Skip to main content

Human Albuminome: Reflections of Neoplastic Transformation and Cancer Detection Through Albumin-Associated Biomarkers

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer

Abstract

Human serum albumin is the most abundant protein in blood plasma. High abundance of albumin obscures the identification of low-abundance proteins using currently available proteomic technologies, and thus a pre-fractionation step is desired. At the same time, long shelf life of albumin makes it most important carrier protein molecule in the circulatory proteome. Albumin has six binding sites and can interact with a variety of intact and truncated proteins and peptides. In circulation, albumin binding can enrich the low molecular weight proteins by protecting them from renal clearance. This enriched albumin fraction is a valuable source for identification of cancer-specific potential biomarkers of high specificity and sensitivity along with other proteins that are involved in neoplastic growth and transformation. Identification of such albumin-associated biomarkers may aid in early detection of tumors and thus influence the outcome of treatment. Albumin along with its associated proteins is collectively called albuminome. We analyze and summarize the potential of human albuminome, technical challenges in its study, and its role in understanding molecular signatures of tumor progression and biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins JN et al (2002) “Toward a Human Blood Serum Proteome” analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomic 1:947–955

    Article  CAS  Google Scholar 

  • Anderson L (2005) Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 563:23–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (2002) “The Human Plasma Proteome” history, character, and diagnostic prospects. Mol Cell Proteomic 1:845–867

    Article  CAS  Google Scholar 

  • Anderson NL et al (2004) “The Human Plasma Proteome” a nonredundant list developed by combination of four separate sources. Mol Cell Proteomic 3:311–326

    Article  CAS  Google Scholar 

  • Christodoulou J et al (1995) 1H NMR of albumin in human blood plasma: drug binding and redox reactions at Cys34. FEBS Lett 376(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  • Day CH et al (2001) OVX1, macrophage-colony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma. Cancer 92:2837–2844

    Article  Google Scholar 

  • Dennis MS et al (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 277(38):35035–35043

    Article  CAS  PubMed  Google Scholar 

  • Deutsch EW et al (2005) Human plasma PeptideAtlas. Proteomics 5:3497–3500

    Article  CAS  PubMed  Google Scholar 

  • Fu Q et al (2005) A robust, streamlined, and reproducible method for proteomic analysis of serum by delipidation, albumin and IgG depletion, and two-dimensional gel electrophoresis. Proteomics 5:2656–2664

    Article  CAS  PubMed  Google Scholar 

  • http://ophid.utoronto.ca/ophidv2.204/s

  • Huang HL et al (2005) Enrichment of low-abundant serum proteins by albumin/immunoglobulin G immunoaffinity depletion under partly denaturing conditions. Electrophoresis 26:2843–2849

    Article  CAS  PubMed  Google Scholar 

  • Kalsey GS (2012) Human albuminome: trash turned to diamond mine in the discovery of cancer biomarkers. J Carcinog (Suppl) 11(1):S29

    Google Scholar 

  • Kalsey GS, Singh R (2009). 3rd international symposium on translational cancer research. Poster presentation: albumin associated proteins in blood plasma: from trash to diagnostic treasure for lung and ovarian carcinomas. Bhubaneswar, Orissa, India

    Google Scholar 

  • Li J et al (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48:1296–1304

    CAS  PubMed  Google Scholar 

  • Liu X et al (2007) Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom 18(7):1249–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowenthal MS et al (2005) Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin Chem 51(10):1933–1945

    Article  CAS  PubMed  Google Scholar 

  • Maack T et al (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270

    Article  CAS  PubMed  Google Scholar 

  • Mehta AI et al (2003) Biomarker amplification by serum carrier protein binding. Dis Markers 18:DMA212–DMA221

    Google Scholar 

  • Merrell K et al (2004) Analysis of low-abundance, low-molecular-weight serum proteins using mass spectrometry. J Biomol Tech 15(4):238–248

    PubMed Central  PubMed  Google Scholar 

  • Olivier E et al (2000) Fetuin-B, a second member of the fetuin family in mammals. Biochem J 350:589–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Omenn GS et al (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245

    Article  CAS  PubMed  Google Scholar 

  • Orvisky E et al (2006) Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics 6:2895–2902

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF III (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6:961–967

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF III et al (2002a) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF III et al (2002b) Proteomic patterns in serum and identification of ovarian cancer [reply]. Lancet 360:170–171

    Article  Google Scholar 

  • Petricoin EF III et al (2002c) Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 94(20):1576–1578

    Article  CAS  PubMed  Google Scholar 

  • Pieper R (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3:1345–1364

    Article  CAS  PubMed  Google Scholar 

  • Polanski M, Anderson NL (2006) A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights 2:1–48

    Google Scholar 

  • Saha S et al (2008) HIP2: an online database of human plasma proteins from healthy individuals. BMC Med Genet 1:12

    Google Scholar 

  • Sheng S et al (2006) Multidimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phase of the human serum proteome: optimization and protein database. Mol Cell Proteomic 5(1):26–34

    Article  CAS  Google Scholar 

  • Sjöbring U, Kastern W (1991) Streptococcal protein G. Gene structure and protein binding properties. J Biol Chem 266(1):399–405

    PubMed  Google Scholar 

  • Steel LF et al (2003) Efficient and specific removal of albumin from human serum samples. Mol Cell Proteomic 2:262–270

    CAS  Google Scholar 

  • Tirumalai RS et al (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomic 2:1096–1103

    Article  CAS  Google Scholar 

  • Tolson J et al (2004) Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Invest 84(7):845–856

    Article  CAS  PubMed  Google Scholar 

  • Veenstra TD et al (2004) What to do with “one-hit wonders”. Electrophoresis 25:1278–1279

    Article  CAS  PubMed  Google Scholar 

  • Villanueva J et al (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116:271–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • www.Uniprot.org

Download references

Acknowledgment

The author thank Dr. Radha Yadav for her careful proofreading and valuable inputs in preparing the manuscript.

The author thank the principal and the governing body of SGTB Khalsa College for their support.

This work was financially supported by Department of Biotechnology (DBT), India, and research fellowship from Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaganjot Singh Kalsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kalsey, G.S. (2015). Human Albuminome: Reflections of Neoplastic Transformation and Cancer Detection Through Albumin-Associated Biomarkers. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_9

Download citation

Publish with us

Policies and ethics