Advertisement

Oscillations

  • Christian Kuehn
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 191)

Abstract

Many multiple time scale systems are capable of generating intricate patterns. In this chapter, we are going to focus on periodic oscillations where the fast–slow structure plays a crucial role in the generating mechanism. Let us point out that we do not aim at a complete classification. The focus is on examples and prototype mechanisms. There are two main keywords associated with this area that we want to explore: mixed-mode oscillations (MMOs) and bursting.

Bibliography

  1. [AARR87]
    F. Argoul, A. Arneodo, P. Richetti, and J.C. Roux. From quasi-periodicity to chaos in the Belousov–Zhabotinskii reaction. I. Experiment. J. Chem. Phys., 86(6):3325–3338, 1987.Google Scholar
  2. [Abo97]
    E.F. Aboufadel. Qualitative analysis of a singularly-perturbed system of differential equations related to the van der Pol equations. Rocky Mountain J. Math., 27(2):367–385, 1997.zbMATHMathSciNetGoogle Scholar
  3. [AC87]
    B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase reaction. J. Chem. Phys., 87(6):3461–3470, 1987.Google Scholar
  4. [AC91]
    J.C. Alexander and D. Cai. On the dynamics of bursting systems. J. Math. Biol., 29:405–423, 1991.zbMATHMathSciNetGoogle Scholar
  5. [ACC99]
    B. Amini, J.W. Clark, and C.C. Canavier. Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J. Neurophysiol., 82(5):2249–2261, 1999.Google Scholar
  6. [ACDG84]
    J. Argémi, H. Chagneux, C. Ducreux, and M. Gola. Qualitative study of a dynamical system for metrazol-induced paroxysmal depolarization shifts. Bull. Math. Biol., 46(5):903–922, 1984.zbMATHMathSciNetGoogle Scholar
  7. [AG13]
    G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.Google Scholar
  8. [AKW03]
    C.D. Acker, N. Kopell, and J.A. White. Synchronization of strongly coupled excitatory neurons: Relating network behaviour to biophysics. J. Comput. Neurosci., 15:71–90, 2003.Google Scholar
  9. [AL91]
    B.D. Aguda and R. Larter. Periodic-chaotic sequences in a detailed mechanism of the peroxidase-oxidase reaction. J. Am. Chem. Soc., 113:7913–7916, 1991.Google Scholar
  10. [ALC89]
    B.D. Aguda, R. Larter, and B.L. Clarke. Dynamic elements of mixed-mode oscillations and chaos in a peroxidase-oxidase network. J. Chem. Phys., 90(8):4168–4175, 1989.Google Scholar
  11. [ANMC+09]
    K. Al-Naimee, F. Marino, M. Ciszak, R. Meucci, and F.T. Arecchi. Chaotic spiking and incomplete homoclinic scenarios in semiconductor lasers with optoelectric feedback. New Journal of Physics, 11:073022, 2009.Google Scholar
  12. [AR85]
    F. Argoul and J.C. Roux. Quasiperiodicity in chemistry: an experimental path in the neighbourhood of a codimension-two bifurcation. Phys. Lett. A, 108(8):426–430, 1985.Google Scholar
  13. [ARS89]
    F.N. Albahadily, J. Ringland, and M. Schell. Mixed-mode oscillations in an electrochemical system. I. A Farey sequence which does not occur on a torus. J. Chem. Phys., 90:813–821, 1989.Google Scholar
  14. [Bar88]
    D. Barkley. Slow manifolds and mixed-mode oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 89(9):5547–5559, 1988.MathSciNetGoogle Scholar
  15. [BB12b]
    Yu.N. Bibikov and V.R. Bukaty. Multifrequency oscillations of singularly perturbed systems. Differential Equat., 48(1):19–25, 2012.Google Scholar
  16. [BBKS95]
    R. Bertram, M.J. Butte, T. Kiemel, and A. Sherman. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol., 57(3):413–429, 1995.zbMATHGoogle Scholar
  17. [BBR+05]
    J. Best, A. Borisyuk, J. Rubin, D. Terman, and M. Wechselberger. The dynamic range of bursting in a model respiratory pacemaker network. SIAM J. Appl. Dyn. Syst., 4(4):1107–1139, 2005.zbMATHMathSciNetGoogle Scholar
  18. [BC98]
    P.C. Bressloff and S. Coombes. Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81(10):2168–2171, 1998.Google Scholar
  19. [BCB96]
    R.J. Butera, J.W. Clark, and J.H. Byrne. Dissection and reduction of a modeled bursting neuron. J. Comput. Neurosci., 3(3):199–223, 1996.Google Scholar
  20. [BCB97]
    R.J. Butera, J.W. Clark, and J.H. Byrne. Transient responses of a modeled bursting neuron: analysis with equilibrium and averaged nullclines. Biol. Cybernet., 77(5):307–322, 1997.zbMATHGoogle Scholar
  21. [BCC+95]
    R.J. Butera, J.W. Clark, C.C. Canavier, D.A. Baxter, and J.H. Byrne. Analysis of the effects of modulatory agents on a modeled bursting neuron: dynamic interactions between voltage and calcium dependent systems. J. Comput. Neurosci., 2(1):19–44, 1995.Google Scholar
  22. [BD80]
    J. Boissonade and P. DeKepper. Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system. J. Phys. Chem., 84:501–506, 1980.Google Scholar
  23. [Bel59]
    B.P. Belousov. A periodic reaction and its mechanism (in Russian). Collections of Abstracts on Radiation Medicine, page 145, 1959.Google Scholar
  24. [Ber93]
    R. Bertram. A computational study of the effects of serotonin on a molluscan burster neuron. Biol. Cybern., 69(3):257–267, 1993.zbMATHMathSciNetGoogle Scholar
  25. [BFSO95]
    T.V. Bronnikova, V.R. Fed’kina, W.M. Schaffer, and L.F. Olsen. Period-doubling bifurcations and chaos in a detailed model of the peroxidase-oxidase reaction. J. Phys. Chem., 99(23):9309–9312, 1995.Google Scholar
  26. [BK08a]
    N. Baba and K. Krischer. Mixed-mode oscillations and cluster patterns in an electrochemical relaxation oscillator under galvanostatic control. Chaos, 18, 2008.Google Scholar
  27. [BKT00]
    A. Bose, N. Kopell, and D. Terman. Almost-synchronous solutions for mutually coupled excitatory neurons. Physica D, 140(1):69–94, 2000.zbMATHMathSciNetGoogle Scholar
  28. [BKW06]
    M. Brøns, M. Krupa, and M. Wechselberger. Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49:39–63, 2006.Google Scholar
  29. [BPH+00]
    R. Bertram, J. Previte, A. Herman, T.A. Kinard, and L.S. Satin. The phantom burster model for pancreatic β-cells. Biophys. J., 79(6):2880–2892, 2000.Google Scholar
  30. [BR73]
    T.S. Briggs and W.C. Rauscher. An oscillating iodine clock. J. Chem. Educ., 50:496, 1973.Google Scholar
  31. [BRC95]
    S.M. Baer, J. Rinzel, and H. Carrillo. Analysis of an autonomous phase model for neuronal parabolic bursting. J. Math. Biol., 33(3):309–333, 1995.zbMATHGoogle Scholar
  32. [BRS99a]
    R.J. Butera, J. Rinzel, and J.C. Smith. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol., 82(1):382–397, 1999.Google Scholar
  33. [BRS99b]
    R.J. Butera, J. Rinzel, and J.C. Smith. Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol., 82(1):398–415, 1999.Google Scholar
  34. [BS04a]
    R. Bertram and A. Sherman. A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol., 66(5):1313–1344, 2004.MathSciNetGoogle Scholar
  35. [BS04b]
    R. Bertram and A. Sherman. Filtering of calcium transients by the endoplasmic reticulum in pancreatic β-cells. Biophys. J., 87(6):3775–3785, 2004.Google Scholar
  36. [BS11a]
    R. Barrio and A. Shilnikov. Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh–Rose model. J. Math. Neurosci., 1(1):1–22, 2011.MathSciNetGoogle Scholar
  37. [BSO01]
    T.V. Bronnikova, W.M. Schaffer, and L.F. Olsen. Nonlinear dynamics of the peroxidase-oxidase reaction. I. Bistability and bursting oscillations at low enzyme concentrations. J. Phys. Chem. B, 105:310–321, 2001.Google Scholar
  38. [BSP+07]
    R. Bertram, L.S. Satin, M.G. Pedersen, D.S. Luciani, and A. Sherman. Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets. Biophys. J., 92(5):1544–1555, 2007.Google Scholar
  39. [BSSH08]
    D. Bakes, L. Schreiberova, I. Schreiber, and M.J.B. Hauser. Mixed-mode oscillations in a homogeneous ph-oscillatory chemical reaction system. Chaos, 18, 2008.Google Scholar
  40. [BSZ+04]
    R. Bertram, L. Satin, M. Zhang, P. Smolen, and A. Sherman. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J., 87(5):3074–3087, 2004.Google Scholar
  41. [But98]
    R.J. Butera. Multirhythmic bursting. Chaos, 8(1):274–284, 1998.zbMATHMathSciNetGoogle Scholar
  42. [CA84]
    H.-C. Chang and M. Aluko. Multi-scale analysis of exotic dynamics in surface catalyzed reactions I: justification and preliminary model discriminations. Chem. Engineer. Sci., 39(1):37–50, 1984.Google Scholar
  43. [CB05]
    S. Coombes and P.C. Bresloff, editors. Bursting: The genesis of rhythm in the nervous system. World Scientific, 2005.Google Scholar
  44. [CBCB93]
    C.C. Canavier, D.A. Baxter, J.W. Clark, and J.H. Byrne. Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol., 69(6):2252–2257, 1993.Google Scholar
  45. [CCB91]
    C.C. Canavier, J.W. Clark, and J.H. Byrne. Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J. Neurophysiol., 66(6):2107–2124, 1991.Google Scholar
  46. [CCS05]
    G.S. Cymbalyuk, R.L. Calabrese, and A.L. Shilnikov. How a neuron model can demonstrate co-existence of tonic spiking and bursting. Neurocomput., 65:869–875, 2005.Google Scholar
  47. [CCS07]
    P. Channell, G. Cymbalyuk, and A. Shilnikov. Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett., 98(13):134101, 2007.Google Scholar
  48. [CF81]
    M.F. Crowley and R.J. Field. Electrically coupled Belousov–Zhabotisnky oscillators: a potential chaos generator. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics, pages 147–153. Springer, 1981.Google Scholar
  49. [CGMC02]
    G.S. Cymbalyuk, Q. Gaudry, M. Masino, and R.L. Calabrese. Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J. Neurosci., 22(24):10580–10592, 2002.Google Scholar
  50. [Cha85]
    T.R. Chay. Chaos in a three-variable model of an excitable cell. Physica D, 16(2):233–242, 1985.zbMATHGoogle Scholar
  51. [Cha90a]
    T.R. Chay. Bursting excitable cell models by a slow Ca2+ current. J. Theor. Biol., 142(3):305–315, 1990.Google Scholar
  52. [Cha90b]
    T.R. Chay. Electrical bursting and intracellular Ca2+ oscillations in excitable cell models. Biol. Cybernet., 63(1):15–23, 1990.Google Scholar
  53. [Cha96]
    T.R. Chay. Electrical bursting and luminal calcium oscillation in excitable cell models. Biol. Cybernet., 75(5):419–431, 1996.zbMATHGoogle Scholar
  54. [ČIŠA+13]
    Ž. Čupić, A. Ivanović-Šašić, S. Anić, B. Stanković, J. Maksimović, J. Kolar-Anić, and G. Schmitz. Tourbillion in the phase space of the Bray-Liebhafsky nonlinear oscillatory reaction and related multiple-time-scale model. MATCH Commun. Math. Comput. Chem., 69:805–830, 2013.zbMATHGoogle Scholar
  55. [CK83a]
    T.R. Chay and J. Keizer. Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys. J., 42(2):181–189, 1983.Google Scholar
  56. [CNV07]
    M. Courbage, V.I. Nekorkin, and L.V. Vdovin. Chaotic oscillations in a map-based model of neural activity. Chaos, 17:043109, 2007.MathSciNetGoogle Scholar
  57. [CR85]
    T.R. Chay and J. Rinzel. Bursting, beating, and chaos in an excitable membrane model. Biophys. J., 47(3):357–366, 1985.Google Scholar
  58. [CWS83a]
    M. Coderch, A.S. Willsky, and S.S. Sastry. Hierarchical aggregation of linear systems with multiple time scales. IEEE Trans. Aut. Contr., 28(11):1017–1030, 1983.zbMATHMathSciNetGoogle Scholar
  59. [dARAR99]
    F.M. de Aguiar, S. Rosenblatt, A. Azevedo, and S.M. Rezende. Observation of mixed-mode oscillations in spin-wave experiments. J. Appl. Phys., 85(8):5086–5087, 1999.Google Scholar
  60. [DBFP03]
    C. Doss-Bachelet, J.-P. Francoise, and C. Piquet. Bursting oscillations in two coupled FitzHugh–Nagumo systems. ComPlexUs, 2:101–111, 2003.Google Scholar
  61. [DGK+12]
    M. Desroches, J. Guckenheimer, C. Kuehn, B. Krauskopf, H. Osinga, and M. Wechselberger. Mixed-mode oscillations with multiple time scales. SIAM Rev., 54(2):211–288, 2012.zbMATHMathSciNetGoogle Scholar
  62. [DIK04]
    S. Doi, J. Inoue, and S. Kumagai. Chaotic spiking in the Hodgkin–Huxley nerve model with slow inactivation in the sodium current. J. Integr. Neurosci., 3(2):207–225, 2004.Google Scholar
  63. [DJD04]
    M. Dhamala, V.K. Jirsa, and M. Ding. Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett., 92:028101, 2004.Google Scholar
  64. [DKK13]
    M. Desroches, T.J. Kaper, and M. Krupa. Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos, 23:046106, 2013.Google Scholar
  65. [DKO08b]
    M. Desroches, B. Krauskopf, and H.M. Osinga. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system. Chaos, 18:015107, 2008.MathSciNetGoogle Scholar
  66. [DKO09]
    M. Desroches, B. Krauskopf, and H.M. Osinga. The geometry of mixed-mode oscillations in the Olsen model for the perioxidase-oxidase reaction. DCDS-S, 2(4):807–827, 2009.zbMATHMathSciNetGoogle Scholar
  67. [DLLM02]
    B. Doiron, C.R. Laing, A. Longtin, and L. Maler. Ghostbursting: a novel neuronal burst mechanism. J. Comput. Neurosci., 12:5–25, 2002.Google Scholar
  68. [DMS+00]
    C.T. Dickson, J. Magistretti, M.H. Shalisnky, E. Fransen, M.E. Hasselmo, and A. Alonso. Properties and role of I h in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol., 83:2562–2579, 2000.Google Scholar
  69. [DMS+06]
    C.T. Dickson, J. Magistretti, M.H. Shalisnky, B. Hamam, and A. Alonso. Oscillatory activity in entorhinal neurons and circuits: mechanisms and function. Ann. N.Y. Acad. Sci., 911:127–150, 2006.Google Scholar
  70. [DNR11]
    J.R. Dunmyre, C.A. Del Negro, and J.E. Rubin. Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J. Comp. Neurosci., 31(2):305–328, 2011.Google Scholar
  71. [DOP79]
    H. Degn, L.F. Olsen, and J.W. Perram. Bistability, oscillation, and chaos in an enzyme reaction. Annals of the New York Academy of Sciences, 316(1):623–637, 1979.Google Scholar
  72. [DQKP94]
    N. Derbel, A. Quali, M.B.A. Kamoun, and M. Poloujadoff. Two step three time scale reduction of doubly fed machine models. IEEE Trans. Energy Conv., 9(1):77–84, 1994.Google Scholar
  73. [DR10]
    J.R. Dunmyre and J.E. Rubin. Optimal intrinsic dynamics for bursting in a three-cell network. SIAM J. Appl. Dyn. Syst., 9(1):154–187, 2010.zbMATHMathSciNetGoogle Scholar
  74. [DRSE04]
    J. Drover, J. Rubin, J. Su, and B. Ermentrout. Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math., 65(1):69–92, 2004.zbMATHMathSciNetGoogle Scholar
  75. [ECB97]
    T. Erneux, T.W. Carr, and V. Booth. Near-threshold bursting is delayed by a slow passage near a limit point. SIAM J. Appl. Math., 57(5):1406–1420, 1997.zbMATHMathSciNetGoogle Scholar
  76. [EE86]
    M. Eiswirth and G. Ertl. Kinetic oscillations in the catalytic CO oxidation on a Pt(110) surface. Surf. Sci., 177(1):90–100, 1986.Google Scholar
  77. [EK86a]
    G.B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math., 46(2):233–253, 1986.zbMATHMathSciNetGoogle Scholar
  78. [EKE90]
    M. Eiswirth, K. Krischer, and G. Ertl. Nonlinear dynamics in the CO-oxidation on Pt single crystal surfaces. Appl. Phys. A, 51:79–90, 1990.Google Scholar
  79. [ELRL99]
    A. Erisir, D. Lau, B. Rudy, and C.S. Leonard. Function of specific K + channels in sustained high-frequency firing of fast-spiking interneurons. J. Neurophysiol., 82:2476–2489, 1999.Google Scholar
  80. [EM08]
    I. Erchova and D.J. McGonigle. Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos, 18:015115, 2008.MathSciNetGoogle Scholar
  81. [ES96]
    I.R. Epstein and K. Showalter. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem., 100:13132–13147, 1996.Google Scholar
  82. [ET10]
    G.B. Ermentrout and D.H. Terman. Mathematical Foundations of Neuroscience. Springer, 2010.Google Scholar
  83. [EW09]
    B. Ermentrout and M. Wechselberger. Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst., 8(1):253–278, 2009.zbMATHMathSciNetGoogle Scholar
  84. [FAB84]
    V.R. Fed’kina, F.I. Ataullakhanov, and T.V. Bronnikova. Computer simulations of sustained oscillations in the peroxidase-oxidase reaction. Biophysical Chemistry, 19:259–264, 1984.Google Scholar
  85. [FAB88]
    V.R. Fed’kina, F.I. Ataullakhanov, and T.V. Bronnikova. Stimulated regimens in the peroxidase-oxidase reaction. Theor. Exp. Chem., 24(2):172–178, 1988.Google Scholar
  86. [FBT+06]
    F. Fröhlich, M. Bazhenov, I. Timofeev, M. Steriade, and T.J. Sejnowski. Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J. Neurosci., 26(23):6153–6162, 2006.Google Scholar
  87. [Fe85]
    R.J. Field and M. Burger (eds.). Oscillations and traveling waves in chemical systems. Wiley, 1985.Google Scholar
  88. [FG11a]
    J.G. Freire and J.A.C. Gallas. Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh–Nagumo models of excitable systems. Phys. Lett. A, 375:1097–1103, 2011.zbMATHGoogle Scholar
  89. [FG11b]
