Skip to main content

New Radiosurgical Paradigms to Treat Epilepsy Using Synchrotron Radiation

  • Chapter
  • First Online:
Book cover Epilepsy Towards the Next Decade

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1233 Accesses

Abstract

Synchrotron-generated X-ray microplanar beams (microbeams) are characterized by peculiar biological properties such as a remarkable tissue-sparing effect in healthy tissues including the central nervous system and, as a direct consequence, the ability to deliver extremely high doses without induction of radionecrosis. Growing experimental evidence is showing remarkable tolerance of brain and spinal cord to irradiation with microbeam arrays delivering doses up to 400 Gy with a beam width up to 0.7 mm. Submillimetric beams can be delivered following a stereotactic design bringing to the target doses in the range of hundreds of Gray without harm to the surrounding tissues. Microbeam arrays can be used to generate cortical transections or subcortical lesions, thus enabling the non-invasive modulation of brain networks. This novel microradiosurgical approach is of great interest for the treatment of a variety of brain disorders, including epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blattmann H et al (2005) Applications of synchrotron X-rays to radiotherapy. Nucl Instrum Methods Phys Res 548(1–2):17–22

    Article  CAS  Google Scholar 

  • Brauer-Krisch E et al (2010) Potential high resolution dosimeters for MRT. In Siu KKW (ed) 6th international conference on medical applications of synchrotron radiation, American Institute of Physics, USA, pp 89–97

    Google Scholar 

  • Chervin RD, Pierce PA, Connors BW (1988) Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J Neurophysiol 60(5):1695–1713

    CAS  PubMed  Google Scholar 

  • Danilov AI et al (2006) Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis. Eur J Neurosci 23(2):394–400

    Article  PubMed  Google Scholar 

  • Denekamp J, Daşu A, Waites A (1998) Vasculature and microenvironmental gradients: the missing links in novel approaches to cancer therapy? Adv Enzyme Regul 38:281–299

    Article  CAS  PubMed  Google Scholar 

  • Dilmanian FA et al (2002) Response of rat intracranial 9 L gliosarcoma to microbeam radiation therapy. Neuro Oncol 4(1):26–38

    Article  PubMed Central  PubMed  Google Scholar 

  • Fardone E (2013) A new application of microbeam radiation therapy (MRT) on the treatment of epilepsy and brain disorders. University Joseph Furier of Grenoble [Thesis]

    Google Scholar 

  • Go C, Snead OC (2008) Pharmacologically intractable epilepsy in children: diagnosis and preoperative evaluation. Neurosurg Focus 25(3):E2

    Article  PubMed  Google Scholar 

  • Gould E (1999) Neurogenesis in the neocortex of adult Primates. Science 286(5439):548–552

    Article  CAS  PubMed  Google Scholar 

  • Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8(6):481–488

    Article  CAS  PubMed  Google Scholar 

  • Gould E et al (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci U S A 98(19):10910–10917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kokaia Z et al (2006) Regulation of stroke-induced neurogenesis in adult brain–recent scientific progress. Cereb Cortex 16(Suppl 1):i162–i167 (New York, NY 1991)

    Google Scholar 

  • Koketsu D et al (2003) Nonrenewal of neurons in the cerebral neocortex of adult Macaque Monkeys. J Neurosci 23(3):937–942

    CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294(5549):217–2130 (New York, NY)

    Article  Google Scholar 

  • Kuzniecky R, Devinsky O (2007) Surgery Insight: surgical management of epilepsy. Nat Clin Pract Neurol 3(12):673–681

    Article  PubMed  Google Scholar 

  • Laissue JA et al (1998) Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays. Int J Cancer (Journal international du cancer) 78(5):654–660

    Article  CAS  Google Scholar 

  • Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405(6789):951–955

    Article  CAS  PubMed  Google Scholar 

  • Morrell F, Hanbery JW (1969) A new surgical technique for the treatment of focal cortical epilepsy. Electroencephalogr Clin Neurophysiol 26(1):120

    CAS  PubMed  Google Scholar 

  • Morrell F et al (1989) Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 70:231–239

    Google Scholar 

  • Morrell F et al (1995) Landau-Kleffner syndrome. Treatment with subpial intracortical transection. Brain: A Journal of Neurology 118(Pt 6):1529–1546

