Skip to main content

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

Skeletal muscle adaptations in different environment conditions are particularly sensed at the neuromuscular junction (NMJ), the most distal connection of the neuromuscular system to peripheral target muscles. For example, in all models of muscle disuse atrophy (e.g., bed rest, denervation, limb immobilization, unloading), the NMJ experiences disruptive structural adaptations that are very similar to those observed during exposure to microgravity (μG) in Space. Thus, prolonged disuse and μG both exert adverse effects on the determination of skeletal muscle mass. However, studies on the molecular mechanisms of the normal neuromuscular system including the NMJ in disuse and in different adaptation conditions are scarce. The NMJ on its own is a highly specialized cell-cell communication contact between a nerve (axon terminal) and a muscle fiber (myofiber) providing the basis for the appropriate peripheral motor control of the neuromuscular system. Altered muscle contraction activity more extensively stimulate NMJ remodeling with synaptic microstructure and size changes. The most relevant changes include decreased synaptic vesicle density and neurotransmitter content, but also axon terminal de-/regeneration with regression and sprouting mechanisms. Previous studies in Space reported microgravity-induced cellular and molecular changes at spaceflown rodent NMJs. We found candidates of the Homer protein family (previously found at central synapses of brain) also expressed at the NMJ subsynaptic microdomain region of human skeletal muscle that were however lost in disuse and upregulated by exercise in bed rest, suggesting activity-driven Homer expression mechanisms and functions with unique roles in normal NMJ function and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985) 93:1318–1326

    Google Scholar 

  • Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH (2007) Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc 39:1642–1650

    Article  PubMed  Google Scholar 

  • Aldunate R, Casar JC, Brandan E, Inestrosa NC (2004) Structural and functional organization of synaptic acetylcholinesterase. Brain Res Brain Res Rev 47:96–104

    Article  CAS  PubMed  Google Scholar 

  • Baranski S, Marciniak M (1979) Stereological ultrastructural analysis of the axonal endings in the neuromuscular junction of rats after a flight on Biosputnik 782. Aviat Space Environ Med 50:14–17

    CAS  PubMed  Google Scholar 

  • Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SM (2007) Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. J Gerontol A Biol Sci Med Sci 62:630–635

    Article  PubMed  Google Scholar 

  • Bongiovanni LG, Hagbarth KE (1990) Tonic vibration reflexes elicited during fatigue from maximal voluntary contractions in man. J Physiol 423:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bortoloso E, Pilati N, Megighian A, Tibaldo E, Sandona D, Volpe P (2006) Transition of Homer isoforms during skeletal muscle regeneration. Am J Physiol Cell Physiol 290:C711–C718

    Article  CAS  PubMed  Google Scholar 

  • Bortoloso E, Megighian A, Furlan S, Gorza L, Volpe P (2013) Homer 2 antagonizes protein degradation in slow-twitch skeletal muscles. Am J Physiol Cell Physiol 304:C68–C77

    Article  CAS  PubMed  Google Scholar 

  • Bosco C, Cardinale M, Tsarpela O (1999a) Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol Occup Physiol 79:306–311

    Article  CAS  PubMed  Google Scholar 

  • Bosco C, Colli R, Introini E, Cardinale M, Tsarpela O, Madella A, Tihanyi J, Viru A (1999b) Adaptive responses of human skeletal muscle to vibration exposure. Clin Physiol 19:183–187

    Article  CAS  PubMed  Google Scholar 

  • Brislin RP, Theroux MC (2013) Core myopathies and malignant hyperthermia susceptibility: a review. Paediatr Anaesth 23:834–841

    Article  PubMed  Google Scholar 

  • Burke D, Hagbarth KE, Lofstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol 261:673–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cardinale M, Bosco C (2003) The use of vibration as an exercise intervention. Exerc Sport Sci Rev 31:3–7

    Article  PubMed  Google Scholar 

  • Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD (2004) Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol 560:929–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Billings SE, Nishimune H (2011) Calcium channels link the muscle-derived synapse organizer laminin beta2 to Bassoon and CAST/Erc2 to organize presynaptic active zones. J Neurosci 31:512–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Mizushige T, Nishimune H (2012) Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol 520:434–452

    Article  PubMed Central  PubMed  Google Scholar 

  • Cochrane DJ (2011) The potential neural mechanisms of acute indirect vibration. J Sports Sci Med 10:19–30

    PubMed Central  PubMed  Google Scholar 

  • Delecluse C, Roelants M, Verschueren S (2003) Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc 35:1033–1041

    Article  PubMed  Google Scholar 

  • Delecluse C, Roelants M, Diels R, Koninckx E, Verschueren S (2005) Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes. Int J Sports Med 26:662–668

    Article  CAS  PubMed  Google Scholar 

  • Deschenes MR, Judelson DA, Kraemer WJ, Meskaitis VJ, Volek JS, Nindl BC, Harman FS, Deaver DR (2000) Effects of resistance training on neuromuscular junction morphology. Muscle Nerve 23:1576–1581

    Article  CAS  PubMed  Google Scholar 

  • Deschenes MR, Wilson MH, Kraemer WJ (2005) Neuromuscular adaptations to spaceflight are specific to postural muscles. Muscle Nerve 31:468–474

    Article  PubMed  Google Scholar 

  • Deschenes MR, Tenny KA, Wilson MH (2006) Increased and decreased activity elicits specific morphological adaptations of the neuromuscular junction. Neuroscience 137:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Fahim MA (1997) Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice. J Appl Physiol (1985) 83:59–66

    CAS  Google Scholar 

  • Feng W, Tu J, Pouliquin P, Cabrales E, Shen X, Dulhunty A, Worley PF, Allen PD, Pessah IN (2008) Dynamic regulation of ryanodine receptor type 1 (RyR1) channel activity by Homer 1. Cell Calcium 43:307–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204:3201–3208

    CAS  PubMed  Google Scholar 

  • Fling BW, Christie A, Kamen G (2009) Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males. J Electromyogr Kinesiol 19:800–809

    Article  PubMed  Google Scholar 

  • Flucher BE, Franzini-Armstrong C (1996) Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci U S A 93:8101–8106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fornari MC, Kohn AF (2008) High frequency tendon reflexes in the human soleus muscle. Neurosci Lett 440:193–196

    Article  CAS  PubMed  Google Scholar 

  • Frank T, Rutherford MA, Strenzke N, Neef A, Pangrsic T, Khimich D, Fejtova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T (2010) Bassoon and the synaptic ribbon organize Ca(2) + channels and vesicles to add release sites and promote refilling. Neuron 68:724–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 36:133–149

    Article  PubMed  Google Scholar 

  • Gaspersic R, Koritnik B, Crne-Finderle N, Sketelj J (1999) Acetylcholinesterase in the neuromuscular junction. Chem Biol Interact 119–120:301–308

    Article  PubMed  Google Scholar 

  • Gordon PM, Liu D, Sartor MA, IglayReger HB, Pistilli EE, Gutmann L, Nader GA, Hoffman EP (2012) Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. J Appl Physiol (1985) 112:443–453

    Article  CAS  Google Scholar 

  • Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P, Pucci L, Zoli M (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711

    Article  CAS  PubMed  Google Scholar 

  • Griffin L, Garland SJ, Ivanova T, Gossen ER (2001) Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans. J Physiol 535:929–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagbarth KE, Eklund G (1966) Tonic vibration reflexes (TVR) in spasticity. Brain Res 2:201–203

    Article  CAS  PubMed  Google Scholar 

  • Hallermann S, Fejtova A, Schmidt H, Weyhersmuller A, Silver RA, Gundelfinger ED, Eilers J (2010) Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68:710–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harpsoe K, Ahring PK, Christensen JK, Jensen ML, Peters D, Balle T (2011) Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors. J Neurosci 31:10759–10766

    Article  PubMed  Google Scholar 

  • Hong W, Lev S (2014) Tethering the assembly of SNARE complexes. Trends Cell Biol 24:35–43

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Kim JY, Dehoff M, Mizuno Y, Kamm KE, Worley PF, Muallem S, Zeng W (2007) Ca2+ signaling in microdomains: Homer1 mediates the interaction between RyR2 and Cav1.2 to regulate excitation-contraction coupling. J Biol Chem 282:14283–14290

    Article  CAS  PubMed  Google Scholar 

  • Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, Zhu Y, Lutz M, Collins S, Dehoff M, Kang S, Whartenby K, Powell J, Leahy D, Worley PF (2008) NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 319:476–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter DD, Shah V, Merlie JP, Sanes JR (1989) A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338:229–234

    Article  CAS  PubMed  Google Scholar 

  • Kanzleiter T, Rath M, Görgens SW, Jensen J, Tangen DS, Kolnes AJ, Kolnes KJ, Lee S, Eckel J, Schürmann A, Eckardt K (2014) The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 25:1089–1094

    Article  Google Scholar 

  • Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, Beedle AM, Mori E, Hara Y, De Waard M, Kanagawa M, Itakura M, Takahashi M, Campbell KP, Mori Y (2007) RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10:691–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer A, Gollhofer A, Ritzmann R (2013) Acute exposure to microgravity does not influence the H-reflex with or without whole body vibration and does not cause vibration-specific changes in muscular activity. J Electromyogr Kinesiol 23:872–878

    Article  PubMed  Google Scholar 

  • Luo C, Shaw KT, Raghavan A, Aramburu J, Garcia-Cozar F, Perrino BA, Hogan PG, Rao A (1996) Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import. Proc Natl Acad Sci U S A 93:8907–8912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mancini A, Sirabella D, Zhang W, Yamazaki H, Shirao T, Krauss RS (2011) Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 1:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mester J, Kleinoder H, Yue Z (2006) Vibration training: benefits and risks. J Biomech 39:1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Mischi M, Cardinale M (2009) The effects of a 28-Hz vibration on arm muscle activity during isometric exercise. Med Sci Sports Exerc 41:645–653

    Article  PubMed  Google Scholar 

  • Mukherjee K, Yang X, Gerber SH, Kwon HB, Ho A, Castillo PE, Liu X, Sudhof TC (2010) Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc Natl Acad Sci U S A 107:6504–6509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munte TF, Jobges EM, Wieringa BM, Klein S, Schubert M, Johannes S, Dengler R (1996) Human evoked potentials to long duration vibratory stimuli: role of muscle afferents. Neurosci Lett 216:163–166

    Article  CAS  PubMed  Google Scholar 

  • Nishimune H, Sanes JR, Carlson SS (2004) A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432:580–587

    Article  CAS  PubMed  Google Scholar 

  • Nishimune H, Numata T, Chen J, Aoki Y, Wang Y, Starr MP, Mori Y, Stanford JA (2012) Active zone protein Bassoon co-localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise. PLoS One 7:e38029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimune H, Stanford JA, Mori Y (2014) Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 49:315–324

    Article  CAS  PubMed  Google Scholar 

  • Person R, Kozhina G (1992) Tonic vibration reflex of human limb muscles: discharge pattern of motor units. J Electromyogr Kinesiol 2:1–9

    Article  CAS  PubMed  Google Scholar 

  • Pietrini V, Marbini A, Galli L, Sorrentino V (2004) Adult onset multi/minicore myopathy associated with a mutation in the RYR1 gene. J Neurol 251:102–104

    Article  PubMed  Google Scholar 

  • Riley DA, Ilyina-Kakueva EI, Ellis S, Bain JL, Slocum GR, Sedlak FR (1990) Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats. FASEB J 4:84–91

    CAS  PubMed  Google Scholar 

  • Ritzmann R, Kramer A, Bernhardt S, Gollhofer A (2014) Whole body vibration training – improving balance control and muscle endurance. PLoS One 9:e89905

    Article  PubMed Central  PubMed  Google Scholar 

  • Roche KW, Tu JC, Petralia RS, Xiao B, Wenthold RJ, Worley PF (1999) Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem 274:25953–25957

    Article  CAS  PubMed  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222

    Article  CAS  PubMed  Google Scholar 

  • Salanova M, Priori G, Barone V, Intravaia E, Flucher B, Ciruela F, McIlhinney RA, Parys JB, Mikoshiba K, Sorrentino V (2002) Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium 32:193–200

    Article  CAS  PubMed  Google Scholar 

  • Salanova M, Bortoloso E, Schiffl G, Gutsmann M, Belavy DL, Felsenberg D, Furlan S, Volpe P, Blottner D (2011) Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise. FASEB J 25:4312–4325

    Article  CAS  PubMed  Google Scholar 

  • Salanova M, Volpe P, Blottner D (2013) Homer protein family regulation in skeletal muscle and neuromuscular adaptation. IUBMB Life 65:769–776

    Article  CAS  PubMed  Google Scholar 

  • Salanova M, Gelfi C, Moriggi M, Vasso M, Viganò A, Minafra L, Bonifacio G, Schiffl G, Gutsmann M, Felsenberg D, Cerretelli P, Blottner D (2014) Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis. FASEB J 28(11):4748–4763. doi:10.1096/fj.14-252825, Epub 2014 Aug 13

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi-Yamaguchi Y, Furuichi T (2007) The Homer family proteins. Genome Biol 8:206

    Article  PubMed Central  PubMed  Google Scholar 

  • Sitja Rabert M, Rigau Comas D, Fort Vanmeerhaeghe A, Santoyo Medina C, Roque i Figuls M, Romero-Rodriguez D, Bonfill Cosp X (2012) Whole-body vibration training for patients with neurodegenerative disease. Cochrane Database Syst Rev 2, CD009097

    PubMed  Google Scholar 

  • Soderpalm AC, Kroksmark AK, Magnusson P, Karlsson J, Tulinius M, Swolin-Eide D (2013) Whole body vibration therapy in patients with Duchenne muscular dystrophy–a prospective observational study. J Musculoskelet Neuronal Interact 13:13–18

    PubMed  Google Scholar 

  • Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, Hagerman FC, Hikida RS (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol (1985) 76:1247–1255

    CAS  Google Scholar 

  • Stiber JA, Tabatabaei N, Hawkins AF, Hawke T, Worley PF, Williams RS, Rosenberg P (2005) Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 287:213–224

    Article  CAS  PubMed  Google Scholar 

  • Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28:2637–2647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun LW, Blottner D, Luan HQ, Salanova M, Wang C, Niu HJ, Felsenberg D, Fan YB (2013) Bone and muscle structure and quality preserved by active versus passive muscle exercise on a new stepper device in 21 days tail-suspended rats. J Musculoskelet Neuronal Interact 13:166–177

    CAS  PubMed  Google Scholar 

  • Tothova J, Blaauw B, Pallafacchina G, Rudolf R, Argentini C, Reggiani C, Schiaffino S (2006) NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J Cell Sci 119:1604–1611

    Article  CAS  PubMed  Google Scholar 

  • Uriu Y, Kiyonaka S, Miki T, Yagi M, Akiyama S, Mori E, Nakao A, Beedle AM, Campbell KP, Wakamori M, Mori Y (2010) Rab3-interacting molecule gamma isoforms lacking the Rab3-binding domain induce long lasting currents but block neurotransmitter vesicle anchoring in voltage-dependent P/Q-type Ca2+ channels. J Biol Chem 285:21750–21767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang CZ, Wang GJ, Ho ML, Wang YH, Yeh ML, Chen CH (2010) Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. J Appl Physiol (1985) 109:840–848

    Article  CAS  Google Scholar 

  • Wilson MH, Deschenes MR (2005) The neuromuscular junction: anatomical features and adaptations to various forms of increased, or decreased neuromuscular activity. Int J Neurosci 115:803–828

    Article  PubMed  Google Scholar 

  • Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21:707–716

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Blottner, D., Salanova, M. (2015). Neuromuscular System. In: The NeuroMuscular System: From Earth to Space Life Science. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-12298-4_3

Download citation

Publish with us

Policies and ethics