Skip to main content

Therapeutic Anticancer Approaches Targeting Telomerase and Telomeres

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer

Abstract

Telomeres and telomerase are attractive targets for anticancer therapy. This is evidenced with the facts that majority of human cancers express the enzyme telomerase which is utmost important to maintain the telomere length, thereby to ensure indefinite cell proliferation – a hallmark of cancer. In human cells, a structure referred to as telomere has been identified to cap the terminal regions of chromosomes which can protect the ends of DNA strands from degradation and fusion, whereas telomerase plays a pivotal role in cellular immortality and tumorigenesis. Henceforth, strategies have been made to induce telomerase inhibition target virtually all of the major components of ribonucleoprotein holoenzyme and related cell signal pathways that regulates its activity which includes telomerase reverse transcriptase (hTERT) catalytic subunit, the telomere RNA component (hTERC), and associated proteins. It is noteworthy here that most of the cancers have an alternative lengthening of telomere termed as ALT even in the absence of telomerase activity. In these cases, there is an urgent need to understand the cell signaling pathways for ALT mechanism which can be used as therapeutic targets. Other strategies have been developed to target the protein associated with telomerase at the telomeric ends of chromosomes such as tankyrase. Increasing evidences suggest that directly targeting telomeric DNA using agents directed against the shelterin complex may also have anticancer activity. The limitations of strategies remain to be resolved to facilitate the clinical applications. In this chapter, recent development of strategies against these targets shall be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal N, Dasaradhi P, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bearss DJ, Hurley LH, Von Ho DD (2000) Telomere maintenance mechanisms as a target for drug development. Oncogene 19:6632–6641

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt SL, Gjertsen MK, Trachsel S et al (2006) Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer 95:1474–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bidzinska J, Baginski M, Skladanowski A (2014) Novel anticancer strategy aimed at targeting shelterin complexes by the induction of structural changes in telomeric DNA: hitting two birds with one stone. Curr Cancer Drug Targets 14:201–16

    Google Scholar 

  • Bilsland AE, Cairney CJ, Keit WN (2011) Targeting the telomere and shelterin complex for cancer therapy: current views and future perspectives. J Cell Mol Med 15:179–186

    Article  CAS  PubMed  Google Scholar 

  • Brunsvig PF, Aamdal S, Gjertsen MK et al (2006) Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother 55:1553–1564

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Li Y, Tollefsbol TO (2009) Strategies targeting telomerase inhibition. Mol Biotechnol 41:194–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conomos D, Pickett HA, Reddel RR (2013) Alternative lengthening of telomeres: remodeling the telomere architecture. Front Oncol 3:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Corey DR (2007) Chemical modification: the key to the clinical application of RNA interference? J Clin Invest 117:3615–3622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corey DR (2009) Telomeres and telomerase: from discovery to clinical trials. Chem Biol 16:1219–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crooke S (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489:31–44

    Article  CAS  PubMed  Google Scholar 

  • Cunningham AP, Love WK, Zhang RW et al (2006) Telomerase inhibition in cancer therapeutics: molecular-based approaches. Curr Med Chem 13:2875–2888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eller MS, Puri N, Hadshiew IM et al (2002) Induction of apoptosis by telomere 30 overhang-specific DNA. Exp Cell Res 276:185–193

    Article  CAS  PubMed  Google Scholar 

  • Folini M, Gandellini P, Zaffaroni N (2009) Targeting the telosome: therapeutic implications. Biochim Biophys Acta 1792:309–316

    Article  CAS  PubMed  Google Scholar 

  • Gnanasekar M, Thirugnanam S, Zheng G et al (2009) T-oligo induces apoptosis in advanced prostate cancer cells. Oligonucleotides 19:287–292

    Article  CAS  PubMed  Google Scholar 

  • Goldkorn A, Blackburn EH (2006) Assembly of mutant template telomerase RNA into catalytically active telomerase ribonucleoprotein that can act on telomerase is required for apoptosis and cell cycle arrest in human cancer cells. Cancer Res 66:5763–5771

    Article  CAS  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  CAS  PubMed  Google Scholar 

  • Han H, Hurley LH (2000) G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol Sci 21:136–142

    Article  CAS  PubMed  Google Scholar 

  • Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8:167–179

    Article  CAS  PubMed  Google Scholar 

  • Heaphy CM, Subhawong AP, Hong SM et al (2011) Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179:1608–1615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henson JD, Neumann AA, Yeager TR et al (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21:598–610

    Article  CAS  PubMed  Google Scholar 

  • Henson JD, Hannay JA, McCarthy SW et al (2005) A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res 11:217–225

    CAS  PubMed  Google Scholar 

  • Kanazawa Y, Ohkawa K, Ueda K et al (1996) Hammerhead ribozyme-mediated inhibition of telomerase activity in extracts of human hepatocellular carcinoma cells. Biochem Biophys Res Commun 225:570–576

    Article  CAS  PubMed  Google Scholar 

  • Katz MH, Spivack DE, Takimoto S et al (2003) Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosis-inducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter. Ann Surg Oncol 10:762–772

    Article  PubMed  Google Scholar 

  • Keith WN, Bilsland A, Evans TR et al (2002) Telomerase directed molecular therapeutics. Expert Rev Mol Med 22:1–25

    Google Scholar 

  • Koga S, Kondo Y, Komata T et al (2001) Treatment of bladder cancer cells in vitro and in vivo with 2–5 A anti telomerase RNA. Gene Ther 8:654–658

    Article  CAS  PubMed  Google Scholar 

  • Komata T, Kondo Y, Kanzawa T et al (2001) Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 61:5796–5802

    CAS  PubMed  Google Scholar 

  • Kondo Y, Kondo S (2007) Telomerase RNA inhibition using antisense oligonucleotide against human telomerase RNA linked to a 2′,5′-oligoadenylate. Methods Mol Biol 405:97–112

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Kondo Y, Li G et al (1998) Targeted therapy of human malignant glioma in a mouse model by 2–5A antisense directed against telomerase RNA. Oncogene 16:3323–3330

    Article  CAS  PubMed  Google Scholar 

  • Kraemer K, Fuessel S, Meye A (2007) Telomerase inhibition by synthetic nucleic acids and chemosensitization in human bladder cancer cell lines. Methods Mol Biol 405:9–22

    Article  CAS  PubMed  Google Scholar 

  • Kushner DM, Paranjape JM, Bandyopadhyay B et al (2000) 2–5A antisense directed against telomerase RNA produces apoptosis in ovarian cancer cells. Gynecol Oncol 76:183–192

    Article  CAS  PubMed  Google Scholar 

  • Kyo S, Takakura M, Fujiwara T et al (2008) Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 99:1528–1538

    Article  CAS  PubMed  Google Scholar 

  • Lai S, Andrews L, Tollefsbol T (2007a) hTERT knockdown in human embryonic kidney cells using double-stranded RNA. Methods Mol Biol 405:23–29

    Article  CAS  PubMed  Google Scholar 

  • Lai S, Andrews L, Tollefsbol T (2007b) RNA interference using a plasmid construct expressing short-hairpin RNA. Methods Mol Biol 405:31–37

    Article  CAS  PubMed  Google Scholar 

  • Li S, Nosrati M, Kashani-Sabet M (2007) Knockdown of telomerase RNA using hammerhead ribozymes and RNA interference. Methods Mol Biol 405:113–131

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zou WG, Lang MF et al (2002) Cancer-specific killing by the CD suicide gene using the human telomerase reverse transcriptase promoter. Int J Oncol 21:661–666

    CAS  PubMed  Google Scholar 

  • Liu JP, Chen W, Schwarer AP et al (2010) Telomerase in cancer immunotherapy. Biochim Biophys Acta 1805(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Longe HO, Romesser PB, Rankin AM et al (2009) Telomere homolog oligonucleotides induce apoptosis in malignant but not in normal lymphoid cells:mechanism and therapeutic potential. Int J Cancer 124:473–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Majumdar AS, Hughes DE, Lichtsteiner SP et al (2001) The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther 8:568–578

    Article  CAS  PubMed  Google Scholar 

  • Martínez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11:161–176

    Article  PubMed  Google Scholar 

  • Matsutani N, Yokozaki H, Tahara E et al (2001) Expression of telomeric repeat binding factor 1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int J Oncol 19:507–512

    CAS  PubMed  Google Scholar 

  • Miyachi K, Fujita M, Tanaka N et al (2001) Correlation between telomerase activity and telomeric-repeat binding factors in gastric cancer. J Exp Clin Cancer Res 21:269–275

    Google Scholar 

  • Nair SK, Heiser A, Boczkowski D et al (2000) Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6(9):1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Niida H, Shinkai Y, Hande MP et al (2000) Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol Cell Biol 20:4114–4127

    Article  Google Scholar 

  • Oh BK, Kim YJ, Park C et al (2005) Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am J Pathol 166:73–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pal D, Sharma U, Khajuria R et al (2012) Abstract 149: overexpression of telomere binding protein TRF2 inversely related to telomere length in clear cell renal cell carcinoma. Eur J Cancer 48(Suppl 5):S36

    Article  Google Scholar 

  • Phatak P, Burger AM (2007) Telomerase and its potential for therapeutic intervention. Br J Pharmacol 152:1003–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plumb JA, Bilsland A, Kakani R et al (2001) Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954. Oncogene 20:7797–7803

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pal D (2014) Inhibition of hTERT and telomerase activity via hampering MAPK kinase signaling in renal cell carcinoma cell lines. J Clin Oncol 32: (suppl; abstr e13501)

    Google Scholar 

  • Raymond E, Soria JC, Izbicka E et al (2000) DNA G-quadruplexes, telomere-specific proteins and telomere-associated enzymes as potential targets for new anticancer drugs. Invest New Drugs 18:123–137

    Article  CAS  PubMed  Google Scholar 

  • Roh J, Sung YH, Lee HW (2013) Clinical implications of antitelomeric drugs with respect to the nontelomeric functions of telomerase in cancer. OncoTargets Ther 6:1161–1166

    Google Scholar 

  • Roth A, Harley CB, Baerlocher GM (2010) Imetelstat (GRN163L)–telomerase-based cancer therapy. Recent Results Cancer Res 184:221–234

    Article  PubMed  Google Scholar 

  • Ruden M, Puri M (2013) Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 39:444–456

    Article  CAS  PubMed  Google Scholar 

  • Saretzki G, Ludwig A, Zglinicki T et al (2001) Ribozyme mediated telomerase inhibition induced immediate cell loss but not telomere shortening i ovarian cancer cells. Cancer Gene Ther 8:827–834

    Article  CAS  PubMed  Google Scholar 

  • Strahl C, Blackburn EH (1994) The effects of nucleoside analogs on telomerase and telomeres in tetrahymena. Nucleic Acids Res 22:893–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strahl C, Blackburn EH (1996) Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol Cell Biol 16:53–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Su Z, Vieweg J, Weizer AZ et al (2002) Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 62:5041–5048

    CAS  PubMed  Google Scholar 

  • Su Z, Dannull J, Yang BK et al (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174:3798–3807

    Article  CAS  PubMed  Google Scholar 

  • Venturini L, Daidone MG, Motta R et al (2011) Telomere maintenance in Wilms tumors: first evidence for the presence of alternative lengthening of telomeres mechanism. Genes Chromosomes Cancer 50:823–829

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Li H, Liu J (2007) Inhibition of telomerase by targeting MAP kinase signaling. Methods Mol Biol 405:147–165

    Article  CAS  PubMed  Google Scholar 

  • Yatabe N, Kyo S, Kondo S et al (2002) 2–5A antisense therapy directed against human telomerase RNA inhibits telomerase activity and induces apoptosis without telomere impairment in cervical cancer cells. Cancer Gene Ther 9:624–630

    Article  CAS  PubMed  Google Scholar 

  • Yeo M, Rha SY, Jeung HC et al (2005) Attenuation of telomerase activity by hammerhead ribozyme targeting human telomerase RNA induces growth retardation and apoptosis in human breast tumor cells. Int J Cancer 114:484–489

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Sun YF, Pei DS et al (2006) Inhibition of proliferation and induction of apoptosis in human renal cell carcinoma cells by anti telomerase small interfering RNAs. Acta Biochim Biophys Sin 38:500–506

    Article  CAS  PubMed  Google Scholar 

  • Zhou JH, Tang B, Liu XL et al (2007) hTERT-targeted E. coli purine nucleoside phosphorylase gene/6-methylpurine deoxyribose therapy for pancreatic cancer. Chin Med J 120:1348–1352

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pal, D., Sharma, U., Prasad, R. (2015). Therapeutic Anticancer Approaches Targeting Telomerase and Telomeres. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_18

Download citation

Publish with us

Policies and ethics