    Article  Google Scholar 

  • Morrell F et al (1999) Multiple subpial transection. Adv Neurol 81:259–270

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20(4):408–434

    CAS  PubMed  Google Scholar 

  • Mulligan LP, Spencer DD, Spencer SS (2001) Multiple subpial transections: the Yale experience. Epilepsia 42(2):226–229

    Article  CAS  PubMed  Google Scholar 

  • Niranjan A et al (2012) Intracranial radiosurgery: an effective and disruptive innovation in neurosurgery. Stereotact Funct Neurosurg 90(1):1–7

    Article  PubMed  Google Scholar 

  • Orbach D et al (2001) Late seizure recurrence after multiple subpial transections. Epilepsia 42(10):1130–1133

    CAS  PubMed  Google Scholar 

  • Parent JM et al (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6):802–813

    Article  PubMed  Google Scholar 

  • Patil AA, Andrews R (2013) Long term follow-up after multiple hippocampal transection (MHT). Seizure: The Journal of the British Epilepsy Association 22(9):731–734

    Article  Google Scholar 

  • Patil AA et al (2004) Is epilepsy surgery on both hemispheres effective? Stereotact Funct Neurosurg 82(5–6):214–221

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, London

    Google Scholar 

  • Romanelli P, Anschel DJ (2006) Radiosurgery for epilepsy. Lancet Neurol 5:613–620

    Google Scholar 

  • Romanelli P, Bravin A (2011) Synchrotron-generated microbeam radiosurgery: a novel experimental approach to modulate brain function. Neurol Res 33(8):825–831

    Article  PubMed  Google Scholar 

  • Romanelli P et al (2012) Non-resective surgery and radiosurgery for treatment of drug-resistant epilepsy. Epilepsy Res 99(3):193–201

    Article  PubMed  Google Scholar 

  • Romanelli P et al (2013) Synchrotron-generated microbeam sensorimotor cortex transections induce seizure control without disruption of neurological functions. PloS One 8(1):e53549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott BW et al (1998) Kindling-induced neurogenesis in the dentate gyrus of the rat. Neurosci Lett 248(2):73–76

    Article  CAS  PubMed  Google Scholar 

  • Serduc R et al (2006) In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature. Int J Radiat Oncol Biol Phys 64(5):1519–1527

    Article  PubMed  Google Scholar 

  • Slatkin DN et al (1995) Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proc Natl Acad Sci U S A 92(19):8783–8787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slatkin DN et al (2007) Prospects for microbeam radiation therapy of brain tumours in children. Dev Med Child Neurol 49(2):163

    Google Scholar 

  • Smilowitz HM et al (2002) Synergy of gene-mediated immunoprophylaxis and microbeam radiation therapy for advanced intracerebral rat 9 L gliosarcomas. J Neurooncol 78(2):135–143

    Article  Google Scholar 

  • Telfeian AE, Connors BW (1998) Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex. Epilepsia 39(7):700–708

    Article  CAS  PubMed  Google Scholar 

  • Thored P et al (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24(3):739–747 (Dayton, Ohio)

    Article  CAS  PubMed  Google Scholar 

  • Van De Looij Y et al (2006) Cerebral edema induced by Synchrotron Microbeam Radiation Therapy in the healthy mouse brain. Characterization by means of Diffusion Tensor Imaging. In Proceedings 14th Scientific Meeting International Society for Magnetic Resonance in Medicine, p 1472

    Google Scholar 

  • Zhang L et al (2014) Hippocampal CA field neurogenesis after pilocarpine insult: the hippocampal fissure as a neurogenic niche. J Chem Neuroanat 56:45–57

    Article  CAS  PubMed  Google Scholar 

  • Zhong N et al (2003) Response of rat skin to high-dose unidirectional x-ray microbeams: a histological study. Radiat Res 160(2):133–142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantaleo Romanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Romanelli, P., Bravin, A., Fardone, E., Battaglia, G. (2015). New Radiosurgical Paradigms to Treat Epilepsy Using Synchrotron Radiation. In: Striano, P. (eds) Epilepsy Towards the Next Decade. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-12283-0_13

Download citation

Publish with us

Policies and ethics