Skip to main content

Physiologically Informed Bayesian Analysis of ASL fMRI Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8677)

Abstract

Arterial Spin Labelling (ASL) functional Magnetic Resonance Imaging (fMRI) data provides a quantitative measure of blood perfusion, that can be correlated to neuronal activation. In contrast to BOLD measure, it is a direct measure of cerebral blood flow. However, ASL data has a lower SNR and resolution so that the recovery of the perfusion response of interest suffers from the contamination by a stronger hemodynamic component in the ASL signal. In this work we consider a model of both hemodynamic and perfusion components within the ASL signal. A physiological link between these two components is analyzed and used for a more accurate estimation of the perfusion response function in particular in the usual ASL low SNR conditions.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   32.09
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   42.20
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams, D., Detre, J., Leigh, J., Koretsky, A.: Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proceedings of the National Academy of Sciences 89(1), 212–216 (1992)

    CrossRef  Google Scholar 

  2. Ogawa, S., Tank, D., Menon, R., Ellermann, J., Kim, S.G., Merkle, H., Ugurbil, K.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences 89, 5951–5955 (1992)

    CrossRef  Google Scholar 

  3. Hernandez-Garcia, L., Jahanian, H., Rowe, D.B.: Quantitative analysis of arterial spin labeling fmri data using a general linear model. Magnetic Resonance Imaging 28(7), 919–927 (2010)

    CrossRef  Google Scholar 

  4. Mumford, J.A., Hernandez-Garcia, L., Lee, G.R., Nichols, T.E.: Estimation efficiency and statistical power in arterial spin labeling fmri. Neuroimage 33(1), 103–114 (2006)

    CrossRef  Google Scholar 

  5. Vincent, T., Risser, L., Ciuciu, P.: Spatially adaptive mixture modeling for analysis of within-subject fMRI time series. IEEE Transactions on Medical Imaging 29(4), 1059–1074 (2010)

    CrossRef  Google Scholar 

  6. Vincent, T., Warnking, J., Villien, M., Krainik, A., Ciuciu, P., Forbes, F.: Bayesian Joint Detection-Estimation of Cerebral Vasoreactivity from ASL fMRI Data. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 616–624. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  7. Vincent, T., Forbes, F., Ciuciu, P.: Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging. In: 38th Proc. IEEE ICASSP, Vancouver, Canada, pp. 1003–1007 (May 2013)

    Google Scholar 

  8. Friston, K.J., Mechelli, A., Turner, R., Price, C.J.: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477 (2000)

    Google Scholar 

  9. Buxton, R.B., Uludağ, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. Neuroimage 23, 220 (2004)

    CrossRef  Google Scholar 

  10. Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygena- tion changes during brain activation: The balloon model. Magnetic Resonance in Medicine 39, 855–864 (1998)

    CrossRef  Google Scholar 

  11. Khalidov, I., Fadili, J., Lazeyras, F., Van De Ville, D., Unser, M.: Activelets: Wavelets for sparse representation of hemodynamic responses. Signal Processing 91(12), 2810–2821 (2011)

    CrossRef  Google Scholar 

  12. Makni, S., Ciuciu, P., Idier, J., Poline, J.B.: Bayesian joint detection-estimation of brain activity using MCMC with a Gamma-Gaussian mixture prior model. In: 31th Proc. IEEE ICASSP, Toulouse, France, vol. V, pp. 1093–1096 (May 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Frau-Pascual, A., Vincent, T., Sloboda, J., Ciuciu, P., Forbes, F. (2014). Physiologically Informed Bayesian Analysis of ASL fMRI Data. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D., Ribbens, A. (eds) Bayesian and grAphical Models for Biomedical Imaging. Lecture Notes in Computer Science, vol 8677. Springer, Cham. https://doi.org/10.1007/978-3-319-12289-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12289-2_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12288-5

  • Online ISBN: 978-3-319-12289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics