Skip to main content

Topological Methods

  • Chapter
  • First Online:
Multiple Time Scale Dynamics

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

  • 5968 Accesses

Abstract

All methods to understand multiple time scale systems we have presented so far needed some kind of mathematical analysis. In particular, for any geometric construction, asymptotic calculation, or numerical method, we needed tools such as transversality arguments, asymptotic comparison, and error estimates. But what if we are primarily interested in existence statements such as, does a given fast–slow system have a periodic orbit? In this chapter, we shall use a different approach, based on (algebraic) topology, to answer existence questions using only a minimal amount of analytic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. A. Banyaga and D.E. Hurtubise. Cascades and perturbed Morse–Bott functions. Algebraic Geom. Topol., 13:237–275, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  2. V.A. Baikov and N.H. Ibragimov. Continuation of approximate transformation groups via multiple time scales method. Modern group analysis. Nonlinear Dynam., 22:3–13, 2000.

    Google Scholar 

  3. A. Buicǎ and J. Llibre. Averaging methods for finding periodic orbits via Brouwer degree. Bull. des Sci. Math., 128(1):7–22, 2004.

    Article  Google Scholar 

  4. G.E. Bredon. Topology and Geometry. Springer, 1997.

    Google Scholar 

  5. G.A. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differential Equat., 23:335–367, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Conley and R. Easton. Isolated invariant sets and isolating blocks. Trans. AMS, 158:35–61, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Conley. Isolated Invariant Sets and the Morse Index. Amer. Math. Soc., 1978.

    Google Scholar 

  8. C. Conley. A qualitative singular perturbation theorem. In Z. Nitecki and C. Robinson, editors, Global Theory of Dynamical Systems, pages 65–89. Springer, 1980.

    Google Scholar 

  9. C. Conley and Joel Smoller. Remarks on traveling wave solutions of non-linear diffusion equations. in: Structural Stability, the Theory of Catastrophes, and Applications in the Sciences (LNM 525), pages 77–89, 1976.

    Google Scholar 

  10. C. Conley and Joel Smoller. Bifurcation and stability of stationary solutions of the FitzHugh–Nagumo equations. J. Differential Equat., 63(3):389–405, 1986.

    Google Scholar 

  11. A. Floer. A refinement of the Conley index and an application to the stability of hyperbolic invariant sets. Ergod. Th. Dynam. Syst., 7:93–103, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Floer. A topological persistence theorem for normally hyperbolic manifolds via the Conley index. Trans. Amer. Math. Soc., 321(2):647–657, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.D. Franzosa. The continuation theory for Morse decompositions and connection matrices. Trans. Amer. Math. Soc., 310(2):781–803, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Fulton. Algebraic Topology. Springer, 1997.

    Google Scholar 

  15. T. Gedeon. Oscillations in monotone systems with a negative feedback. SIAM J. Appl. Dyn. Syst., 9(1):84–112, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Gameiro, T. Gedeon, W. Kalies, H. Kokubu, K. Mischaikow, and H. Oka. Topological horseshoes of traveling waves for a fast–slow predator–prey system. J. Dyn. Diff. Eq., 19(3):623–654, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.

    Book  MATH  Google Scholar 

  18. R. Gardner and C.K.R.T. Jones. Traveling waves of a perturbed diffusion equation arising in a phase field model. Ind. Univ. Math. J., 39(4):1197–1222, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J.F. Reineck. The Conley index for fast–slow systems I. One-dimensional slow variable. J. Dyn. Diff. Eq., 11(3):427–470, 1999.

    Google Scholar 

  20. T. Gedeon, H. Kokubu, K. Mischaikow, and H. Oka. Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing. J. Dyn. Diff. Eq., 14(1):63–84, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Gedeon, H. Kokubu, K. Mischaikow, and H. Oka. The Conley index for fast–slow systems II. Multidimensional slow variable. J. Differential Equat., 225:242–307, 2006.

    Google Scholar 

  22. T. Gedeon,, and K. Mischaikow. Singular boundary value problems via the Conley index. Topol. Methods Nonlinear Anal., 28(2):263–283, 2006.

    MATH  MathSciNet  Google Scholar 

  23. R. Gardner and J. Smoller. The existence of periodic travelling waves for singularly perturbed predator–prey equations via the Conley index. J. Differential Equat., 47:133–161, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Hatcher. Algebraic Topology. CUP, 2002.

    Google Scholar 

  25. D.E. Hurtubise. Three approaches to Morse–Bott homology. arXiv:1208.5066v2, pages 1–35, 2013.

    Google Scholar 

  26. J. Jost. Partial Differential Equations. Springer, 2006.

    Google Scholar 

  27. W.M. Kinney. An application of Conley index techniques to a model of bursting in excitable membranes. J. Differential Equat., 162(2):451–472, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  28. W.M. Kinney. Applying the Conley index to fast–slow systems with one slow variable and an attractor. Rocky Mountain J. Math., 38(4):1177–1214, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Klaiber. Viscous profiles for shock waves in isothermal magnetohydrodynamics. J. Dyn. Diff. Eq., 24(3):663–683, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Kokubu, K. Mischaikow, and H. Oka. Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equation. Nonlinearity, 9:1263–1280, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  31. C. Kuehn. Characterizing slow exit points. Electron. J. Differential Equations, 2010(106):1–20, 2010.

    MathSciNet  Google Scholar 

  32. H.L. Kurland. Following homology in singularly perturbed systems. J. Differential Equat., 62(1):1–72, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  33. C. McCord. The connection map for attractor-repeller pairs. Trans. Amer. Math. Soc., 307(1):195–203, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  34. P.D. Miller. Nonmonotone waves in a three species reaction–diffusion model. Meth. Appl. Anal., 4: 261–282, 1997.

    MATH  Google Scholar 

  35. K. Mischaikow. Conley Index Theory. In Dynamical Systems, pages 119–207. Springer, 1995.

    Google Scholar 

  36. K. Mischaikow and M. Mrozek. Conley Index Theory. In B. Fiedler, editor, Handbook of Dynamical Systems, volume 2, pages 393–460. North-Holland, 2002.

    Google Scholar 

  37. K. Mischaikow, M. Mrozek, and J.F. Reineck. Singular index pairs. J. Dyn. Diff. Eq., 11(3):399–425, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  38. J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press, 1974.

    Google Scholar 

  39. J.R. Munkres. Elements Of Algebraic Topology. Westview Press, 1996.

    Google Scholar 

  40. K. Odani. The limit cycle of the van der Pol equation is not algebraic. J. Differential Equat., 115(1): 146–152, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Prizzi. Averaging, Conley index continuation and recurrent dynamics in almost-periodic parabolic equations. J. Differential Equat., 210(2):429–451, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Pokrovskii, D. Rachinskii, V. Sobolev, and A. Zhezherun. Topological degree in analysis of canard-type trajectories in 3-D systems. Appl. Anal., 90(7):1123–1139, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Pokrovskii and A. Zhezherun. Topological degree in analysis of chaotic behavior in singularly perturbed systems. Chaos, 18(2):023130, 2008.

    Google Scholar 

  44. K.P. Rybakowski. The Homotopy Index and Partial Differential Equations. Springer, 1987.

    Google Scholar 

  45. D. Salamon. Connected simple systems and the Conley index of isolated invariant sets. Trans. AMS, 291:1–41, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  46. E.H. Spanier. Algebraic Topology. McGraw-Hill, 1966.

    Google Scholar 

  47. S. Schecter and G. Xu. Morse theory for Lagrange multipliers and adiabatic limits. arXiv:1211.3028v1, pages 1–42, 2012.

    Google Scholar 

  48. A.H. Wallace. Algebraic Topology: Homology and Cohomology. Dover, 2007.

    Google Scholar 

  49. A.H. Wallace. An Introduction to Algebraic Topology. Dover, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). Topological Methods. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_16

Download citation

Publish with us

Policies and ethics