Spatial Dynamics

  • Christian Kuehn
Part of the Applied Mathematical Sciences book series (AMS, volume 191)


In this chapter, the main topic is traveling waves for time-dependent spatially extended systems in one space dimension. Note that we have already extensively discussed various techniques to prove the existence of waves for partial differential equations (PDEs); see, e.g., Chapter 6 Hence, we focus here on further topics beyond the existence of waves in PDEs.


Homoclinic Orbit Evans Function Integrodifferential Equation Exponential Dichotomy Fast Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [ABBG02]
    P. Ashwin, M.V. Bartuccelli, T.J. Bridges, and S.A. Gourley. Travelling fronts for the KPP equation with spatio-temporal delay. Zeitschr. Angewand. Math. Phys., 53(1):103–122, 2002.zbMATHMathSciNetGoogle Scholar
  2. [ACY03]
    S. Ai, S.-N. Chow, and Y. Yi. Travelling wave solutions in a tissue interaction model for skin pattern formation. J. Dyn. Diff. Eq., 15(2):517–534, 2003.zbMATHMathSciNetGoogle Scholar
  3. [ADD12]
    E.O. Alzahrani, F.A. Davidson, and N. Dodds. Reversing invasion in bistable systems. J. Math. Biol., 65:1101–1124, 2012.zbMATHMathSciNetGoogle Scholar
  4. [AG13]
    G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.Google Scholar
  5. [AGJ90]
    J.C. Alexander, R.A. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math., 410:167–212, 1990.zbMATHMathSciNetGoogle Scholar
  6. [AGK+11]
    Z. Artstein, C.W. Gear, I.G. Kevrekidis, M. Slemrod, and E.S. Titi. Analysis and computation of a discrete KdV-Burgers type equation with fast dispersion and slow diffusion. SIAM J. Numer. Anal., 49(5):2124–2143, 2011.zbMATHMathSciNetGoogle Scholar
  7. [AHM08]
    M. Alfaro, D. Hilhorst, and H. Matano. The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system. J. Differen. Equat., 245(2):505–565, 2008.zbMATHMathSciNetGoogle Scholar
  8. [Ai07]
    S. Ai. Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differential Equat., 232(1):104–133, 2007.zbMATHMathSciNetGoogle Scholar
  9. [Ai10]
    S. Ai. Traveling waves for a model of a fungal disease over a vineyard. SIAM J. Math. Anal., 42(2): 833–856, 2010.zbMATHMathSciNetGoogle Scholar
  10. [AK13b]
    F. Achleitner and C. Kuehn. On bounded positive stationary solutions for a nonlocal Fisher-KPP equation. arXiv:1307.3480, pages 1–20, 2013.Google Scholar
  11. [AMPP87]
    S.B. Angenent, J. Mallet-Paret, and L.A. Peletier. Stable transition layers in a semilinear boundary value problem. J. Differential Equat., 67(2):212–242, 1987.zbMATHMathSciNetGoogle Scholar
  12. [AS12]
    F. Achleitner and P. Szmolyan. Saddle-node bifurcation of viscous profiles. Physica D, 241(20): 1703–1717, 2012.zbMATHMathSciNetGoogle Scholar
  13. [Bar83]
    J.W. Barker. Interactions of fast and slow waves in hyperbolic systems with two time scales. Math. Methods Appl. Sci., 5(3):292–307, 1983.zbMATHMathSciNetGoogle Scholar
  14. [Bar84]
    J.W. Barker. Interactions of fast and slow waves in problems with two time scales. SIAM J. Math. Anal., 15(3):500–513, 1984.zbMATHMathSciNetGoogle Scholar
  15. [BD97]
    E. Brunet and B. Derrida. Shift in the velocity front due to a cutoff. Phys. Rev. E, 56(3):2597–2604, 1997.MathSciNetGoogle Scholar
  16. [BDK06]
    M. Beck, A. Doelman, and T.J. Kaper. A geometric construction of traveling waves in a bioremediation model. J. Nonlinear Sci., 16(4):329–349, 2006.zbMATHMathSciNetGoogle Scholar
  17. [BE95]
    V. Booth and T. Erneux. Understanding propagation failure as a slow capture near a limit point. SIAM J. Appl. Math., 55(5):1372–1389, 1995.zbMATHMathSciNetGoogle Scholar
  18. [BJSW08]
    M. Beck, C.K.R.T. Jones, D. Schaeffer, and M. Wechselberger. Electrical waves in a one-dimensional model of cardiac tissue. SIAM J. Appl. Dyn. Syst., 7(4):1558–1581, 2008.zbMATHMathSciNetGoogle Scholar
  19. [BNS85]
    H. Berestycki, B. Nicolaenko, and B. Scheurer. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal., 16(6):1207–1242, 1985.zbMATHMathSciNetGoogle Scholar
  20. [Bos00]
    A. Bose. A geometric approach to singularly perturbed nonlocal reaction–diffusion equations. SIAM J. Math. Anal., 31(2):431–454, 2000.zbMATHGoogle Scholar
  21. [Bre12b]
    P.C. Bressloff. Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor., 45:(033001), 2012.Google Scholar
  22. [BST08]
    W.-J. Beyn, S. Selle, and V. Thümmler. Freezing multipulses and multifronts. SIAM J. Appl. Dyn. Syst., 7(2):577–608, 2008.zbMATHMathSciNetGoogle Scholar
  23. [BW11]
    M. Beck and C.E. Wayne. Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM Rev., 53(1):129–153, 2011.zbMATHMathSciNetGoogle Scholar
  24. [CB02]
    A. Carpio and L.L. Bonilla. Pulse propagation in discrete systems of coupled excitable cells. SIAM J. Appl. Math., 63(2):619–635, 2002.zbMATHMathSciNetGoogle Scholar
  25. [Cho03]
    S.-N. Chow. Lattice dynamical systems. In J.W. Macki and P. Zecca, editors, Dynamical Systems, pages 1–102. Springer, 2003.Google Scholar
  26. [CL10]
    G.A. Cassatella Contra and D. Levi. Discrete multiscale analysis: a biatomic lattice system. J. Nonlinear Math. Phys., 17:357–377, 2010.zbMATHMathSciNetGoogle Scholar
  27. [CMJ09]
    N. Costanzino, V. Manukian, and C.K.R.T. Jones. Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal., 41(5):2088–2106, 2009.zbMATHMathSciNetGoogle Scholar
  28. [CML02]
    D. Cai, D.W. McLaughlin, and K.T.R. Mc Laughlin. The nonlinear Schrödinger equation as both a PDE and a dynamical system. In B. Fiedler, editor, Handbook of Dynamical Systems 2, pages 599–675. Elsevier, 2002.Google Scholar
  29. [Coo05]
    S. Coombes. Waves, bumps, and patterns in neural field theories. Biol. Cybern., 93:91–108, 2005.zbMATHMathSciNetGoogle Scholar
  30. [Daf10]
    C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2010.Google Scholar
  31. [DDvGV03]
    G. Derks, A. Doelman, S.A. van Gils, and T. Visser. Travelling waves in a singularly perturbed sine-Gordon equation. Physica D, 180:40–70, 2003.zbMATHMathSciNetGoogle Scholar
  32. [DEK00]
    A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray-Scott Model I: asymptotic construction and stability. SIAM J. Appl. Math., 61(3):1080–1102, 2000.zbMATHMathSciNetGoogle Scholar
  33. [DEK06]
    A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray–Scott Model II: geometric theory, bifurcations, and splitting dynamics. SIAM J. Appl. Math., 61(6): 2036–2062, 2006.Google Scholar
  34. [DGK01]
    A. Doelman, R.A. Gardner, and T.J. Kaper. Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J., 50(1):443–507, 2001.zbMATHMathSciNetGoogle Scholar
  35. [DGK02]
    A. Doelman, R.A. Gardner, and T.J. Kaper. A Stability Index Analysis of 1-D Patterns of the Gray-Scott Model, volume 737 of Mem. Amer. Math. Soc. AMS, 2002.Google Scholar
  36. [DHV04]
    A. Doelman, G. Hek, and N. Valkhoff. Stabilization by slow diffusion in a real Ginzburg–Landau system. J. Nonlinear Sci., 14(3):237–278, 2004.zbMATHMathSciNetGoogle Scholar
  37. [DHV07]
    A. Doelman, G. Hek, and N. Valkhoff. Algebraically decaying pulses in a Ginzburg–Landau system with a neutrally stable mode. Nonlinearity, 20:357–389, 2007.zbMATHMathSciNetGoogle Scholar
  38. [DIN04]
    A. Doelman, D. Iron, and Y. Nishiura. Destabilization of fronts in a class of bistable systems. SIAM J. Math. Anal., 35(6):1420–1450, 2004.zbMATHMathSciNetGoogle Scholar
  39. [DK03]
    A. Doelman and T.J. Kaper. Semistrong pulse interactions in a class of coupled reaction–diffusion equations. SIAM J. Appl. Dyn. Syst., 2(1):53–96, 2003.zbMATHMathSciNetGoogle Scholar
  40. [DKP07]
    A. Doelman, T.J. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.zbMATHMathSciNetGoogle Scholar
  41. [DMS03]
    C.R. Doering, C. Mueller, and P. Smereka. Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A, 325:243–259, 2003.zbMATHMathSciNetGoogle Scholar
  42. [Doc92]
    J.D. Dockery. Existence of standing pulse solutions for an excitable activator-inhibitory system. J. Dyn. Diff. Eq., 4(2):231–257, 1992.zbMATHMathSciNetGoogle Scholar
  43. [Doe93]
    A. Doelman. Traveling waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci., 3(1): 225–266, 1993.zbMATHMathSciNetGoogle Scholar
  44. [Doe96]
    A. Doelman. Breaking the hidden symmetry in the Ginzburg–Landau equation. Physica D, 97(4): 398–428, 1996.zbMATHMathSciNetGoogle Scholar
  45. [DPK07a]
    F. Dumortier, N. Popovic, and T.J. Kaper. The asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 326(2):1007–1023, 2007.zbMATHMathSciNetGoogle Scholar
  46. [DPK07b]
    F. Dumortier, N. Popovic, and T.J. Kaper. The critical wave speed for the Fisher–Kolmogorov–Petrowskii–Piscounov equation with cut-off. Nonlinearity, 20(4):855–877, 2007.zbMATHMathSciNetGoogle Scholar
  47. [DPK10]
    F. Dumortier, N. Popovic, and T.J. Kaper. A geometric approach to bistable front propagation in scalar reaction–diffusion equations with cut-off. Physica D, 239(20):1984–1999, 2010.zbMATHMathSciNetGoogle Scholar
  48. [DSSS09]
    A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wavetrains. Memoirs of the AMS, 199(934):1–105, 2009.MathSciNetGoogle Scholar
  49. [DvHK09]
    A. Doelman, P. van Heijster, and T.J. Kaper. Pulse dynamics in a three-component system: existence analysis. J. Dyn. Diff. Eq., 21:73–115, 2009.zbMATHGoogle Scholar
  50. [DvHK13]
    A. Doelman, P. van Heijster, and T.J. Kaper. An explicit theory for pulses in two component, singularly perturbed, reaction–diffusion equations. J. Dyn. Diff. Eq., pages 1–42, 2013. accepted, to appear.Google Scholar
  51. [EF77]
    J.W. Evans and J.A. Feroe. Local stability of the nerve impulse. Math. Biosci., 37(1):23–50, 1977.zbMATHGoogle Scholar
  52. [EM93]
    G.B. Ermentrout and J.B. McLeod. Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinburgh A, 123(3):461–478, 1993.zbMATHMathSciNetGoogle Scholar
  53. [EN93]
    T. Erneux and G. Nicolis. Propagating waves in discrete bistable reaction–diffusion systems. Physica D, 67(1):237–244, 1993.zbMATHMathSciNetGoogle Scholar
  54. [EV05]
    C. Elmer and E.S. Van Vleck. Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math., 65(4):1153–1174, 2005.zbMATHMathSciNetGoogle Scholar
  55. [Eva72]
    J. Evans. Nerve axon equations III: stability of nerve impulses. Indiana U. Math. J., 22:577–594, 1972.zbMATHGoogle Scholar
  56. [Eva02]
    L.C. Evans. Partial Differential Equations. AMS, 2002.Google Scholar
  57. [EvS00]
    U. Ebert and W. van Saarloos. Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D, 146:1–99, 2000.zbMATHMathSciNetGoogle Scholar
  58. [Fif88]
    P.C. Fife. Dynamics of internal layers and diffusive interfaces. SIAM, 1988.Google Scholar
  59. [Fis37]
    R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:353–369, 1937.Google Scholar
  60. [FL12]
    H. Fan and X.-B. Lin. Standing waves for phase transitions in a spherically symmetric nozzle. SIAM J. Math. Anal., 44(1):405–436, 2012.zbMATHMathSciNetGoogle Scholar
  61. [Flo91]
    G. Flores. Stability analysis for the slow traveling pulse of the FitzHugh–Nagumo system. SIAM J. Math. Anal., 22(2):392–399, 1991.zbMATHMathSciNetGoogle Scholar
  62. [FM77]
    P. Fife and J.B. McLeod. The approach of solutions nonlinear diffusion equations to travelling front solutions. Arch. Rational Mech. Anal., 65:335–361, 1977.zbMATHMathSciNetGoogle Scholar
  63. [Fri92]
    A. Friedman. Partial Differential Equations of Parabolic Type. Dover, 1992.Google Scholar
  64. [FS95]
    H. Freistühler and P. Szmolyan. Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal., 26(1):112–128, 1995.zbMATHMathSciNetGoogle Scholar
  65. [FS02a]
    H. Freistühler and P. Szmolyan. Spectral stability of small shock waves. Arch. Rational Mech. Anal., 164:287–309, 2002.zbMATHGoogle Scholar
  66. [FS10a]
    H. Freistühler and P. Szmolyan. Spectral stability of small-amplitude viscous shock waves in several space dimensions. Arch. Rational Mech. Anal., 195(2):353–373, 2010.zbMATHGoogle Scholar
  67. [Gar84]
    R. Gardner. Existence of travelling wave solutions of predator–prey systems via the connection index. SIAM J. Appl. Math., 44(1):56–79, 1984.zbMATHMathSciNetGoogle Scholar
  68. [GC02]
    S.A. Gourley and M.A.J. Chaplain. Travelling fronts in a food-limited population model with time delay. Proc. Roy. Soc. Edinburgh Sect. A, 132:75–89, 2002.zbMATHMathSciNetGoogle Scholar
  69. [GGJ07]
    A. Ghazaryan, P. Gordon, and C.K.R.T. Jones. Traveling waves in porous media combustion: uniqueness of waves for small thermal diffusivity. J. Dyn. Diff. Eq., 19(4):951–966, 2007.zbMATHMathSciNetGoogle Scholar
  70. [Gha09a]
    A. Ghazaryan. Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J., 58:181–212, 2009.zbMATHMathSciNetGoogle Scholar
  71. [Gha09b]
    A. Ghazaryan. On the stability of high Lewis number combustion fronts. Discrete Contin. Dyn. Syst. A, 24:809–826, 2009.zbMATHMathSciNetGoogle Scholar
  72. [Gha10]
    A. Ghazaryan. On the existence of high Lewis number combustion fronts. Math. Comput. Simul., 82(6):1133–1141, 2010.MathSciNetGoogle Scholar
  73. [GHL13]
    A. Ghazaryan, J. Humphreys, and J. Lytle. Spectral behavior of combustion fronts with high exothermicity. SIAM J. Appl. Math., 73(1):422–437, 2013.zbMATHMathSciNetGoogle Scholar
  74. [GJ91]
    R. Gardner and C.K.R.T. Jones. Stability of travelling wave solutions of diffusive predator–prey systems. Trans. Amer. Math. Soc., 327(2):465–524, 1991.zbMATHMathSciNetGoogle Scholar
  75. [GK98]
    P.P.N. De Groen and G.E. Karadzhov. Exponentially slow travelling waves on a finite interval for Burgers’-type equation. Electron. J. Differential Equat., 1980(30):1–38, 1998.Google Scholar
  76. [GK01]
    P.P.N. De Groen and G.E. Karadzhov. Slow travelling waves on a finite interval for Burgers’-type equations. J. Comput. Appl. Math., 132:155–189, 2001.zbMATHMathSciNetGoogle Scholar
  77. [Gou00]
    S.A. Gourley. Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed delay. Math. Comput. Model., 32(7):843–853, 2000.zbMATHMathSciNetGoogle Scholar
  78. [GR03]
    S.A. Gourley and S. Ruan. Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal., 35(3):806–822, 2003.zbMATHMathSciNetGoogle Scholar
  79. [GSS13]
    A. Ghazaryan, S. Schecter, and P.L. Simon. Gasless combustion fronts with heat loss. SIAM J. Appl. Math., 73(3):1303–1326, 2013.zbMATHMathSciNetGoogle Scholar
  80. [Hal99]
    G. Haller. Homoclinic jumping in the perturbed nonlinear Schrödinger equation. Comm. Pure Appl. Math., 152(1):1–47, 1999.MathSciNetGoogle Scholar
  81. [HDK13]
    M. Holzer, A. Doelman, and T.J. Kaper. Existence and stability of traveling pulses in a reaction–diffusion-mechanics system. J. Nonlinear Sci., 23(1):129–177, 2013.zbMATHMathSciNetGoogle Scholar
  82. [Hek01]
    G. Hek. Fronts and pulses in a class of reaction–diffusion equations: a geometric singular perturbation approach. Nonlinearity, 14(1):35–72, 2001.zbMATHMathSciNetGoogle Scholar
  83. [Hen81]
    D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin Heidelberg, Germany, 1981.zbMATHGoogle Scholar
  84. [HHH13]
    J.M. Hong, C.-H. Hsu, and B.-C. Huang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Comm. Pure Appl. Anal., 12(3):1501–1526, 2013.zbMATHMathSciNetGoogle Scholar
  85. [HL99]
    J.K. Hale and X.-B. Lin. Multiple internal layer solutions generated by spatially oscillatory perturbations. J. Differential Equat., 154(2):364–418, 1999.zbMATHMathSciNetGoogle Scholar
  86. [HM09a]
    M. Hairer and J.C. Mattingly. Slow energy dissipation in anharmonic oscillator chains. Comm. Pure. Appl. Math., 62(8):999–1032, 2009.zbMATHMathSciNetGoogle Scholar
  87. [HN01]
    F. Hamel and N. Nadirashvili. Travelling fronts and entire solutions of the Fisher–KPP equation in \(\mathbb{R}^{N}\). Arch. Ration. Mech. Anal., 157:91–163, 2001.zbMATHMathSciNetGoogle Scholar
  88. [HPS11]
    H.J. Hupkes, D. Pelinovsky, and B. Sandstede. Propagation failure in the discrete Nagumo equation. Proc. Amer. Math. Soc., 139:3537–3551, 2011.zbMATHMathSciNetGoogle Scholar
  89. [HPT00]
    J.K. Hale, L.A. Peletier, and W.C. Troy. Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis. SIAM J. Appl. Math., 61(1):102–130, 2000.zbMATHMathSciNetGoogle Scholar
  90. [HS10c]
    H.J. Hupkes and B. Sandstede. Traveling pulse solutions for the discrete FitzHugh–Nagumo system. SIAM J. Appl. Dyn. Sys., 9(3):827–882, 2010.zbMATHMathSciNetGoogle Scholar
  91. [HS12]
    M. Holzer and A. Scheel. A slow pushed front in a Lotka–Volterra competition model. Nonlinearity, 25(7):2151–2179, 2012.zbMATHMathSciNetGoogle Scholar
  92. [HS13]
    H.J. Hupkes and B. Sandstede. Stability of traveling pulse solutions for the discrete FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 365:251–301, 2013.zbMATHMathSciNetGoogle Scholar
  93. [HV07]
    G. Hek and N. Valkhoff. Pulses in a complex Ginzburg–Landau system: persistence under coupling with slow diffusion. Physica D, 232(1):62–85, 2007.zbMATHMathSciNetGoogle Scholar
  94. [Jal04]
    J. Jalics. Slow waves in mutually inhibitory neuronal networks. Physica D, 192:95–122, 2004.zbMATHMathSciNetGoogle Scholar
  95. [Jon84]
    C.K.R.T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 286(2): 431–469, 1984.zbMATHMathSciNetGoogle Scholar
  96. [Kap05]
    T. Kapitula. Stability analysis of pulses via the Evans function: dissipative systems. In Dissipative Solitons, volume 661 of Lecture Notes in Physics, pages 407–427. Springer, 2005.Google Scholar
  97. [Kar93]
    A. Karma. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett., 71:1103–1106, 1993.zbMATHMathSciNetGoogle Scholar
  98. [Kat80]
    T. Kato. Perturbation Theory for Linear Operators. Springer, 1980.Google Scholar
  99. [KB09b]
