoogle Scholar
  220. [SIB01]
    J. Stark, P. Iannelli, and S. Baigent. A nonlinear dynamics perspective of moment closure for stochastic processes. Nonl. Anal., 47:753–764, 2001.zbMATHMathSciNetGoogle Scholar
  221. [Sie13]
    J. Sieber. Longtime behaviour of the coupled wave equations for semiconductor lasers. arXiv:1308.2060, pages 1–33, 2013.Google Scholar
  222. [Smi02]
    G.V. Smirnov. Introduction to the Theory of Differential Inclusions. AMS, 2002.Google Scholar
  223. [SO97a]
    A. Stevens and H.G. Othmer. Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math., 57(4):1044–1081, 1997.zbMATHMathSciNetGoogle Scholar
  224. [SP10]
    I. Shlykova and A. Ponosov. Singular perturbation analysis and gene regulatory networks with delay. Nonlinear Analysis, 72:3786–3812, 2010.zbMATHMathSciNetGoogle Scholar
  225. [SR73]
    P. Sannuti and P. Reddy. Asymptotic series solution of optimal systems with small time delay. IEEE Trans. Aut. Contr., 18(3):250–259, 1973.zbMATHGoogle Scholar
  226. [SWW05]
    B.D. Sleeman, M.J. Ward, and J.C. Wei. The existence and stability of spike patterns in a chemotaxis model. SIAM J. Appl. Math., 65(3):790–817, 2005.zbMATHMathSciNetGoogle Scholar
  227. [Tar09]
    L. Tartar. The General Theory of Homogenization - A Personal Introduction. Springer, 2009.Google Scholar
  228. [Tem90]
    R. Temam. Inertial manifolds and multigrid methods. SIAM J. Math. Anal., 21(1):154–178, 1990.zbMATHMathSciNetGoogle Scholar
  229. [Tem97]
    R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, 1997.Google Scholar
  230. [TZ11]
    B. Texier and K. Zumbrun. Nash-Moser iteration and singular perturbations. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 28(4):499–527, 2011.Google Scholar
  231. [VC01]
    M.I. Vishik and V.V. Chepyzhov. Averaging of trajectory attractors of evolution equations with rapidly oscillating terms. Sbornik Math., 192(1):11, 2001.Google Scholar
  232. [Vel97]
    V. Veliov. A generalization of the Tikhonov theorem for singularly perturbed differential inclusions. J. Dyn. Control Sys., 3(3):291–319, 1997.zbMATHMathSciNetGoogle Scholar
  233. [Vis93]
    M.I. Vishik. Asymptotic Behaviour of Solutions of Evolutionary Equations. CUP, 1993.Google Scholar
  234. [Wan92]
    Z.-Q. Wang. On the existence of multiple, single-peaked solutions for a semilinear Neumann problem. Arch. Rational Mech. Anal., 120:375–399, 1992.zbMATHMathSciNetGoogle Scholar
  235. [War94]
    M.J. Ward. Metastable patterns, layer collapses, and coarsening for a one-dimensional Ginzburg–Landau equation. Stud. Appl. Math., 91(1):51–93, 1994.zbMATHMathSciNetGoogle Scholar
  236. [War05]
    M.J. Ward. Spikes for singularly perturbed reaction–diffusion systems and Carrier’s Problem. In C. Hua and R. Wong, editors, Differential Equations and Asymptotic Theory in Mathematical Physics, pages 100–188. World Scientific, 2005.Google Scholar
  237. [War06]
    M.J. Ward. Asymptotic methods for reaction–diffusion systems: past and present. Bull. Math. Biol., 68:1151–1167, 2006.Google Scholar
  238. [Wat05]
    F. Watbled. On singular perturbations for differential inclusions on the infinite interval. J. Math. Anal. Appl., 310:362–378, 2005.zbMATHMathSciNetGoogle Scholar
  239. [WED+13]
    L. Weicker, T. Erneux, O. D’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger. Slow-fast dynamics of a time-delayed electro-optic oscillator. Phil. Trans. R. Soc. A, 371(1999):20120459, 2013.Google Scholar
  240. [WEJ+12]
    L. Weicker, T. Erneux, M. Jacquot, Y. Chembo, and L. Larger. Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator. Phys. Rev. E, 85:026206, 2012.Google Scholar
  241. [WH01]
    Z. Wang and H. Hu. Dimensional reduction for nonlinear time-delayed systems composed of stiff and soft substructures. Nonlinear Dyn., 25(4):317–331, 2001.zbMATHGoogle Scholar
  242. [WORD03]
    S.J. Watson, F. Otto, B.Y. Rubinstein, and S.H. Davis. Coarsening dynamics of the convective Cahn–Hilliard equation. Physica D, 178(3):127–148, 2003.zbMATHMathSciNetGoogle Scholar
  243. [WR02]
    S. Wirkus and R. Rand. The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn., 30(3):205–221, 2002.zbMATHMathSciNetGoogle Scholar
  244. [WX13]
    X. Wang and Q. Xu. Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem. J. Math. Biol., 66(6):1241–1266, 2013.zbMATHMathSciNetGoogle Scholar
  245. [YW10]
    S. Yanchuk and M. Wolfrum. A multiple time scale approach to the stability of external cavity modes in the Lang–Kobayashi system using the limit of large delay. SIAM J. Appl. Dyn. Sys., 9(2):519–535, 2010.zbMATHMathSciNetGoogle Scholar
  246. [Zel13]
    S. Zelik. Inertial manifolds and finite-dimensional reduction for dissipative PDEs. arXiv:1303.4457v1, pages 1–60, 2013.Google Scholar
  247. [Zha08]
    Z. Zhao. Solitary waves of the generalized KdV equation with distributed delays. J. Math. Anal. Appl., 344(1):32–41, 2008.zbMATHMathSciNetGoogle Scholar
  248. [ZW10b]
    Y.G. Zheng and Z.H. Wang. The impact of delayed feedback on the pulsating oscillations of class-B lasers. Int. J. Non-Linear Mech., 45(7):727–733, 2010.Google Scholar
  249. [ZW12a]
    Y.G. Zheng and Z.H. Wang. Relaxation oscillation and attractive basins of a two-neuron Hopfield network with slow and fast variables. Nonlinear Dyn., 70:1231–1240, 2012.Google Scholar
  250. [ZW12b]
    Y.G. Zheng and Z.H. Wang. Time-delay effect on the bursting of the synchronized state of coupled Hindmarsh-Rose neurons. Chaos, 22:043127, 2012.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations