Skip to main content

Abstract

Distributed representations have gained a lot of interests in natural language processing community. In this paper, we propose a method to learn document embedding with neural network architecture for text classification task. In our architecture, each document can be represented as a fine-grained representation of different meanings so that the classification can be done more accurately. The results of our experiments show that our method achieve better performances on two popular datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Paliouras, G., Spyropoulos, C.D.: An evaluation of naive bayesian anti-spam filtering. arXiv preprint cs/0006013 (2000)

    Google Scholar 

  2. Bengio, Y., Schwenk, H., Senécal, J.S., Morin, F., Gauvain, J.L.: Neural probabilistic language models. In: Holmes, D.E., Jain, L.C. (eds.) Innovations in Machine Learning. STUDFUZZ, vol. 194, pp. 137–186. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Carvalho, V.R., Cohen, W.W.: On the collective classification of email speech acts. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–352. ACM (2005)

    Google Scholar 

  4. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

    Google Scholar 

  5. Cohen, W.W.: Learning rules that classify e-mail. In: AAAI Spring Symposium on Machine Learning in Information Access, California, vol. 18, p. 25 (1996)

    Google Scholar 

  6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. The Journal of Machine Learning Research 12, 2493–2537 (2011)

    MATH  Google Scholar 

  7. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms and representations for text categorization. In: Proceedings of the Seventh International Conference on Information and Knowledge Management, pp. 148–155. ACM (1998)

    Google Scholar 

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representations via global context and multiple word prototypes. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-vol. 1, pp. 873–882. Association for Computational Linguistics (2012)

    Google Scholar 

  10. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. Springer (1998)

    Google Scholar 

  11. Khosravi, H., Wilks, Y.: Routing email automatically by purpose not topic. Natural Language Engineering 5(3), 237–250 (1999)

    Article  Google Scholar 

  12. Larochelle, H., Bengio, Y.: Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine Learning, pp. 536–543. ACM (2008)

    Google Scholar 

  13. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. arXiv preprint arXiv:1405.4053 (2014)

    Google Scholar 

  14. Liu, T.: A novel text classification approach based on deep belief network. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 314–321. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. McCallum, A., Nigam, K., et al.: A comparison of event models for naive bayes text classification. In: AAAI 1998 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)

    Google Scholar 

  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  17. Mikolov, T., Yih, W.T., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of NAACL-HLT, pp. 746–751 (2013)

    Google Scholar 

  18. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cognitive Science 34(8), 1388–1429 (2010)

    Article  Google Scholar 

  19. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: NIPS, pp. 1081–1088 (2008)

    Google Scholar 

  20. Nasr, G.E., Badr, E., Joun, C.: Cross entropy error function in neural networks: Forecasting gasoline demand. In: FLAIRS Conference, pp. 381–384 (2002)

    Google Scholar 

  21. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    Article  Google Scholar 

  22. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. MIT Press, Cambridge (1988)

    Google Scholar 

  24. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  25. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  26. Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing Natural Scenes and Natural Language with Recursive Neural Networks. In: Proceedings of the 26th International Conference on Machine Learning, ICML (2011)

    Google Scholar 

  27. Yang, Y., Pedersen, J.: A comparative study on feature selection in text categorization. In: Proc. of Int. Conf. on Mach. Learn. (ICML), vol. 97 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, C., Qiu, X., Huang, X. (2014). Text Classification with Document Embeddings. In: Sun, M., Liu, Y., Zhao, J. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2014 2014. Lecture Notes in Computer Science(), vol 8801. Springer, Cham. https://doi.org/10.1007/978-3-319-12277-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12277-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12276-2

  • Online ISBN: 978-3-319-12277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics