Skip to main content

On the Exact Solutions of the Klein–Gordon–Zakharov Equations

  • Conference paper
  • First Online:
Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 117))

  • 1792 Accesses

Abstract

In this chapter we study a coupled system of nonlinear partial differential equations (PDEs), namely, the Klein–Gordon–Zakharov equations. The travelling wave hypothesis approach along with the simplest equation methods are utilized to obtain exact solutions of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, T., Chen, J., Zhang, L.: Conservative difference methods for the Klein–Gordon–Zakharov equations. J. Comput. Appl. Math. 205, 430–452 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shi, Q., Xiao, Q., Liu, X.: Extended wave solutions for a nonlinear Klein–Gordon–Zakharov system. Appl. Math. Comput. 218, 9922–9929 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Guo, B.L., Yuan, G.W.: Global smooth solution for the Klein–Gordon–Zakharov equations. J. Math. Phys. 36 (8), 4119–4124 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ozawa, T., Tsutaya, K., Tsutsumi, Y.: Normal form and global solutions for the Klein–Gordon–Zakharov equations. Ann. Inst. H. Poincar é Anal. Non Lin éaire. 12 (4), 459–503 (1995)

    Google Scholar 

  5. Tsutaya, K.: Global existence of small amplitude solutions for the Klein–Gordon–Zakharov equations. Nonlinear Anal. TMA. 27 (12), 1373–1380 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Adomian, G.: Non-perturbative solution of the Klein–Gordon–Zakharov equation. Appl. Math. Comput. 81 (1), 89–92 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shang, Y., Huang, Y., Yuan, W.: New exact traveling wave solutions for the Klein–Gordon–Zakharov equations. Comput. Math. Appl. 56, 1441–1450 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, L.: Orbital stability of solitary waves for the Klein–Gordon–Zakharov equations. Acta. Math. Appl. Sin. (English Ser.) 15 (1), 54–64 (1999)

    Article  MATH  Google Scholar 

  9. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic, New York, (2007)

    MATH  Google Scholar 

  10. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Soliton Fract. 24, 1217–1231 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

IEM and CMK would like to thank the Organizing Committee of ‘International Conference: AMMCS-2013’, Waterloo, Canada for their kind hospitality during the conference. IEM also thanks the Faculty Research Committee of FAST, North-West University, Mafikeng Campus for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaiah Elvis Mhlanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mhlanga, I., Khalique, C. (2015). On the Exact Solutions of the Klein–Gordon–Zakharov Equations. In: Cojocaru, M., Kotsireas, I., Makarov, R., Melnik, R., Shodiev, H. (eds) Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science. Springer Proceedings in Mathematics & Statistics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-12307-3_43

Download citation

Publish with us

Policies and ethics