Advertisement

LGI1 Dysfunction in Inherited and Acquired Epileptic Disorders

  • Carlo NobileEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

LGI1 is a multifunctional brain protein whose dysfunction is related to several neurologic disorders as diverse as autosomal dominant lateral temporal epilepsy (ADLTE), autoimmune limbic encephalitis (LE), and glioma tumor progression. ADLTE is a genetic focal epilepsy characterized by auditory or aphasic aura and onset in infancy/adolescence, whereas autoimmune LE occurs in adult life and is characterized by amnesia, confusion, and seizures. The complex molecular mechanisms underlying these epileptic conditions are largely unknown. In this chapter, I outline the clinical features, the genetic or autoimmune causes, and a molecular mechanism possibly underlying both ADLTE and autoimmune LE.

Keywords

Temporal lobe epilepsy Auditory seizures LGI1 Mutations Autoantibodies Limbic encephalitis 

References

  1. Berghuis B, Brilstra EH, Lindhout D et al (2013) Hyperactive behavior in a family with autosomal dominant lateral temporal lobe epilepsy caused by a mutation in the LGI1/epitempin gene. Epilepsy Behav 28:41–46PubMedCrossRefGoogle Scholar
  2. Berkovic SF, Izzillo P, McMahon JM et al (2004) LGI1 mutations in temporal lobe epilepsies. Neurology 62:1115–1119PubMedCrossRefGoogle Scholar
  3. Bisulli F, Tinuper P, Avoni P et al (2004a) Idiopathic partial epilepsy with auditory features (IPEAF): a clinical and genetic study of 53 sporadic cases. Brain 127:1343–1352CrossRefGoogle Scholar
  4. Bisulli F, Tinuper P, Scudellaro E et al (2004b) A de novo LGI1 mutation in sporadic partial epilepsy with auditory features. Ann Neurol 56:455–456CrossRefGoogle Scholar
  5. Brodtkorb E, Michler RP, Gu W et al (2005) Speech-induced aphasic seizures in epilepsy caused by LGI1 mutation. Epilepsia 46:963–966PubMedCrossRefGoogle Scholar
  6. Chabrol E, Popescu C, Gourfinkel-An I et al (2007) Two novel epilepsy-linked mutations leading to a loss of function of LGI1. Arch Neurol 64:217–222PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chabrol E, Navarro V, Provenzano G et al (2010) Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1- deficient mice. Brain 133:2749–2762PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chernova OB, Somerville RP, Cowell JK (1998) A novel gene, LGI1, from 10q24 is rearranged and downregulated in malignant brain tumors. Oncogene 17:2873–2881PubMedCrossRefGoogle Scholar
  9. Dalmau J, Gleichman AJ, Hughes EG et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7:1091–1098PubMedCentralPubMedCrossRefGoogle Scholar
  10. de Bellescize J, Boutry N, Chabrol E et al (2009) A novel three base-pair LGI1 deletion leading to loss of function in a family with autosomal dominant lateral temporal epilepsy and migraine-like episodes. Epilepsy Res 85:118–122PubMedCrossRefGoogle Scholar
  11. Di Bonaventura C, Carni M, Diani E et al (2009) Drug resistant ADLTE and recurrent partial status epilepticus with dysphasic features in a family with a novel LGI1 mutation: electroclinical, genetic, and EEG/fMRI findings. Epilepsia 50:2481–2486PubMedCrossRefGoogle Scholar
  12. Di Bonaventura C, Operto FF, Busolin G et al (2011) Low penetrance and effect on protein secretion of LGI1 mutations causing autosomal dominant lateral temporal epilepsy. Epilepsia 52:1258–1264PubMedCrossRefGoogle Scholar
  13. Fertig E, Lincoln A, Martinuzzi A et al (2003) Novel LGI1 mutation in a family with autosomal dominant partial epilepsy with auditory features. Neurology 60:1687–1690PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fanciulli M, Santulli L, Errichiello L et al (2012) LGI1 microdeletion in autosomal dominant lateral temporal epilepsy. Neurology 78:1299–1303PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fukata Y, Adesnik H, Iwanaga T et al (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–1795PubMedCrossRefGoogle Scholar
  16. Fukata Y, Lovero KL, Iwanaga T et al (2010) Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A 107:3799–3804PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gable MS, Gavali S, Radner A et al (2009) Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis 28:1421–1429PubMedCentralPubMedCrossRefGoogle Scholar
  18. Gu W, Brodtkorb E, Steinlein OK (2002) LGI1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures. Ann Neurol 52:364–367PubMedCrossRefGoogle Scholar
  19. Hart IK, Waters C, Vincent A et al (1997) Autoantibodies detected to expressed Kþ channels are implicated in neuromyotonia. Ann Neurol 41:238–246PubMedCrossRefGoogle Scholar
  20. Hart IK, Maddison P, Newsom-Davis J et al (2002) Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain 125:1887–1895PubMedCrossRefGoogle Scholar
  21. Hedera P, Abou-Khalil B, Crunk AE et al (2004) Autosomal dominant lateral temporal epilepsy: two families with novel mutations in the LGI1 gene. Epilepsia 45:218–222PubMedCrossRefGoogle Scholar
  22. Heiman GA, Kamberakis K, Gill R et al (2010) Evaluation of depression risk in LGI1 mutation carriers. Epilepsia 51:1685–1690PubMedCentralPubMedCrossRefGoogle Scholar
  23. Ho YY, Ionita-Laza I, Ottman R (2012) Domain-dependent clustering and genotype-phenotype analysis of LGI1 mutations in ADPEAF. Neurology 78:563–568PubMedCentralPubMedCrossRefGoogle Scholar
  24. Irani SR, Buckley C, Vincent A et al (2008) Immunotherapy-responsive seizure-like episodes with potassium channel antibodies. Neurology 71:1647–1648PubMedCrossRefGoogle Scholar
  25. Irani SR, Alexander S, Waters P et al (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133:2734–2748PubMedCentralPubMedCrossRefGoogle Scholar
  26. Irani SR, Michell AW, Lang B et al (2011) Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 69:892–900PubMedCrossRefGoogle Scholar
  27. Irani SR, Pettingill P, Kleopa KA et al (2012) Morvan syndrome: Clinical and serological observations in 29 cases. Ann Neurol 72:241–255PubMedCrossRefGoogle Scholar
  28. Irani SR, Charlotte JS, Schott JM et al (2013) Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 136:3151–3162PubMedCrossRefGoogle Scholar
  29. Kalachikov S, Evgrafov O, Ross B et al (2002) Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 30:335–341PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kawamata J, Ikeda A, Fujita Y et al (2010) Mutations in LGI1 gene in Japanese families with autosomal dominant lateral temporal lobe epilepsy: the first report from Asian families. Epilepsia 51:690–693PubMedCrossRefGoogle Scholar
  31. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732PubMedCrossRefGoogle Scholar
  32. Kunapuli P, Chitta KS, Cowell JK (2003) Suppression of the cell proliferation and invasion phenotypes in glioma cells by the LGI1 gene. Oncogene 22:3985–3991PubMedCrossRefGoogle Scholar
  33. Kunapuli P, Kasyapa CS, Hawthorn L et al (2004) LGI1, a putative tumor metastasis suppressor gene, controls in vitro invasiveness and expression of matrix metalloproteinases in glioma cells through the ERK1/2 pathway. J Biol Chem 279:23151–23157PubMedCrossRefGoogle Scholar
  34. Leonardi E, Andreazza S, Vanin S et al (2011) A computational model of the LGI1 protein suggests a common binding site for ADAM proteins. Plos One 6:e18142PubMedCentralPubMedCrossRefGoogle Scholar
  35. Lai M, Huijbers MGM, Lancaster E et al (2010) Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 9:776–785PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lee MK, Kim SW, Lee JH et al (2014) A Newly discovery of LGI1 mutation in a Korean family with autosomal dominant lateral temporal lobe epilepsy. Seizure 23:69–73PubMedCrossRefGoogle Scholar
  37. Michelucci R, Poza JJ, Sofia V et al (2003) Autosomal dominant lateral temporal epilepsy: clinical spectrum, new epitempin mutations, and genetic heterogeneity in seven European families. Epilepsia 44:1289–1297PubMedCrossRefGoogle Scholar
  38. Michelucci R, Mecarelli O, Bovo G et al (2007) A de novo LGI1 mutation causing idiopathic partial epilepsy with telephone-induced seizures. Neurology 68:2150–2151PubMedCrossRefGoogle Scholar
  39. Michelucci R, Pasini E, Nobile C (2009) Lateral temporal lobe epilepsies: clinical and genetic features. Epilepsia 50(Suppl 5):52–54PubMedCrossRefGoogle Scholar
  40. Michelucci R, Pasini E, Malacrida S et al (2013) Low penetrance of autosomal dominant lateral temporal epilepsy in Italian families without LGI1 mutations. Epilepsia 54:1288–1297PubMedCrossRefGoogle Scholar
  41. Morante-Redolat JM, Gorostidi-Pagola A, Piquer-Sirerol S et al (2002) Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. Hum Mol Genet 11:1119–1128PubMedCrossRefGoogle Scholar
  42. Nobile C, Michelucci R, Andreazza S et al (2009) LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy. Hum Mutat 30:530–536PubMedCrossRefGoogle Scholar
  43. Ohkawa T, Fukata Y, Yamasaki M et al (2013) Autoantibodies to Epilepsy-Related LGI1 in Limbic Encephalitis Neutralize LGI1-ADAM22 Interaction and Reduce Synaptic AMPA Receptors. J Neurosci 33:18161–18174PubMedCentralPubMedCrossRefGoogle Scholar
  44. Owuor K, Harel NY, Englot DJ et al (2009) LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology. Mol Cell Neurosci 42:448–457PubMedCentralPubMedCrossRefGoogle Scholar
  45. Ottman R, Risch N, Hauser WA et al (1995) Localization of a gene for partial epilepsy to chromosome 10q. Nat Genet 10:56–60PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ottman R, Winawer MR, Kalachikov S et al (2004) LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 62:1120–1126PubMedCentralPubMedCrossRefGoogle Scholar
  47. Paoli M (2001) Protein folds propelled by diversity. Prog Biophys Molec Biol 76:103–130CrossRefGoogle Scholar
  48. Piepoli T, Jakupoglu C, Gu W et al (2006) Expression studies in gliomas and glial cells do not support a tumor suppressor role for LGI1. Neuro Oncol 8:96–108PubMedCentralPubMedCrossRefGoogle Scholar
  49. Pisano T, Marini C, Brovedani P et al (2005) Abnormal phonologic processing in familial lateral temporal lobe epilepsy due to a new LGI1 mutation. Epilepsia 46:118–123PubMedCrossRefGoogle Scholar
  50. Pizzuti A, Flex E, Di Bonaventura C et al (2003) Epilepsy with auditory features: a LGI1 gene mutation suggests a loss-of-function mechanism. Ann Neurol 53:396–399. Erratum in. Ann Neurol 2003;54:137CrossRefGoogle Scholar
  51. Rosanoff MJ, Ottman R (2008) Penetrance of LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 71:567–571PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sadleir LG, Agher D, Chabrol E et al (2013) Seizure semiology in autosomal dominant epilepsy with auditory features, due to novel LGI1 mutations. Epilepsy Res 107:311–317PubMedCrossRefGoogle Scholar
  53. Sagane K, Hayakawa K, Kaj J et al (2005) Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci 6:33PubMedCrossRefGoogle Scholar
  54. Schulte U, Thumfart JO, Klocker N et al (2006) The epilepsy-linked Lgi1 protein assembles into presynaptic kv1 channels and inhibits inactivation by Kvbeta1. Neuron 49:697–706PubMedCrossRefGoogle Scholar
  55. Senechal KR, Thaller C, Noebels JL (2005) ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum Mol Genet 14:1613–1620PubMedCrossRefGoogle Scholar
  56. Somerville RP, Chernova O, Liu S et al (2000) Identification of the promoter, genomic structure, and mouse ortholog of LGI1. Mamm Genome 11:622–627PubMedCrossRefGoogle Scholar
  57. Staub E, Perez-Tur J, Siebert R et al (2002) The novel EPTP repeat defines a superfamily of proteins implicated in epileptic disorders. Trends Biochem Sci 27:441–444PubMedCrossRefGoogle Scholar
  58. Striano P, de Falco A, Diani E et al (2008) A novel loss-of-function LGI1 mutation linked to autosomal dominant lateral temporal epilepsy. Arch Neurol 65:939–942PubMedGoogle Scholar
  59. Striano P, Busolin G, Santulli L et al (2011) Familial temporal lobe epilepsy with psychic auras associated with a novel LGI1 mutation. Neurology 76:1173–1176PubMedCrossRefGoogle Scholar
  60. Tan KM, Lennon VA, Klein CJ et al (2008) Clinical spectrum of voltage-gated potassium channel autoimmunity. Neurology 70:1883–1890PubMedCrossRefGoogle Scholar
  61. Tessa C, Michelucci R, Nobile C et al (2007) Structural anomaly of left lateral temporal lobe in epilepsy due to mutated LGI1. Neurology 69:1298–1300PubMedCrossRefGoogle Scholar
  62. Vincent A, Buckley C, Schott JM et al (2004) Potassium channel antibodyassociated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127:701–712PubMedCrossRefGoogle Scholar
  63. Vincent A, Bien CG, Irani SR et al (2011) Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 10:759–772PubMedCrossRefGoogle Scholar
  64. Warmolts JR, Mendell JR (1980) Neurotonia: impulse-induced repetitive discharges in motor nerves in peripheral neuropathy. Ann Neurol 7:245–250PubMedCrossRefGoogle Scholar
  65. Yu YE, Wen L, Silva J et al (2010) Lgi1 null mutant mice exhibit myoclonic seizures and CA1 neuronal hyperexcitability. Hum Mol Genet 19:1702–1711PubMedCentralPubMedCrossRefGoogle Scholar
  66. Zhou YD, Lee S, Jin Z et al (2009) Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nat Med 15:1208–1214PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CNR-Neuroscience InstitutePadovaItaly

Personalised recommendations