    J.G. Freire and J.A.C. Gallas. Stern–Brocot trees in the periodicity of mixed-mode oscillations. Phys. Chem. Chem. Phys., 13:12191–12198, 2011.Google Scholar
  90. [FN74]
    R.J. Field and R.M. Noyes. Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys., 60:1877–1884, 1974.Google Scholar
  91. [FP05]
    J.-P. Francoise and C. Piquet. Hysteresis dynamics, bursting oscillations and evolution to chaotic regimes. Acta Biotheoretica, 53(4):381–392, 2005.Google Scholar
  92. [Fur85]
    S.D. Furrow. Chemical oscillators based on iodate ion and hydrogen peroxide. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 171–192. Wiley-Interscience, 1985.Google Scholar
  93. [GE98]
    B.S. Gutkin and G.B. Ermentrout. Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput., 10(5):1047–1065, 1998.Google Scholar
  94. [GF77]
    W. Geiseler and H.H. Föllner. Three steady state situation in an open chemical reaction system. I. Bipophys. Chem., 6(1):107–115, 1977.Google Scholar
  95. [GF91]
    L. Györgi and R.J. Field. Simple models of deterministic chaos in the Belousov–Zhabotinsky reaction. J. Phys. Chem., 95:6594–6602, 1991.Google Scholar
  96. [GGHL81]
    P. Gray, J.F. Griffiths, S.M. Hasko, and P.-G. Lignola. Oscillatory ignitions and cool flames accompanying the non-isothermal oxidation of acetaldehyde in a well stirred, flow reactor. Proc. R. Soc. Lond., 374(1758):313–339, 1981.Google Scholar
  97. [GGHW93]
    J. Guckenheimer, S. Gueron, and R. Harris-Warrick. Mapping the dynamics of a bursting neuron. Phil. Trans. Roy. Soc. B, 341:345–359, 1993.Google Scholar
  98. [GHR+07]
    D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, and G. Huyet. Excitability and self-pulsations near homoclinic bifurcations in semiconductor lasers. Phys. Rev. Lett., 98:153903, 2007.Google Scholar
  99. [GHS76]
    K.R. Graziani, J.L. Hudson, and R.A. Schmitz. The Belousov–Zhabotinskii reaction in a continuous flow reactor. The Chemical Engineering Journal, 12(1):9–21, 1976.Google Scholar
  100. [GHWPW97]
    J. Guckenheimer, R. Harris-Warrick, J. Peck, and A.R. Willms. Bifurcation, bursting, and spike frequency adaptation. J. Comp. Neuosci., 4:257–277, 1997.zbMATHGoogle Scholar
  101. [GJK01]
    M. Golubitsky, K. Josic, and T.J. Kaper. An unfolding theory approach to bursting in fast–slow systems. In H.W. Broer, B. Krauskopf, and G. Vegter, editors, Global Analysis of Dynamical Systems: Festschrift dedicated to Floris Takens on the occasion of his 60th birthday, pages 277–308. Institute of Physics Publ., 2001.Google Scholar
  102. [GK09a]
    J. Guckenheimer and C. Kuehn. Computing slow manifolds of saddle-type. SIAM J. Appl. Dyn. Syst., 8(3):854–879, 2009.zbMATHMathSciNetGoogle Scholar
  103. [GK09b]
    J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: The singular limit. Discr. Cont. Dyn. Syst. S, 2(4):851–872, 2009.zbMATHMathSciNetGoogle Scholar
  104. [GK10b]
    J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.zbMATHMathSciNetGoogle Scholar
  105. [GM07]
    J.M. Gonzalez-Miranda. Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bif. Chaos, 17(9):3071–3083, 2007.zbMATHMathSciNetGoogle Scholar
  106. [GM12a]
    J.M. Gonzalez-Miranda. Nonlinear dynamics of the membrane potential of a bursting pacemaker cell. Chaos, 22:013123, 2012.Google Scholar
  107. [GM12b]
    J. Guckenheimer and P. Meerkamp. Bifurcation analysis of singular Hopf bifurcation in \(\mathbb{R}^{3}\). SIAM J. Appl. Dyn. Syst., 11(4):1325–1359, 2012.zbMATHMathSciNetGoogle Scholar
  108. [GN83]
    P. Gaspard and G. Nicolis. What can we learn from homoclinic orbits in chaotic dynamics? J. Stat. Phys., 31(3):499–518, 1983.zbMATHMathSciNetGoogle Scholar
  109. [GP06]
    R.E. Griffiths and M. Pernarowski. Return map characterizations for a model of bursting with two slow variables. SIAM J. Appl. Math., 66(6):1917–1948, 2006.zbMATHMathSciNetGoogle Scholar
  110. [GRF91]
    L. Györgi, S. Rempe, and R.J. Field. A novel model for the simulation of chaos in low-flow-rate CSTR experiments with the Belousov–Zhabotinskii reaction: a chemical mechanism for two-frequency oscillations. J. Phys. Chem., 95:3159–3165, 1991.Google Scholar
  111. [Gru79]
    L.T. Grujic. Singular perturbations and large-scale systems. Int. J. Contr., 29(1):159–169, 1979.zbMATHMathSciNetGoogle Scholar
  112. [GS09a]
    P. Goel and A. Sherman. The geometry of bursting in the dual oscillator model of pancreatic β-cells. SIAM J. Appl. Dyn. Syst., 8(4):1664–1693, 2009.zbMATHMathSciNetGoogle Scholar
  113. [GS11]
    J. Guckenheimer and C. Scheper. A geometric model for mixed-mode oscillations in a chemical system. SIAM J. Appl. Dyn. Sys., 10(1):92–128, 2011.zbMATHMathSciNetGoogle Scholar
  114. [GS13]
    J. Guckenheimer and C. Scheper. Multiple time scale analysis of a model Belousov–Zhabotinskii reaction. SIAM J. Appl. Dyn. Sys., 12(4):1968–1996, 2013.zbMATHMathSciNetGoogle Scholar
  115. [GSCE06]
    D. Golomb, A. Shedmi, R. Curtu, and G.B. Ermentrout. Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J. Neurophysiol., 95(2):1049–1067, 2006.Google Scholar
  116. [GSK97]
    A. Goryachev, P. Strizhak, and R. Kapral. Slow manifold structure and the emergence of mixed-mode oscillations. J. Chem. Phys., 107(18):2881–2889, 1997.Google Scholar
  117. [GSLO92]
    T. Geest, C.G. Steinmetz, R. Larter, and L.F. Olsen. Period-doubling bifurcations and chaos in an enzyme reaction. J. Phys. Chem., 96:5678–5680, 1992.Google Scholar
  118. [GTF90]
    L. Györgi, T. Turányi, and R.J. Field. Mechanistic details of the oscillatory Belousov–Zhabotinskii reaction. J. Phys. Chem., 94:7162–7170, 1990.Google Scholar
  119. [GTW05]
    J. Guckenheimer, J.H. Tien, and A.R. Willms. Bifurcations in the fast dynamics of neurons: implications for bursting. In Bursting, The Genesis of Rhythm in the Nervous System, pages 89–122. World Sci. Publ., 2005.Google Scholar
  120. [Guc08b]
    J. Guckenheimer. Singular Hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn. Syst., 7(4):1355–1377, 2008.zbMATHMathSciNetGoogle Scholar
  121. [GW87]
    P. Gaspard and X.-J. Wang. Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium systems. Journal of Statistical Physics, 48:151–199, 1987.MathSciNetGoogle Scholar
  122. [GYS95]
    Y. Gutfreund, Y. Yarom, and I. Segev. Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J. Physiol., 483:621–640, 1995.Google Scholar
  123. [GYY06]
    D. Golomb, C. Yue, and Y. Yaari. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J. Neurophysiol., 96(4):1912–1926, 2006.Google Scholar
  124. [Hay00]
    T. Hayashi. Mixed-mode oscillations and chaos in a glow discharge. Phys. Rev. Lett., 84(15):3334–3337, 2000.Google Scholar
  125. [HHM79]
    J.L. Hudson, M. Hart, and D. Marinko. An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 71(4):1601–1606, 1979.Google Scholar
  126. [HKK95]
    S.K. Han, C. Kurrer, and Y. Kuramoto. Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett., 75(17):3190–3193, 1995.Google Scholar
  127. [HLM+01]
    A.A. Hill, J. Lu, M. Masino, O.H. Olsen, and R.L. Calabrese. A model of a segmental oscillator in the leech heartbeat neuronal network. J. Comput. Neurosci., 10(3):281–302, 2001.Google Scholar
  128. [HM75]
    S.P. Hastings and J.D. Murray. The existence of oscillatory solutions in the Field–Noyes model for the Belousov–Zhabotinskii reaction. SIAM J. Appl. Math., 28(3):678–688, 1975.MathSciNetGoogle Scholar
  129. [HM81]
    J.L. Hudson and J.C. Mankin. Chaos in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 74: 6171–6177, 1981.Google Scholar
  130. [HMML81]
    J.L. Hudson, J. Mankin, J. McCullough, and P. Lamba. Experiment on chaos in a continuous stirred reactor. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics, pages 44–48. Springer, 1981.Google Scholar
  131. [HMP96]
    B. Hutcheon, R.M. Miura, and E. Puil. Subthreshold membrane resonance in neocortical neurons. J. Neurophysiol., 76(2):683–697, 1996.Google Scholar
  132. [HMS85]
    J. Honerkamp, G. Mutschler, and R. Seitz. Coupling of a slow and a fast oscillator can generate bursting. Bull. Math. Biol., 47(1):1–21, 1985.zbMATHMathSciNetGoogle Scholar
  133. [HO96]
    M.J.B. Hauser and L.F. Olsen. Mixed-mode oscillations and homoclinic chaos in an enzyme reaction. J. Chem. Soc. Faraday Trans., 92(16):2857–2863, 1996.Google Scholar
  134. [HOBS97]
    M.J.B. Hauser, L.F. Olsen, T.V. Bronnikova, and W.M. Schaffer. Routes to chaos in the peroxdiase–oxidase reaction: period-doubling and period-adding. J. Phys. Chem. B, 101:5075–5083, 1997.Google Scholar
  135. [HR84]
    J.L. Hindmarsh and R.M. Rose. A model of neuronal bursting using three coupled first order differential equations. Proc. Roy. Soc. London B, 221(1222):87–102, 1984.Google Scholar
  136. [HR94]
    J.L. Hindmarsh and R.M. Rose. A model for rebound bursting in mammalian neurons. Proc. Roy. Soc. London B, 346(1316):129–150, 1994.Google Scholar
  137. [HS93]
    T. Hauck and F.W. Schneider. Mixed-mode and quasiperiodic oscillations in the peroxidase-oxidase reaction. J. Phys. Chem., 97:391–397, 1993.Google Scholar
  138. [HS94]
    T. Hauck and F.W. Schneider. Chaos in a Farey sequence through period doubling in the peroxidase-oxidase reaction. J. Phys. Chem., 98:2072–2077, 1994.Google Scholar
  139. [HSR95]
    Y.-F. Hung, I. Schreiber, and J. Ross. New reaction mechanism for the oscillatory peroxidase-oxidase reaction and comparison with experiments. J. Phys. Chem., 99:1980–1987, 1995.Google Scholar
  140. [HWF87]
    R.M. Harris-Warrick and R.E. Flamm. Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci., 7(7):2113–2128, 1987.Google Scholar
  141. [IH04]
    E. Izhikevich and F. Hoppensteadt. Classification of bursting mappings. Int. J. Bif. Chaos, 14(11):3847–3854, 2004.zbMATHMathSciNetGoogle Scholar
  142. [IS90]
    P. Ibison and K. Scott. Detailed bifurcation structure and new mixed-mode oscillations of the Belousov–Zhabotinskii reaction in a stirred flow reactor. J. Chem. Soc. Faraday Trans., 86(22): 3695–3700, 1990.Google Scholar
  143. [Izh00a]
    E. Izhikevich. Neural excitability, spiking, and bursting. Int. J. Bif. Chaos, 10:1171–1266, 2000.zbMATHMathSciNetGoogle Scholar
  144. [Izh00c]
    E. Izhikevich. Subcritical elliptic bursting of Bautin type. SIAM J. Appl. Math., 60(2):503–535, 2000.zbMATHMathSciNetGoogle Scholar
  145. [Izh01]
    E. Izhikevich. Synchronization of elliptic bursters. SIAM Rev., 43(2):315–344, 2001.zbMATHMathSciNetGoogle Scholar
  146. [Izh04]
    E. Izhikevich. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw., 15(5): 1063–1070, 2004.Google Scholar
  147. [Izh07]
    E. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, 2007.Google Scholar
  148. [JK94a]
    H. Jahnsen and S. Karnup. A spectral analysis of the integration of artificial synaptic potentials in mammalian central neurons. Brain Res., 666:9–20, 1994.Google Scholar
  149. [JKR10]
    J. Jalics, M. Krupa, and H.G. Rotstein. Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model. Dynamical Systems, 25(4):445–482, 2010.zbMATHMathSciNetGoogle Scholar
  150. [KAAA13]
    M. Krupa, B. Ambrosio, and M.A. Aziz-Alaoui. Weakly coupled two slow–two fast systems, folded node and mixed mode oscillations. arXiv:1302.1800v1, pages 1–19, 2013.Google Scholar
  151. [KARG92]
    J.M. Kowalski, G.L. Albert, B.K. Rhoades, and G.W. Gross. Neuronal networks with spontaneous, correlated bursting activity: theory and simulations. Neural Networks, 5(5):805–822, 1992.Google Scholar
  152. [KB85]
    P. De Kepper and J. Boissonade. From bistability to sustained oscillations in homogeneous chemical systems in flow reactor mode. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 223–256. Wiley-Interscience, 1985.Google Scholar
  153. [KDSS99]
    T.A. Kinard, G. DeVries, A. Sherman and L.S. Satin. Modulation of the bursting properties of single mouse pancreatic-β-cells by artificial conductances. Biophys. J., 78(3):1423–1435, 1999.Google Scholar
  154. [KE82]
    P. De Kepper and I.R. Epstein. A mechanistic study of oscillations and bistability in the Briggs–Rauscher reaction. J. Am. Chem. Soc., 104:49–55, 1982.Google Scholar
  155. [KE86]
    N. Kopell and G.B. Ermentrout. Subcellular oscillations and bursting. Math. Biosci., 78(2):265–291, 1986.zbMATHMathSciNetGoogle Scholar
  156. [KEE92]
    K. Krischer, M. Eiswirth, and G. Ertl. Oscillatory CO oxidation on Pt(110): modeling of temporal self-organization. J. Chem. Phys., 96(12):9161–9172, 1992.Google Scholar
  157. [KG91]
    M.T.M. Koper and P. Gaspard. Mixed-mode and chaotic oscillations in a simple model of an electrochemical oscillator. J. Chem. Phys., 95:4945–4947, 1991.Google Scholar
  158. [KG92]
    M.T.M. Koper and P. Gaspard. The modeling of mixed-mode and chaotic oscillations in electrochemical systems. J. Chem. Phys., 96(10):7797–7813, 1992.Google Scholar
  159. [KGS92]
    M.T.M. Koper, P. Gaspard, and J.H. Sluyters. Mixed-mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium/thiocyanate electrochemical oscillator. J. Chem. Phys., 97(11):8250–8260, 1992.Google Scholar
  160. [Kha81]
    H.K. Khalil. Asymptotic stability of nonlinear multiparameter singularly perturbed systems. Automatica, 17(6):797–804, 1981.zbMATHMathSciNetGoogle Scholar
  161. [KHS02]
    V.O. Khavrus, H.Farkas, and P.E. Strizhak. Conditions for mixed-mode oscillations and deterministic chaos in nonlinear chemical systems. Theoretical and Experimental Chemistry, 38(5):301–307, 2002.Google Scholar
  162. [KK79a]
    H.K. Khalil and P.V. Kokotovic. Control of linear systems with multiparameter singular perturbations. Automatica, 15(2): 197–207, 1979.zbMATHMathSciNetGoogle Scholar
  163. [KK79b]
    H.K. Khalil and P.V. Kokotovic. D-stability and multi-parameter singular perturbation. SIAM J. Contr. Optim., 17(1): 56–65, 1979.zbMATHMathSciNetGoogle Scholar
  164. [KKS00b]
    A.L. Kawczynski, V.O. Khavrus, and P.E. Strizhak. Complex mixed-mode periodic and chaotic oscillations in a simple three-variable model of nonlinear system. Chaos, 10(2):299–310, 2000.zbMATHMathSciNetGoogle Scholar
  165. [KLE+93]
    K. Krischer, M. Luebke, M. Eiswirth, W. Wolf, J.L. Hudson, and G. Ertl. A hierarchy of transitions to mixed mode oscillations in an electrochemical system. Physica D, 62:123–133, 1993.zbMATHGoogle Scholar
  166. [KLS02]
    K.-R. Kim, D.J. Lee, and K.J. Shin. A simplified model for the Briggs–Rauscher reaction mechanism. J. Chem. Phys., 117(6):2710–2717, 2002.Google Scholar
  167. [KLVE09]
    K. Kovacs, M. Leda, V.K. Vanag, and I.R. Epstein. Small-amplitude and mixed-mode oscillations in the Bromate–Sulfite–Ferrocyanide–Aluminium(III) system. J. Phys. Chem., 113: 146–156, 2009.Google Scholar
  168. [Kop95]
    M.T.M. Koper. Bifurcations of mixed-mode oscillations in a three-variable autonomous van der Pol–Duffing model with a cross-shaped phase diagram. Physica D, 80:72–94, 1995.zbMATHMathSciNetGoogle Scholar
  169. [KPK08]
    M. Krupa, N. Popovic, and N. Kopell. Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst., 7(2):361–420, 2008.zbMATHMathSciNetGoogle Scholar
  170. [KPKR08]
    M. Krupa, N. Popovic, N. Kopell, and H.G. Rotstein. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos, 18:015106, 2008.MathSciNetGoogle Scholar
  171. [KS91b]
    M.T.M. Koper and J.H. Sluyters. Electrochemical oscillators: an experimental study of the indium/thiocyanate oscillator. J. Electroanal. Chem., 303:65–72, 1991.Google Scholar
  172. [KS91c]
    M.T.M. Koper and J.H. Sluyters. Electrochemical oscillators: their description through a mathematical model. J. Electroanal. Chem., 303:73–94, 1991.Google Scholar
  173. [KS00a]
    A.L. Kawczynski and P.E. Strizhak. Period adding and broken Farey tree sequences of bifurcations for mixed-mode oscillations and chaos in the simplest three-variable nonlinear system. J. Chem. Phys., 112(14):6122–6130, 2000.Google Scholar
  174. [KS11]
    I. Kosiuk and P. Szmolyan. Scaling in singular perturbation problems: blowing-up a relaxation oscillator. SIAM J. Appl. Dyn. Syst., 10(4):1307–1343, 2011.zbMATHMathSciNetGoogle Scholar
  175. [KSL04]
    K.-R. Kim, K.J. Shin, and D.J. Lee. Complex oscillations in a simple model for the Briggs–Rauscher reaction. J. Chem. Phys., 121(6):2664–2672, 2004.MathSciNetGoogle Scholar
  176. [KSS+03]
    B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum. Excitability and self-pulsations near homoclinic bifurcations in semiconductor lasers. Optics Communications, 215:367–379, 2003.Google Scholar
  177. [Kue11b]