    Y.N. Kyrychko and K.B. Blyuss. Persistence of travelling waves in a generalized Fisher equation. Phys. Lett. A, 373(6):668–674, 2009.zbMATHGoogle Scholar
  100. [KBB05]
    Y.N. Kyrychko, M.V. Bartuccelli, and K.B. Blyuss. Persistence of travelling wave solutions of a fourth order diffusion system. J. Comp. Appl. Math., 176(2):433–443, 2005.zbMATHMathSciNetGoogle Scholar
  101. [Kee80]
    J.P. Keener. Waves in excitable media. SIAM J. Appl. Math., 39(3):528–548, 1980.zbMATHMathSciNetGoogle Scholar
  102. [Kee87]
    J.P. Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.zbMATHMathSciNetGoogle Scholar
  103. [KEW06]
    T. Kolokolnikov, T. Erneux, and J. Wei. Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D, 214(1):63–77, 2006.zbMATHMathSciNetGoogle Scholar
  104. [Kin13]
    J.R. King. Wavespeed selection in the heterogeneous Fisher equation: slowly varying inhomogeneity. Networks and Heterogeneous Media, 8(1):343–378, 2013.zbMATHMathSciNetGoogle Scholar
  105. [KKS00a]
    B. Katzengruber, M. Krupa, and P. Szmolyan. Bifurcation of traveling waves in extrinsic semiconductors. Physica D, 144(1): 1–19, 2000.zbMATHMathSciNetGoogle Scholar
  106. [KKS04]
    T. Kapitula, J.N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U. Math. J., 53(4):1095–1126, 2004.zbMATHMathSciNetGoogle Scholar
  107. [Kno00]
    R. Knobel. An Introduction to the Mathematical Theory of Waves. AMS, 2000.Google Scholar
  108. [KP13]
    T. Kapitula and K. Promislow. Spectral and Dynamical Stability of Nonlinear Waves. Springer, 2013.Google Scholar
  109. [KPP91]
    A. Kolmogorov, I. Petrovskii, and N. Piscounov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In V.M. Tikhomirov, editor, Selected Works of A. N. Kolmogorov I, pages 248–270. Kluwer, 1991. Translated by V. M. Volosov from Bull. Moscow Univ., Math. Mech. 1, 1–25, 1937.Google Scholar
  110. [KR00]
    T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity, 13(1):77–112, 2000.zbMATHMathSciNetGoogle Scholar
  111. [KR14]
    C. Kuehn and M.G. Riedler. Large deviations for nonlocal stochastic neural fields. J. Math. Neurosci., 4(1):1–33, 2014.MathSciNetGoogle Scholar
  112. [KSWW06]
    T. Kolokolnikov, W. Sun, M.J. Ward, and J. Wei. The stability of a stripe for the Gierer–Meinhardt model and the effect of saturation. SIAM J. Appl. Dyn. Syst., 5(2):313–363, 2006.zbMATHMathSciNetGoogle Scholar
  113. [KT12]
    B.L. Keyfitz and C. Tsikkou. Conserving the wrong variables in gas dynamics: a Riemann solution with singular shocks. Quart. Appl. Math., 70:407–436, 2012.zbMATHMathSciNetGoogle Scholar
  114. [LE92]
    J.P. Laplante and T. Erneux. Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem., 96(12): 4931–4934, 1992.Google Scholar
  115. [LeV92]
    R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, 1992.Google Scholar
  116. [Li03]
    Y. Li. Homoclinic tubes in discrete nonlinear Schrödinger equation under Hamiltonian perturbations. Nonlinear Dyn., 31(4):393–434, 2003.Google Scholar
  117. [Lin01]
    X.-B. Lin. Construction and asymptotic stability of structurally stable internal layer solutions. Trans. Amer. Math. Soc., 353:2983–3043, 2001.zbMATHMathSciNetGoogle Scholar
  118. [Lin06]
    X.-B. Lin. Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach. J. Dyn. Diff. Eq., 18(1):1–52, 2006.zbMATHGoogle Scholar
  119. [Liu04]
    W. Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discr. Cont. Dyn. Syst., 10(4):871–884, 2004.zbMATHGoogle Scholar
  120. [LO93]
    J.G. Laforgue and R.E. O’Malley. Supersensitive boundary value problems. In Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, pages 215–223. Springer, 1993.Google Scholar
  121. [LO13a]
    D.J.B. Lloyd and H. O’Farrell. On localised hotspots of an urban crime model. Physica D, 253:23–39, 2013.zbMATHMathSciNetGoogle Scholar
  122. [LS03]
    X.-B. Lin and S. Schecter. Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws. SIAM J. Math. Anal., 35(4):884–921, 2003.zbMATHMathSciNetGoogle Scholar
  123. [LT03]
    C.R. Laing and W.C. Troy. PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst., 2(3):487–516, 2003.zbMATHMathSciNetGoogle Scholar
  124. [LTGE02]
    C.R. Laing, W.C. Troy, B. Gutkin, and B. Ermentrout. Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math., 63(1):62–97, 2002.zbMATHMathSciNetGoogle Scholar
  125. [LW10b]
    G. Lv and M. Wang. Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model. Nonl. Anal.: Real World Appl., 11(3):2035–2043, 2010.Google Scholar
  126. [Mag78]
    K. Maginu. Stability of periodic travelling wave solutions of a nerve conduction equation. J. Math. Biol., 6(1):49–57, 1978.zbMATHMathSciNetGoogle Scholar
  127. [Mag80]
    K. Maginu. Existence and stability of periodic travelling wave solutions to Nagumo’s nerve equation. J. Math. Biol., 10(2):133–153, 1980.zbMATHMathSciNetGoogle Scholar
  128. [Mag85]
    K. Maginu. Geometrical characteristics associated with stability and bifurcations of periodic travelling waves in reaction–diffusion systems. SIAM J. Appl. Math., 45(5):750–774, 1985.zbMATHMathSciNetGoogle Scholar
  129. [Man06]
    M.B.A. Mansour. Existence of traveling wave solutions in a hyperbolic-elliptic system of equations. Comm. Math. Sci., 4(4):731–739, 2006.zbMATHGoogle Scholar
  130. [Man09a]
    M.B.A. Mansour. Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation. Appl. Math. Mech., 30(4):513–516, 2009.zbMATHMathSciNetGoogle Scholar
  131. [Man09b]
    M.B.A. Mansour. Travelling wave solutions for a singularly perturbed Burgers-KdV equation. Pramana, 73(5):799–806, 2009.Google Scholar
  132. [Man13]
    M.B.A. Mansour. A geometric construction of traveling waves in a generalized nonlinear dispersive–dissipative equation. J. Geom. Phys., pages 1–11, 2013. in press.Google Scholar
  133. [MCJS09]
    V. Manukian, N. Costanzino, C.K.R.T. Jones, and B. Sandstede. Existence of multi-pulses of the regularized short-pulse and Ostrovsky equations. J. Dyn. Diff. Eq., 21:607–622, 2009.zbMATHMathSciNetGoogle Scholar
  134. [MDK00]
    D.S. Morgan, A. Doelman, and T.J. Kaper. Stationary periodic patterns in the 1D Gray-Scott model. Math. Appl. Anal., 7(1):105–150, 2000.zbMATHMathSciNetGoogle Scholar
  135. [MKK00]
    G.S. Medvedev, T.J. Kaper, and N. Kopell. A reaction–diffusion system with periodic front dynamics. SIAM J. Appl. Math., 60(5):1601–1638, 2000.zbMATHMathSciNetGoogle Scholar
  136. [MLR11]
    K. Manktelow, M.J. Leamy, and M. Ruzzene. Multiple scales analysis of wave-wave interactions in a cubically nonlinear atomic chain. Nonlinear Dyn., 63:193–203, 2011.zbMATHMathSciNetGoogle Scholar
  137. [MP99]
    J. Mallet-Paret. The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Diff. Eq., 8:49–128, 1999.MathSciNetGoogle Scholar
  138. [MP12]
    P. De Maesschalck and N. Popovic. Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 386(2):542–558, 2012.zbMATHMathSciNetGoogle Scholar
  139. [MR13]
    C. Melcher and J.D.M. Rademacher. Patterns formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations. arXiv:1309.5523, pages 1–27, 2013.Google Scholar
  140. [MS74]
    J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press, 1974.Google Scholar
  141. [MS03b]
    D. Marchesin and S. Schecter. Oxidation heat pulses in two-phase expansive flow in porous media. Z. Angew. Math. Phys., 54(1):48–83, 2003.zbMATHMathSciNetGoogle Scholar
  142. [MS03e]
    C.C. Mitchell and D.G. Schaeffer. A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol., 65:767–793, 2003.Google Scholar
  143. [MS06]
    J.C. Da Mota and S. Schecter. Combustion fronts in a porous medium with two layers. J. Dyn. Diff. Eq., 18(3):615–665, 2006.zbMATHGoogle Scholar
  144. [MS09]
    V. Manukian and S. Schecter. Travelling waves for a thin liquid film with surfactant on an inclined plane. Nonlinearity, 22(1):85–122, 2009.zbMATHMathSciNetGoogle Scholar
  145. [NF87]
    Y. Nishiura and H. Fujii. Stability of singularly perturbed solutions to systems of reaction–diffusion equations. SIAM J. Math. Anal., 18(6):1726–1770, 1987.zbMATHMathSciNetGoogle Scholar
  146. [Nii97]
    S. Nii. Stability of travelling multiple-front (multiple-back) wave solutions of the FitzHugh–Nagumo equations. SIAM J. Math. Anal., 28(5):1094–1112, 1997.zbMATHMathSciNetGoogle Scholar
  147. [Nis94]
    Y. Nishiura. Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit. In Dynamics Reported, pages 25–103. Springer, 1994.Google Scholar
  148. [NMIF90]
    Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii. Singular limit analysis of stability of traveling wave solutions in bistable reaction–diffusion systems. SIAM J. Math. Anal., 21(1):85–122, 1990.zbMATHMathSciNetGoogle Scholar
  149. [OHLM03]
    J. Ockendon, S. Howison, A. Lacey, and A. Movchan. Applied Partial Differential Equations. OUP, 2003.Google Scholar
  150. [OR75]
    P. Ortoleva and J. Ross. Theory of propagation of discontinuities in kinetic systems with multiple time scales: fronts, front multiplicity, and pulses. J. Chem. Phys., 63:3398–3408, 1975.Google Scholar
  151. [PE01a]
    D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math., 62(1):206–225, 2001.Google Scholar
  152. [PE01b]
    D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math., 62(1):226–243, 2001.Google Scholar
  153. [PK06]
    N. Popović and T.J. Kaper. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction–diffusion equations. J. Dyn. Diff. Eq., 18(1):103–139, 2006.zbMATHGoogle Scholar
  154. [Pop11]
    N. Popovic. A geometric analysis of front propagation in a family of degenerate reaction–diffusion equations with cut-off. Z. Angew. Math. Phys., 62(3):405–437, 2011.zbMATHMathSciNetGoogle Scholar
  155. [Pop12]
    N. Popovic. A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off. Physica D, 241:1976–1984, 2012.MathSciNetGoogle Scholar
  156. [Rad13]
    J.D.M. Rademacher. First and second order semistrong interaction in reaction–diffusion systems. SIAM J. Appl. Dyn. Syst., 12(1):175–203, 2013.zbMATHMathSciNetGoogle Scholar
  157. [RP12]
    I. Ratas and K. Pyragas. Pulse propagation and failure in the discrete FitzHugh–Nagumo model subject to high-frequency stimulation. Phys. Rev. E, 86:046211, 2012.Google Scholar
  158. [RR04]
    M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Springer, 2004.Google Scholar
  159. [RV98]
    J.-M. Roquejoffre and J.-P. Vila. Stability of ZND detonation waves in the Majda combustion model. Asymp. Anal., 18(3):329–348, 1998.zbMATHMathSciNetGoogle Scholar
  160. [RW95a]
    L.G. Reyna and M.J. Ward. Metastable internal layer dynamics for the viscous Cahn–Hilliard equation. Meth. Appl. Anal., 2:285–306, 1995.zbMATHMathSciNetGoogle Scholar
  161. [RW95b]
    L.G. Reyna and M.J. Ward. On the exponentially slow motion of a viscous shock. Comm. Pure Appl. Math., 48(2):79–120, 1995.zbMATHMathSciNetGoogle Scholar
  162. [RW01]
    V. Rottschäfer and C.E. Wayne. Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation. J. Differential Equat., 176:532–560, 2001.zbMATHGoogle Scholar
  163. [RX04]
    S. Ruan and D. Xiao. Stability of steady states and existence of travelling waves in a vector-disease model. Proc. R. Soc. Edinburgh A, 134(5):991–1011, 2004.zbMATHMathSciNetGoogle Scholar
  164. [San01]
    B. Sandstede. Stability of travelling waves. In B. Fiedler, editor, Handbook of Dynamical Systems, volume 2, pages 983–1055. Elsevier, 2001.Google Scholar
  165. [Sch02]
    S. Schecter. Undercompressive shock waves and the Dafermos regularization. Nonlinearity, 15(4): 1361–1377, 2002.zbMATHMathSciNetGoogle Scholar
  166. [Sch04]
    S. Schecter. Existence of Dafermos profiles for singular shocks. J. Differential Equat., 205(1):185–210, 2004.zbMATHMathSciNetGoogle Scholar
  167. [Sch06]
    S. Schecter. Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory. J. Dyn. Diff. Eq., 18(1):53–101, 2006.zbMATHMathSciNetGoogle Scholar
  168. [SM01]
    S. Schecter and D. Marchesin. Geometric singular perturbation analysis of oxidation heat pulses for two-phase flow in porous media. Bull. Braz. Math. Soc., 32(3):237–270, 2001.zbMATHMathSciNetGoogle Scholar
  169. [Smo94]
    J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1994.Google Scholar
  170. [SPM04]
    S. Schecter, B.J. Plohr, and D. Marchesin. Computation of Riemann solutions using the Dafermos regularization and continuation. Discr. Cont. Dyn. Syst., 10:965–986, 2004.zbMATHMathSciNetGoogle Scholar
  171. [SS04b]
    S. Schecter and P. Szmolyan. Composite waves in the Dafermos regularization. J. Dyn. Diff. Eq., 16(3):847–867, 2004.zbMATHMathSciNetGoogle Scholar
  172. [SS09]
    S. Schecter and P. Szmolyan. Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points. SIAM J. Applied Dynamical Systems, 8(3):822–853, 2009.zbMATHMathSciNetGoogle Scholar
  173. [ST97]
    H. Suzuki and O. Toshiyuki. On the spectra of pulses in a nearly integrable system. SIAM J. Appl. Math., 57(2):485–500, 1997.zbMATHMathSciNetGoogle Scholar
  174. [Str08]
    W.A. Strauss. Partial Differential Equations: An Introduction. John Wiley & Sons, 2008.Google Scholar
  175. [SW00c]
    X. Sun and M.J. Ward. Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension. Stud. Appl. Math., 105(3):203–234, 2000.zbMATHMathSciNetGoogle Scholar
  176. [SWR05]
    X. Sun, M.J. Ward, and R. Russell. The slow dynamics of two-spike solutions for the Gray-Scott and Gierer–Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst., 4(4):904–953, 2005.zbMATHMathSciNetGoogle Scholar
  177. [SZ04]
    H.L. Smith and X.-Q. Zhao. Traveling waves in a bio-reactor model. Nonl. Anal. Real World Appl., 5(5):895–909, 2004.zbMATHMathSciNetGoogle Scholar
  178. [Szm89a]
    P. Szmolyan. A singular perturbation analysis of the transient semiconductor-device equations. SIAM J. Appl. Math., 49(4):1122–1135, 1989.zbMATHMathSciNetGoogle Scholar
  179. [Szm89b]
    P. Szmolyan. Traveling waves in GaAs semiconductors. Physica D, 39(2):393–404, 1989.zbMATHMathSciNetGoogle Scholar
  180. [TN94]
    M. Taniguchi and Y. Nishiura. Instability of planar interfaces in reaction–diffusion systems. SIAM J. Math. Anal., 25(1):99–134, 1994.zbMATHMathSciNetGoogle Scholar
  181. [Vak10]
    A.F. Vakakis. Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dyn., 61:443–463, 2010.zbMATHMathSciNetGoogle Scholar
  182. [VD13]
    F. Veerman and A. Doelman. Pulses in a Gierer–Meinhardt equation with a slow nonlinearity. SIAM J. Appl. Dyn. Syst., 12(1):28–60, 2013.zbMATHMathSciNetGoogle Scholar
  183. [VH08]
    P. Várkonyi and P. Holmes. On synchronization and traveling waves in chains of relaxation oscillators with an application to Lamprey CPG. SIAM J. Appl. Dyn. Syst., 7(3):766–794, 2008.zbMATHMathSciNetGoogle Scholar
  184. [vHDK08]
    P. van Heijster, A. Doelman, and T.J. Kaper. Pulse dynamics in a three-component system: stability and bifurcations. Physica D, 237(24):3335–3368, 2008.zbMATHMathSciNetGoogle Scholar
  185. [vHDK+11]
    P. van Heijster, A. Doelman, T.J. Kaper, Y. Nishiura, and K.-I. Ueda. Pinned fronts in heterogeneous media of jump type. Nonlinearity, 24:127–157, 2011.zbMATHMathSciNetGoogle Scholar
  186. [vHDKP10]
    P. van Heijster, A. Doelman, T.J. Kaper, and K. Promislow. Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst., 9(2):292–332, 2010.zbMATHMathSciNetGoogle Scholar
  187. [vHS11]
    P. van Heijster and B. Sandstede. Planar radial spots in a three-component FitzHugh–Nagumo system. J. Nonlinear Sci., 21:705–745, 2011.zbMATHMathSciNetGoogle Scholar
  188. [vS03]
    W. van Saarloos. Front propagation into unstable states. Physics Reports, 386:29–222, 2003.zbMATHGoogle Scholar
  189. [VVV94]
    A.I. Volpert, V. Volpert, and V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Amer. Math. Soc., 1994.Google Scholar
  190. [WB13]
    M.A. Webber and P.C. Bressloff. The effects of noise on binocular rivalry waves: a stochastic neural field model. J. Stat. Mech., 2013:P03001, 2013.MathSciNetGoogle Scholar
  191. [WC73]
    H. Wilson and J. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern., 13(2):55–80, 1973.zbMATHGoogle Scholar
  192. [WWL11]
    L. Wang, Y. Wu, and T. Li. Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion. Physica D, 240(11):971–983, 2011.zbMATHMathSciNetGoogle Scholar
  193. [Wol94]
    G. Wolansky. On the slow evolution of quasi-stationary shock waves. J. Dyn. Diff. Eq., 6(2):247–276, 1994.zbMATHMathSciNetGoogle Scholar
  194. [WP10]
    M. Wechselberger and G.J. Pettet. Folds, canards and shocks in advection–reaction–diffusion models. Nonlinearity, 23(8):1949–1969, 2010.zbMATHMathSciNetGoogle Scholar
  195. [WR95]
    M.J. Ward and L.G. Reyna. Internal layers, small eigenvalues, and the sensitivity of metastable motion. SIAM J. Appl. Math., 55(2):425–445, 1995.zbMATHMathSciNetGoogle Scholar
  196. [WW07]
    K. Wang and W. Wang. Propagation of HBV with spatial dependence. Math. Biosci., 210(1):78–95, 2007.zbMATHMathSciNetGoogle Scholar
  197. [WZ05]
    Y. Wu and X. Zhao. The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems. Physica D, 200(3):325–358, 2005.zbMATHMathSciNetGoogle Scholar
  198. [YTE01]
    A.C. Yew, D.H. Terman, and G.B. Ermentrout. Propagating activity patterns in thalamic neuronal networks. SIAM J. Appl. Math., 61(5):1578–1604, 2001.zbMATHMathSciNetGoogle Scholar
  199. [ZP08]
    J. Zhang and Y. Peng. Travelling waves of the diffusive Nicholson’s blowflies equation with strong generic delay kernel and non-local effect. Nonl. Anal.: Theor. Meth. Appl., 68(5):1263–1270, 2008.Google Scholar
  200. [ZT88]
    E.C. Zachmanoglu and D.W. Thoe. Introduction to Partial Differential Equations with Applications. Dover, 1988.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations