Skip to main content

Design Principles for Plasmonic Nanoparticle Devices

  • Chapter
  • First Online:
Progress in Nonlinear Nano-Optics

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

For all applications of plasmonics to technology it is required to tailor the resonance to the optical system in question. This chapter gives an understanding of the design considerations for nanoparticles needed to tune the resonance. First the basic concepts of plasmonics are reviewed with a focus on the physics of nanoparticles. An introduction to the finite element method is given with emphasis on the suitability of the method to nanoplasmonic device simulation. The effects of nanoparticle shape on the spectral position and lineshape of the plasmonic resonance are discussed including retardation and surface curvature effects. The most technologically important plasmonic materials are assessed for device applicability and the importance of substrates in light scattering is explained. Finally the application of plasmonic nanoparticles to photovoltaic devices is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.N. Anker, W. Paige Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)

    Google Scholar 

  2. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    Article  ADS  Google Scholar 

  3. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  4. M.G. Blaber, M.D. Arnold, M.J. Ford, A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter 22(14), 143201 (2010)

    Article  ADS  Google Scholar 

  5. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)

    Google Scholar 

  6. S. Burger, B.H. Kleemann, L. Zschiedrich, F. Schmidt, 3d finite-element simulations of light propagation through circular subwavelength apertures. In Microtechnologies for the New Millenium, vol. 7366. Proceedings of SPIE (2009) p. 736621

    Google Scholar 

  7. K.R. Catchpole, A. Polman, Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)

    Article  ADS  Google Scholar 

  8. W.C. Chew, W.H. Weedon, A 3d perfectly matched medium from modified maxwell’s equations with stretched coordinates. Microwave Opt. Technol. Lett. 7(13), 599–604 (1994)

    Google Scholar 

  9. R.P. Feynman, The Feynman Lectures on Physics (3 Volume Set) (Addison Wesley Longman, Boston, 1970)

    Google Scholar 

  10. R. Hong, G. Han, J.M. Fernández, B.J Kim, N.S. Forbes, V.M. Rotello, Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128(4), 1078–1079 (2006)

    Google Scholar 

  11. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  12. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for cu(in, ga)se2 thin-film solar cells beyond 20 %. Prog. Photovoltaics Res. Appl. 19(7), 894–897 (2011)

    Article  Google Scholar 

  13. S.S. Kim, S.I. Na, J. Jo, D.Y. Kim, Y.C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 93(7), 073307–073307–3 (2008)

    Google Scholar 

  14. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2004)

    Google Scholar 

  15. E. Kretschmann, Radiative decay of nonradiative surface plasmon excited by light. Z. Naturf. 23A, 2135–2136 (1968)

    Google Scholar 

  16. K.Q. Le, P. Bienstman, Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes. Plasmonics 6(1), 53–57 (2011)

    Article  Google Scholar 

  17. P.F. Liao, A. Wokaun, Lightning rod effect in surface enhanced raman scattering. J. Chem. Phys. 76(1), 751–752 (1982)

    Article  ADS  Google Scholar 

  18. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98(1), 011101 (2005)

    Article  ADS  Google Scholar 

  19. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, Ari A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2(4), 229–232 (2003)

    Google Scholar 

  20. G. Mie, Beiträge zur Optik Trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 303(3), 377–445 (1908)

    Google Scholar 

  21. S.G. Moiseev, S.V. Vinogradov, Design of antireflection composite coating based on metal nanoparticles. Phys. Wave Phenom. 19, 47–51 (2011)

    Article  ADS  Google Scholar 

  22. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, New York, 2003)

    Google Scholar 

  23. A.J. Morfa, K.L. Rowlen, T.H. Reilly, M.J. Romero, J. van de Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92(1), 013504–013504–3 (2008)

    Google Scholar 

  24. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    Article  ADS  Google Scholar 

  25. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275(5303), 1102–1106 (1997)

    Article  Google Scholar 

  26. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)

    Article  ADS  Google Scholar 

  27. J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, Adaptive finite element method for simulation of optical nano structures. Phys. Status Solidi B 244(10), 3419–3434 (2007)

    Google Scholar 

  28. M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23(17), 1331–1333 (1998)

    Article  ADS  Google Scholar 

  29. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)

    Google Scholar 

  30. N Shukla, M.A. Bartel, A.J. Gellman, Enantioselective separation on chiral au nanoparticles. J. Am. Chem. Soc. 132(25), 8575–8580 (2010) (PMID: 20521789)

    Google Scholar 

  31. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002)

    Article  ADS  Google Scholar 

  32. G. Strang, G. Fix, An Analysis of the Finite Element Method, 2nd edn. (Wellesley, Cambridge, 2008)

    Google Scholar 

  33. H.R. Stuart, D.G. Hall, Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73(26), 3815–3817 (1998)

    Article  ADS  Google Scholar 

  34. M.D. Turner, Md M. Hossain, M. Gu, The effects of retardation on plasmon hybridization within metallic nanostructures. New J. Phys. 12(8), 083062 (2010)

    Google Scholar 

  35. H.C. Van De Hulst, Light Scattering by Small Particles (Dover Books on Physics) (Dover Publications, New York, 1981)

    Google Scholar 

  36. G. Walters, I.P. Parkin, The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J. Mater. Chem. 19, 574–590 (2008)

    Article  Google Scholar 

  37. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)

    Article  Google Scholar 

  38. A.V. Zayats, I.I. Smolyaninov, Near-field photonics: surface plasmon polaritons and localized surface plasmons. J. Opt. A Pure Appl. Opt. 5, S16 (2003)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank G. Yin for the experimental data shown in Fig. 13.15 and P. Andrä for the Mie theory results shown in Fig. 13.3. The authors would like to acknowledge funding by the DFG (German Research Foundation) in the DFG research center MATHEON and the funding from the Helmholtz-Association for Young Invesitgator group VH-NG-928 within the Initiative and Networking fund.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manley, P., Burger, S., Schmidt, F., Schmid, M. (2015). Design Principles for Plasmonic Nanoparticle Devices. In: Sakabe, S., Lienau, C., Grunwald, R. (eds) Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-12217-5_13

Download citation

Publish with us

Policies and ethics