    C. Kuehn. On decomposing mixed-mode oscillations and their return maps. Chaos, 21(3):033107, 2011.Google Scholar
  178. [Kuz04]
    Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.zbMATHGoogle Scholar
  179. [KVDC12]
    M. Krupa, A. Vidal, M. Desroches, and F. Clément. Mixed-mode oscillations in a multiple time scale phantom bursting system. SIAM J. Appl. Dyn. Syst., 11(4):1458–1498, 2012.zbMATHMathSciNetGoogle Scholar
  180. [KW02]
    B. Krauskopf and S.M. Wieczorek. Accumulating regions of winding periodic orbits in optically driven lasers. Physica D, 173:97–113, 2002.zbMATHMathSciNetGoogle Scholar
  181. [KWR10]
    T. Kispersky, J.A. White, and H.G. Rotstein. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells. PLoS ONE, 5(11):e13697, 2010.Google Scholar
  182. [LBLA87]
    R. Larter, C.L. Bush, T.R. Lonis, and B.D. Aguda. Multiple steady states, complex oscillations, and the devil’s staircase in the peroxidase-oxidase reaction. J. Chem. Phys., 87(10): 5765–5771, 1987.Google Scholar
  183. [LBR96]
    Y.X. Li, R. Bertram, and J. Rinzel. Modeling N-methyl-d-aspartate-induced bursting in dopamine neurons. Neurosci., 71(2):397–410, 1996.Google Scholar
  184. [LCDS12]
    D. Linaro, A. Champneys, M. Desroches, and M. Storace. Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh–Rose burster. SIAM J. Appl. Dyn. Syst., 11(3):939–962, 2012.zbMATHMathSciNetGoogle Scholar
  185. [LGY91]
    R.R. Llinas, A.A. Grace, and Y. Yarom. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz frequency range. Proc. Natl. Acad. Sci., 88(3):897–901, 1991.Google Scholar
  186. [LH96]
    R. Larter and S. Hemkin. Further refinements of the peroxidase-oxidase oscillator mechanism: Mixed-mode oscillations and chaos. J. Phys. Chem., 100:18924–18930, 1996.Google Scholar
  187. [LKMH94]
    T. LoFaro, N. Kopell, E. Marder, and S.L. Hooper. Subharmonic coordination in networks of neurons with slow conductances. Neural Comput., 6(1):69–84, 1994.Google Scholar
  188. [LR04b]
    T. Linß and H.-G. Roos. Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters. J. Math. Anal. Appl., 289(2):355–366, 2004.zbMATHMathSciNetGoogle Scholar
  189. [LS80]
    R. Llinas and M. Sugimori. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol., 305(1):197–213, 1980.Google Scholar
  190. [LS91]
    R. Larter and C.G. Steinmetz. Chaos via mixed-mode oscillations. Phil. Trans. R. Soc. Lond. A, 337: 291–298, 1991.zbMATHGoogle Scholar
  191. [LSA88]
    R. Larter, C.G. Steinmetz, and B.D. Aguda. Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction. J. Chem. Phys., 89(10):6506–6514, 1988.Google Scholar
  192. [LSB11]
    G. Lajoie and E. Shea-Brown. Shared inputs, entrainment, and desynchrony in elliptic bursters: from slow passage to discontinuous circle maps. SIAM J. Appl. Dyn. Syst., 10(4):1232–1271, 2011.zbMATHMathSciNetGoogle Scholar
  193. [LT99]
    E. Lee and D. Terman. Uniqueness and stability of periodic bursting solutions. J. Differential Equat., 158:48–78, 1999.zbMATHMathSciNetGoogle Scholar
  194. [LTB90]
    D. Lindberg, J.S. Turner, and D. Barkley. Chaos in the Showalter–Noyes–Bar-Eli model of the Belousov–Zhabotinskii reaction. J. Chem. Phys., 92(5):3238–3239, 1990.Google Scholar
  195. [LV02]
    B. Láňová and J. Vřešt’ál. Study of the Bray–Liebhafsky reaction by on-line mass spectrometry. J. Phys. Chem. A, 106: 1228–1232, 2002.Google Scholar
  196. [LV13]
    J. Llibre and C. Valls. Darboux integrability of polynomial differential systems in \(\mathbb{R}^{3}\). Bull. Belg. Math. Soc., 20(4):603–619, 2013.zbMATHMathSciNetGoogle Scholar
  197. [Mas80]
    J. Maselko. Experimental studies of complicated oscillations. The system Mn2+-malonic acid-KBrO3-H2SO4. Chem. Phys., 51(3):473–480, 1980.Google Scholar
  198. [MC04]
    G.S. Medvedev and J.E. Cisternas. Multimodal regimes in a compartmental model of the dopamine neuron. Phys. D, 194(3–4):333–356, 2004.zbMATHMathSciNetGoogle Scholar
  199. [MCA+11]
    F. Marino, M. Ciszak, S.F. Abdalah, K. Al-Naimee, R. Meucci, and F.T. Arecchi. Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback. Phys. Rev. E, 84:047201, 2011.Google Scholar
  200. [MCC+08]
    M. Mikikian, M. Cavarroc, L. Couedel, Y. Tessier, and L. Boufendi. Mixed-mode oscillations in complex plasma instabilities. Physical Review Letters, 100(22), 2008.Google Scholar
  201. [ML81]
    C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35(1): 193–213, 1981.Google Scholar
  202. [MMR10]
    E. Manica, G.S. Medvedev, and J.E. Rubin. First return maps for the dynamics of synaptically coupled conditional bursters. Biol. Cybernet., 103:87–104, 2010.zbMATHMathSciNetGoogle Scholar
  203. [MS85]
    J. Maselko and H.L. Swinney. A complex transition sequence in the Belousov–Zhabotinskii reaction. Physica Scripta, T9:35–39, 1985.Google Scholar
  204. [MS86b]
    J. Maselko and H.L. Swinney. A Farey triangle in the Belousov–Zhabotinskii reaction. Phys. Lett. A, 119(8):403–406, 1986.MathSciNetGoogle Scholar
  205. [MS86c]
    J. Maselko and H.L. Swinney. Complex periodic oscillation and Farey arithmetic in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 85:6430–6441, 1986.MathSciNetGoogle Scholar
  206. [MS01b]
    A. Milik and P. Szmolyan. Multiple time scales and canards in a chemical oscillator. In C.K.R.T. Jones, editor, Multiple Time Scale Dynamical Systems, volume 122, pages 117–140. Springer, 2001.Google Scholar
  207. [MS03a]
    N. Madden and M. Stynes. A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems. IMA J. Numer. Anal., 23(4):627–644, 2003.zbMATHMathSciNetGoogle Scholar
  208. [MSC11]
    T. Malashchenko, A. Shilnikov, and G. Cymbalyuk. Bistability of bursting and silence regimes in a model of a leech heart interneuron. Phys. Rev. E, 84:041910, 2011.Google Scholar
  209. [MSLG98]
    A. Milik, P. Szmolyan, H. Loeffelmann, and E. Groeller. Geometry of mixed-mode oscillations in the 3-d autocatalator. Int. J. Bif. Chaos, 8(3):505–519, 1998.zbMATHGoogle Scholar
  210. [MT10]
    W. Marszalek and Z. Trzaska. Mixed-mode oscillations in a modified Chua’s circuit. Circuits Syst. Signal Process., 29(6):1075–1087, 2010.zbMATHMathSciNetGoogle Scholar
  211. [MZ12]
    G. Medvedev and S. Zhuravytska. Shaping bursting by electrical coupling and noise. Biol. Cybern., 106(2):67–88, 2012.zbMATHMathSciNetGoogle Scholar
  212. [NBS+06]
    C.S. Nunemaker, R. Bertram, A. Sherman, K. Tsaneva-Atanasova, C.R. Daniel, and L.S. Satin. Glucose modulates \([\text{Ca}^{2+}]_{i}\) oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J., 91(6):2082–2096, 2006.Google Scholar
  213. [NF82]
    R.M. Noyes and S.D. Furrow. The oscillatory Briggs–Rauscher reaction. 3. A skeleton mechanism for oscillations. J. Am. Chem. Soc., 104:45–48, 1982.Google Scholar
  214. [NHCG98]
    C.A. Del Negro, C.F. Hsiao, S.H. Chandler, and A. Garfinkel. Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophysical J., 75:174–182, 1998.Google Scholar
  215. [NM+10]
    J. Nowacki,, S.H. Mazlan, H.M. Osinga, and K.T. Tsaneva-Atanasova. The role of large-conductance Calcium-activated K + (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D, 239(9):485–493, 2010.zbMATHMathSciNetGoogle Scholar
  216. [NOB+11]
    J. Nowacki, H.M. Osinga, J.T. Brown, A.D. Randall, and K.T. Tsaneva-Atanasova. A unified model of CA1/3 pyramidal cells: an investigation into excitability. Progress in Biophysics and Molecular Biology, 105:34–48, 2011.Google Scholar
  217. [NOTA12]
    J. Nowacki, H.M. Osinga, and K.T. Tsaneva-Atanasova. Dynamical systems analysis of spike-adding mechanisms in transient bursts. J. Math. Neurosci., 2:7, 2012.MathSciNetGoogle Scholar
  218. [NPT95]
    G. Neher, L. Pohlmann, and H. Tributsch. Mixed-mode oscillations self-similarity and time-transient chaotic behaviour in the (photo-) electrochemical system pCuInSe 2H 2 O 2. J. Phys. Chem., 99:17763–17771, 1995.Google Scholar
  219. [NWB+02]
    C.A. Del Negro, C.G. Wilson, R.J. Butera, H. Rigatto, and J.C. Smith. Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network. Biophysical J., 82:206–214, 2002.Google Scholar
  220. [OD78]
    L.F. Olsen and H. Degn. Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochim. Biophys. Acta, 523(2):321–334, 1978.Google Scholar
  221. [OE87]
    M. Orban and I.R. Epstein. Chemical oscillators in group VIA: The Cu(II)-catalyzed reaction between hydrogen peroxide and thiosulfate ion. J. Am. Chem. Soc., 109:101–106, 1987.Google Scholar
  222. [OH98]
    N. Okazaki and I. Hanazaki. Photo-induced chaos in the Briggs–Rauscher reaction. J. Chem. Phys., 109(2):637–642, 1998.Google Scholar
  223. [OKCRE00]
    M. Orban, K. Kurin-Csorgei, G. Rabai, and I.R. Epstein. Mechanistic studies of oscillatory copper(II) catalyzed oxidation reactions of sulfour compounds. Chem. Eng. Sci., 55:267–273, 2000.Google Scholar
  224. [O’M71b]
    R.E. O’Malley. On initial value problems for nonlinear systems of differential equations with two small parameters. Arch. Rat. Mech. Anal., 40(3):209–222, 1971.zbMATHMathSciNetGoogle Scholar
  225. [OSTA12]
    H.M. Osinga, A. Sherman, and K. Tsaneva-Atanasova. Cross-currents between biology and mathematics: the codimension of pseudo-plateau bursting. Discr. Cont. Dyn. Syst. A, 32:2853–2877, 2012.zbMATHMathSciNetGoogle Scholar
  226. [OTA10]
    H.M. Osinga and K.T. Tsaneva-Atanasova. Dynamics of plateau bursting in dependence on the location of its equilibrium. J. Neuroendocrinology, 22(12):1301–1314, 2010.Google Scholar
  227. [OWS95]
    D.L. Olson, E.P. Williksen, and A. Scheeline. An experimentally based model of the Peroxidase-NADH biochemical oscillator: An enzyme-mediated chemical switch. J. Am. Chem. Soc., 117:2–15, 1995.Google Scholar
  228. [Pan96]
    C.L. Pando. Recurrent synchronism in the internal dynamics of CO2 lasers. Phys. Lett. A, 210(6): 391–401, 1996.Google Scholar
  229. [PDL13]
    Y. Park, Y. Do, and J.M. Lopez. Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons. J. Comput. Neurosci., 34(2):345–366, 2013.zbMATHMathSciNetGoogle Scholar
  230. [Per94b]
    M. Pernarowski. Fast subsystem bifurcations in a slowly varying Liénard system exhibiting bursting. SIAM J. Appl. Math., 54(3):814–832, 1994.zbMATHMathSciNetGoogle Scholar
  231. [Per98]
    M. Pernarowski. Fast and slow subsystems for a continuum model of bursting activity in the pancreatic islet. SIAM J. Appl. Math., 58(5):1667–1687, 1998.zbMATHMathSciNetGoogle Scholar
  232. [Per00]
    M. Pernarowski. Fast subsystem bifurcations in strongly coupled heterogeneous collections of excitable cells. Bull. Math. Biol., 62:101–120, 2000.Google Scholar
  233. [Per01b]
    M. Pernarowski. Controllability of excitable systems. Bull. Math. Biol., 63:167–184, 2001.Google Scholar
  234. [PGS91]
    B. Peng, V. Gaspar, and K. Showalter. False bifurcations in chemical systems: canards. Phil. Trans. R. Soc. Lond. A, 337:275–289, 1991.zbMATHGoogle Scholar
  235. [Pik81]
    A.S. Pikovsky. A dynamical model for periodic and chaotic oscillations in the Belousov–Zhabotinsky reaction. Phys. Rev. A, 85(1):13–16, 1981.Google Scholar
  236. [Pla81]
    R.E. Plant. Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biol., 11:15–32, 1981.zbMATHMathSciNetGoogle Scholar
  237. [PLRF97]
    E. Peacock-Lopez, D.B. Radov, and C.S. Flesner. Mixed-mode oscillations in a self-replicating dimerization mechanism. Biophysical Chemistry, 65:171–178, 1997.Google Scholar
  238. [PMK91]
    M. Pernarowski, R.M. Miura, and J. Kevorkian. The Sherman-Rinzel-Keizer model for bursting electrical activity in the pancreatic β-cell. In Differential Equations Models in Biology, Epidemiology and Ecology, pages 34–53. Springer, 1991.Google Scholar
  239. [PMK92]
    M. Pernarowski, R.M. Miura, and J. Kevorkian. Perturbation techniques for models of bursting electrical activity in pancreatic β-cells. SIAM J. Appl. Math., 52(6):1627–1650, 1992.zbMATHMathSciNetGoogle Scholar
  240. [PNT94]
    L. Pohlmann, G. Neher, and H. Tributsch. A model for oscillating hydrogen liberation at CuInSe2 in the presence of H2O2. J. Phys. Chem., 98:11007–11010, 1994.Google Scholar
  241. [PR81]
    A.S. Pikovsky and M.I. Rabinovich. Stochastic oscillations in dissipative systems. Physica D, 2(1): 8–24, 1981.zbMATHMathSciNetGoogle Scholar
  242. [PR94]
    P.F. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci., 1(1):39–60, 1994.Google Scholar
  243. [PRR+81]
    Y. Pomeau, J.-C. Roux, A. Rossi, S. Bachelart, and C. Vidal. Intermittent behaviour in the Belousov–Zhabotinsky reaction. Journal de Physique Lettres, 42:271–273, 1981.Google Scholar
  244. [PSS92]
    V. Petrov, S.K. Scott, and K. Showalter. Mixed-mode oscillations in chemical systems. J. Chem. Phys., 97(9):6191–6198, 1992.Google Scholar
  245. [PVK05]
    F. Plenge, H. Varela, and K. Krischer. Asymmetric target patterns in one-dimensional oscillatory media with genuine nonlocal coupling. Phys. Rev. Lett., 94, 2005.Google Scholar
  246. [RA00a]
    S. Rajesh and G. Ananthakrishna. Effect of slow manifold structure on relaxation oscillations and one-dimensional map in a model for plastic instability. Physica A, 270:182–189, 2000.Google Scholar
  247. [RA00b]
    S. Rajesh and G. Ananthakrishna. Incomplete approach to homoclinicity in a model with bent-slow manifold geometry. Physica D, 140:193–212, 2000.zbMATHGoogle Scholar
  248. [RA05]
    R. Raghavan and G. Ananthakrishna. Long tailed maps as a representation of mixed mode oscillatory systems. Physica D, 211:74–87, 2005.zbMATHMathSciNetGoogle Scholar
  249. [RE89]
    J. Rinzel and B. Ermentrout. Analysis of neural excitability and oscillations. In C. Koch and I. Segev, editors, Methods of Neural Modeling: From Synapses to Networks, pages 135–169. MIT Press, 1989.Google Scholar
  250. [RESG06]
    C. Roussel, T. Erneux, S.N. Schiffmann, and D. Gall. Modulation of neuronal excitability by intracellular calcium buffering: from spiking to bursting. Cell Calcium, 39(5):455–466, 2006.Google Scholar
  251. [RF92]
    J. Rinzel and P. Frankel. Activity patterns of a slow synapse network predicted by explicitly averaging spike dynamics. Neural Comput., 4(4):534–545, 1992.Google Scholar
  252. [RH85]
    R.M. Rose and J.L. Hindmarsh. A model of a thalamic neuron. Proc. Roy. Soc. London B, 225:161–193, 1985.Google Scholar
  253. [RH89a]
    R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc. Roy. Soc. London B, 237:267–288, 1989.Google Scholar
  254. [RH89b]
    R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron II. The stability and state diagrams. Proc. Roy. Soc. London B, 237:289–312, 1989.Google Scholar
  255. [RH89c]
    R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron III. The seven-dimensional model. Proc. Roy. Soc. London B, 237:313–334, 1989.Google Scholar
  256. [RHMN09]
    J.E. Rubin, J. Hayes, J. Mendenhall, and C. Del Negro. Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc. Natl. Acad. Sci., 106(8):2939–2944, 2009.Google Scholar
  257. [Rin85]
    J. Rinzel. Bursting oscillations in an excitable membrane model. In Ordinary and Partial Differential Equations, pages 304–316. Springer, 1985.Google Scholar
  258. [Rin86]
    J. Rinzel. A formal classification of bursting mechanisms in excitable systems. Proc. Int. Congress Math., Berkeley, pages 1578–1593, 1986.Google Scholar
  259. [Rin87]
    J. Rinzel. A formal classification of bursting mechanisms in excitable systems. In Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, pages 267–281. Springer, 1987.Google Scholar
  260. [R.J72]
    R.J. Field, E. Körös and R.M. Noyes. Oscillations in chemical systems II. Thorough analysis of temporal oscillations in the Ce −BrO3-malonic acid system. J. Am. Chem. Soc., 94:8649–8664, 1972.Google Scholar
  261. [RK99]
    M. Rachwalska and A.L. Kawczynski. New types of mixed-mode oscillations in the Belousov–Zhabotinsky reaction in continuously stirred tank reactors. J. Chem. Phys. A, 103:3455–3457, 1999.Google Scholar
  262. [RK01]
    M. Rachwalska and A.L. Kawczynski. Period-adding bifurcations in mixed-mode oscillations in the Belousov–Zhabotinsky reaction at various residence times in a CTSR. J. Chem. Phys. A, 105: 7885–7888, 2001.Google Scholar
  263. [RL86]
    J. Rinzel and Y.S. Lee. On different mechanisms for membrane potential bursting. In Nonlinear Oscillations in Biology and Chemistry, pages 19–33. Springer, 1986.Google Scholar
  264. [RL87]
    J. Rinzel and Y.S. Lee. Dissection of a model for neuronal parabolic bursting. J. Math. Biol., 25(6):653–675, 1987.zbMATHMathSciNetGoogle Scholar
  265. [ROWK06]
    H.G. Rotstein, T. Oppermann, J.A. White, and N. Kopell. The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J. Comput. Neurosci., 21:271–292, 2006.MathSciNetGoogle Scholar
  266. [RR94]
    M.E. Rush and J. Rinzel. Analysis of bursting in a thalamic neuron model. Biol. Cybern., 71(4): 281–291, 1994.zbMATHGoogle Scholar
  267. [RR95]
    M.E. Rush and J. Rinzel. The potassium A-current, low firing rates and rebound excitation in Hodgkin–Huxley models. Bull. Math. Biol., 57(6):899–929, 1995.zbMATHGoogle Scholar
  268. [RRAA87]
    P. Richetti, J.C. Roux, F. Argoul, and A. Arneodo. From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. II. Modeling and theory. J. Chem. Phys., 86(6):3339–3355, 1987.Google Scholar
  269. [RRBV81]
    J.-C. Roux, A. Rossi, S. Bachelart, and C. Vidal. Experimental observations of complex dynamical behaviour during a chemical reaction. Physica D, 2(2):395–403, 1981.MathSciNetGoogle Scholar
  270. [RS81]
    J.-C. Roux and H.L. Swinney. Topology of chaos in a chemical reaction. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics, pages 38–43. Springer, 1981.Google Scholar
  271. [RS84]
    J. Rinzel and I.B. Schwartz. One variable map prediction of the Belousov–Zhabotinskii mixed mode oscillations. J. Chem. Phys., 80(11):5610–5615, 1984.Google Scholar
  272. [RSS83]
    J.-C. Roux, R.H. Simoyi, and H.L. Swinney. Observation of a strange attractor. Physica D, 8(1): 257–266, 1983.zbMATHMathSciNetGoogle Scholar
  273. [RT82b]
    J. Rinzel and W.C. Troy. Bursting in a simplified Oregonator flow system model. J. Chem. Phys., 76(4):1775–1789, 1982.MathSciNetGoogle Scholar
  274. [RU03]
    H.-G. Roos and Z. Uzelac. The SDFEM for a convection-diffusion problem with two small parameters. Comput. Meth. Appl. Math., 3(3):443–458, 2003.zbMATHMathSciNetGoogle Scholar
  275. [Rub06]
    J. Rubin. Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation oscillators or square-wave bursters. Phys. Rev. E, 74:021917, 2006.MathSciNetGoogle Scholar
  276. [Rul02]
    N.F. Rulkov. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E, 65(4):041922, 2002.Google Scholar
  277. [RW07]
    J. Rubin and M. Wechselberger. Giant squid - hidden canard: the 3D geometry of the Hodgin-Huxley model. Biological Cybernetics, 97(1), 2007.Google Scholar
  278. [RW08]
    J. Rubin and M. Wechselberger. The selection of mixed-mode oscillations in a hodgkin-huxley model with multiple timescales. Chaos, 18, 2008.Google Scholar
  279. [RWJWZ13]
    A. Roberts, E. Widiasih, C.K.R.T. Jones, M. Wechselberger, and M. Zaks. Mixed mode oscillations in a conceptual climate model. arXiv:1311.5182, pages 1–26, 2013.Google Scholar
  280. [RWK08]
    H.G. Rotstein, M. Wechselberger, and N. Kopell. Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM J. Applied Dynamical Systems, 7(4):1582–1611, 2008.zbMATHMathSciNetGoogle Scholar
  281. [SA89]
    M. Schell and F.N. Albahadily. Mixed-mode oscillations in an electrochemical system. II. A periodic-chaotic sequence. J. Chem. Phys., 90:822–828, 1989.Google Scholar
  282. [SBO01]
    W.M. Schaffer, T.V. Bronnikova, and L.F. Olsen. Nonlinear dynamics of the peroxidase-oxidase reaction. II. Compatibility of an extended model with previously reported model-data correspondences. J. Phys. Chem., 105:5331–5340, 2001.Google Scholar
  283. [SCC05]
    A. Shilnikov, R.L. Calabrese, and G. Cymbalyuk. Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys. Rev. E, 71(5):056214, 2005.Google Scholar
  284. [Sco94]
    S.K. Scott. Oscillations, waves, and chaos in chemical kinetics. Oxford University Press, 1994.Google Scholar
  285. [SG03]
    K. Sriram and M.S. Gopinathan. Effects of delayed linear electrical perturbation of the Belousov–Zhabotinsky reaction: a case of complex mixed mode oscillations in a batch reactor. React. Kinet. Catal. Lett., 79(2):341–349, 2003.Google Scholar
  286. [SG10]
    W.E. Sherwood and J. Guckenheimer. Dissecting the phase response of a model bursting neuron. SIAM J. Appl. Dyn. Sys., 9(3):659–703, 2010.zbMATHMathSciNetGoogle Scholar
  287. [SGH77]
    R.A. Schmitz, K.R. Graziani, and J.L. Hudson. Experimental evidence of chaotic states in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 67(6):3040–3044, 1977.Google Scholar
  288. [SGL93]
    C.G. Steinmetz, T. Geest, and R. Larter. Universality in the peroxidase-oxidase reaction: period doublings, chaos, period three, and unstable limit cycles. J. Phys. Chem., 97:5649–5653, 1993.Google Scholar
  289. [SK95b]
    P.E. Strizhak and A.L. Kawczynski. Regularities in complex transient oscillations in the Belousov–Zhabotinsky reaction in a batch reactor. J. Phys. Chem., 99:10830–10833, 1995.Google Scholar
  290. [SL91]
    C.G. Steinmetz and R. Larter. The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction. J. Phys. Chem., 94(2):1388–1396, 1991.MathSciNetGoogle Scholar
  291. [SLdL08]
    M. Storace, D. Linaro, and E. de Lange. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos, 18:033128, 2008.MathSciNetGoogle Scholar
  292. [SNBE78]
    K. Showalter, R.M. Noyes, and K. Bar-Eli. A modified oregonator model exhibiting complicated limit cycle behaviour in a flow system. J. Chem. Phys., 69:2514–2524, 1978.Google Scholar
  293. [SO81]
    S. Schmidt and P. Ortoleva. Electric field effects on propagating BZ waves: predictions of an Oregonator and new pulse supporting models. J. Chem. Phys., 74:4488–4500, 1981.Google Scholar
  294. [SOAM93]
    A.A. Sharp, M.B. O’Neil, L.F. Abbott, and E. Marder. Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol., 69(3):992–995, 1993.Google Scholar
  295. [SOLS08]
    J.V. Stern, H.M. Osinga, A. LeBeau, and A. Sherman. Resetting behavior in a model of bursting in secretory pituitary cells: distinguishing plateaus from pseudo-plateaus. Bull. Math. Biol., 70(1):68–88, 2008.zbMATHMathSciNetGoogle Scholar
  296. [SOW+97]
    A. Scheeline, D.L. Olson, E.P. Williksen, G.A. Horras, M.L. Klein, and R. Larter. The peroxidase-oxidase oscillator and its constituent chemistries. Chem. Rev., 97:739–756, 1997.Google Scholar
  297. [SR91]
    A. Sherman and J. Rinzel. Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophys. J., 59(3):547–559, 1991.Google Scholar
  298. [SR93]
    C.L. Stokes and J. Rinzel. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans. Biophys. J., 65(2):597–602, 1993.Google Scholar
  299. [SR04]
    A. Shilnikov and N.F. Rulkov. Subthreshold oscillations in a map-based neuron model. Phys. Lett. A, 328(2):177–184, 2004.zbMATHGoogle Scholar
  300. [SRK88]
    A. Sherman, J. Rinzel, and J. Keizer. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys. J., 54(3):411–425, 1988.Google Scholar
  301. [SRS93]
    P. Smolen, J. Rinzel, and A. Sherman. Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys. J., 64(6):1668–1680, 1993.Google Scholar
  302. [SRV95]
    M.N. Stolyarov, V.A. Romanov, and E.I. Volkov. Out-of-phase mixed-mode oscillations of two strongly coupled identical relaxation oscillators. Phys. Rev. E, 54(1):163–169, 1995.Google Scholar
  303. [SSP95]
    E. Sivan, L. Segel, and H. Parnas. Modulated excitability: a new way to obtain bursting neurons. Biol. Cybernet., 72(5):455–461, 1995.zbMATHGoogle Scholar
  304. [STKW96]
    C. Soto-Trevino, N. Kopell, and D. Watson. Parabolic bursting revisited. J. Math. Biol., 35(1): 114–128, 1996.zbMATHMathSciNetGoogle Scholar
  305. [STR93]
    P. Smolen, D. Terman, and J. Rinzel. Properties of a bursting model with two slow inhibitory variables. SIAM J. Appl. Math., 53(3):861–892, 1993.zbMATHMathSciNetGoogle Scholar
  306. [SW00b]
    P.R. Shorten and D.J. Wall. A Hodgkin–Huxley model exhibiting bursting oscillations. Bull. Math. Biol., 62(4):695–715, 2000.Google Scholar
  307. [TAORS10]
    K.T. Tsaneva-Atanasova, H.M. Osinga, T. Riess, and A. Sherman. Full system bifurcation analysis of endocrine bursting models. J. Theor. Biol., 264(4):1133–1146, 2010.MathSciNetGoogle Scholar
  308. [TAZBS06]
    K.T. Tsaneva-Atanasova, C.L. Zimliki, R. Bertram, and A. Sherman. Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. Biophys. J., 90(10):3434–3446, 2006.Google Scholar
  309. [TB11]
    N. Toporikova and R.J. Butera. Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J. Comput. Neurosci., 30(3):515–528, 2011.MathSciNetGoogle Scholar
  310. [Ter91]
    D. Terman. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math., 51(5):1418–1450, 1991.zbMATHMathSciNetGoogle Scholar
  311. [Ter92]
    D. Terman. The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci., 2(2):135–182, 1992.zbMATHMathSciNetGoogle Scholar
  312. [TG08]
    J.H. Tien and J. Guckenheimer. Parameter estimation for bursting neural model. J. Comput. Neurosci., 24:358–373, 2008.MathSciNetGoogle Scholar
  313. [TIO77]
    K. Tomita, A. Ito, and T. Ohta. Simplified model for Belousov–Zhabotinsky reaction. J. Theor. Biol., 68(1):459–481, 1977.MathSciNetGoogle Scholar
  314. [Tra94]
    P. Tracqui. Mixed-mode oscillation genealogy in a compartmental model of bone mineral metabolism. J. Nonlinear Science, 4:69–103, 1994.zbMATHGoogle Scholar
  315. [Tro85]
    W.C. Troy. Mathematical analysis of the oregonator model of the Belousov-Zhabotinskii reaction. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 145–170. Wiley-Interscience, 1985.Google Scholar
  316. [TTFB07]
    J. Tabak, N. Toporikova, M.E. Freeman, and R. Bertram. Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J. Comput. Neurosci., 22:211–222, 2007.MathSciNetGoogle Scholar
  317. [TTV+11]
    W. Teka, J. Tabak, T. Vo, M. Wechselberger, and R. Bertram. The dynamics underlying pseudo-plateau bursting in a pituitary cell model. J. Math. Neurosci., 1(12):1–23, 2011.MathSciNetGoogle Scholar
  318. [Tur91]
    T. Turányi. Rate sensitivity analysis of a model of the Briggs-Rauscher reaction. React. Kinet. Lett., 45:235–241, 1991.Google Scholar
  319. [Tys81]
    J.J. Tyson. On scaling the oregonator equations. In C. Vidal and A. Pacault, editors, Nonlinear Phenonema in Chemical Dynamics, pages 222–227. Springer, 1981.Google Scholar
  320. [Tys85]
    J.J. Tyson. A quantitative account of oscillations, bistability, and traveling waves in the Belousov–Zhabotinskii reaction. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 93–144. Wiley-Interscience, 1985.Google Scholar
  321. [VAKA00]
    V. Vukojević, S. Anić, and L. Kolar-Anić. Investigation of dynamic behaviour of the Bray–Liebhafsky reaction in the CSTR. Determination of bifurcation points. J. Phys. Chem. A, 104:10731–10739, 2000.Google Scholar
  322. [VBTW10]
    T. Vo, R. Bertram, J. Tabak, and M. Wechselberger. Mixed mode oscillations as a mechanism for pseudo-plateau bursting. J. Comput. Neurosci., 28(3):443–458, 2010.zbMATHMathSciNetGoogle Scholar
  323. [VBTW13]
    T. Vo, R. Bertram, J. Tabak, and M. Wechselberger. Multiple geometric viewpoints of mixed mode dynamics associated with pseudo-plateau bursting. SIAM J. Appl. Dyn. Syst., 12(2):789–830, 2013.zbMATHMathSciNetGoogle Scholar
  324. [VBW12]
    T. Vo, R. Bertram, and M. Wechselberger. Bifurcations of canard-induced mixed mode oscillations in a pituitary Lactotroph model. Discr. Cont. Dyn. Syst., 32(8):2879–2912, 2012.zbMATHMathSciNetGoogle Scholar
  325. [vGZMFS01]
    F. van Goor, D. Zivadinovic, A.J. Martinez-Fuentes, and S.S. Stojilkovic. Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. J. Biol. Chem., 276:33840–33846, 2001.Google Scholar
  326. [VP81]
    C. Vidal and A. Pacault. Nonlinear Phenomena in Chemical Systems. Springer, 1981.Google Scholar
  327. [VRBR80]
    C. Vidal, J.-C. Roux, S. Bachelart, and A. Rossi. Experimental study of the transition to turbulence in the Belousov–Zhabotinskii reaction. Annals of the New York Academy of Sciences, 357(1):377–396, 1980.Google Scholar
  328. [Vri98]
    G. De Vries. Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci., 8(3):281–316, 1998.zbMATHMathSciNetGoogle Scholar
  329. [Vri01]
    G. De Vries. Bursting as an emergent phenomenon in coupled chaotic maps. Phys. Rev. E, 64(5):051914, 2001.Google Scholar
  330. [VS01]
    G. De Vries and A. Sherman. From spikers to bursters via coupling: help from heterogeneity. Bull. Math. Biol., 63(2):371–391, 2001.Google Scholar
  331. [VSH96]
    V. Vukojević, P.G. Sørensen, and F. Hynne. Predictive value of a model of the Briggs–Rauscher reaction fitted to quenching experiments. J. Phys. Chem., 100:17175–17185, 1996.Google Scholar
  332. [VTBW13]
    T. Vo, J. Tabak, R. Bertram, and M. Wechselberger. A geometric understanding how fast activating potassium channels promote bursting in pituitary cells. J. Comp. Neurosci., 2013. to appear.Google Scholar
  333. [vVK95]
    T.G.J. van Venrooij and M.T.M. Koper. Bursting and mixed-mode oscillations during the hydrogen peroxide reduction on a platinum electrode. Electrochimica Acta, 40(11):1689–1696, 1995.Google Scholar
  334. [Wal86]
    G. Wallet. Entreé-sortie dans un tourbillon. Ann. Inst. Fourier, 36:157–184, 1986.zbMATHMathSciNetGoogle Scholar
  335. [Wan93]
    X.J. Wang. Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D, 62:263–274, 1993.zbMATHMathSciNetGoogle Scholar
  336. [Wan98]
    X.J. Wang. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol., 79(3):1549–1566, 1998.Google Scholar
  337. [WB04]
    K. Wierschem and R. Bertram. Complex bursting in pancreatic islets: a potential glycolytic mechanism. J. Theor. Biol., 228(4):513–521, 2004.Google Scholar
  338. [Wec05]
    M. Wechselberger. Existence and bifurcation of canards in \(\mathbb{R}^{3}\) in the case of a folded node. SIAM J. Appl. Dyn. Syst., 4(1):101–139, 2005.zbMATHMathSciNetGoogle Scholar
  339. [WGR95]
    X.J. Wang, D. Golomb, and J. Rinzel. Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc. Natl. Acad. Sci. USA, 92(12):5577–5581, 1995.Google Scholar
  340. [Win84]
    A.T. Winfree. The prehistory of the Belousov–Zhabotinskii reaction. J. Chem. Educ., 61:661–663, 1984.Google Scholar
  341. [WK96]
    C.J. Wilson and Y. Kawaguchi. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci., 16(7):2397–2410, 1996.Google Scholar
  342. [WLL+12]
    Y. Wu, W. Lu, W. Lin, G. Leng, and J. Feng. Bifurcations of emergent bursting in a neuronal network. PLoS ONE, 7(6):e38402, 2012.Google Scholar
  343. [WS11]
    J. Wojcik and A. Shilnikov. Voltage interval mappings for activity transitions in neuron models for elliptic bursters. Physica D, 240(14):1164–1180, 2011.zbMATHGoogle Scholar
  344. [WW09a]
    M. Wechselberger and W. Weckesser. Bifurcations of mixed-mode oscillations in a stellate cell model. Physica D, 238:1598–1614, 2009.zbMATHGoogle Scholar
  345. [WW09b]
    M. Wechselberger and W. Weckesser. Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discr. Cont. Dyn. Syst. S, 2(4):829–850, 2009.zbMATHMathSciNetGoogle Scholar
  346. [XCKA08]
    Y. Xie, L. Chen, Y.M. Kang, and K. Aihara. Controlling the onset of Hopf bifurcation in the Hodgkin–Huxley model. Phys. Rev. E, 77(6):061921, 2008.Google Scholar
  347. [Yad13]
    K. Yadi. Averaging on slow and fast cycles of a three time scale system. J. Math. Anal. Appl., pages 1–26, 2013. accepted, to appear.Google Scholar
  348. [YL11]
    Z. Yang and Q. Lu. Bifurcation mechanisms of electrical bursting with different-time-scale slow variables. Int. J. Bif. Chaos, 21(5):1407–1425, 2011.MathSciNetGoogle Scholar
  349. [YWDZ12]
    Z. Yang, Q. Wang, M.-F. Danca, and J. Zhang. Complex dynamics of compound bursting with burst episode composed of different bursts. Nonlinear Dyn., 70:2003–2013, 2012.MathSciNetGoogle Scholar
  350. [YY77]
    K. Yokota and I. Yamazaki. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase. Biochemistry, 16(9):1913–1920, 1977.Google Scholar
  351. [Z11]
    M. Zaks. On chaotic subthreshold oscillations in a simple neuronal model. Math. Model. Nat. Phenom., 6(1):149–162, 2011.zbMATHMathSciNetGoogle Scholar
  352. [ZGB+03]
    M. Zhang, P. Goforth, R. Bertram, A. Sherman, and L. Satin. The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys. J., 84(5):2852–2870, 2003.Google Scholar
  353. [Zha64]
    A.M. Zhabotinsky. Periodic processes of malonic acid oxidation in a liquid phase (in Russian). Biofizika, 9:306–311, 1964.Google Scholar
  354. [Zha85]
    A.M. Zhabotinsky. The early period of systematic studies of oscillations and waves in chemical systems. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 1–6. Wiley-Interscience, 1985.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Kuehn
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations