Skip to main content

Comparison of Linear and Nonlinear Optical Properties of ZnO Nanorods

  • Chapter
  • First Online:
  • 1870 Accesses

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

Photoluminescence emission from, and third harmonic generation by, ZnO nanorod samples grown using both low and high temperature methods are reported. Our results clearly show that PL emission at cryogenic temperatures from low temperature grown samples is both significantly weaker in intensity and spectrally broader than that from high temperature grown samples. The third harmonic generation efficiency of samples grown by both the low temperature and high temperature methods are however comparable to one another, and much larger than third harmonic generation at a bare quartz surface. Intensity dependence and interferometric frequency resolved optical gating measurements are used to study the third harmonic generation from both sample types. Laser pulse parameters are extracted for pulses subjected to both high and low chirp and our results indicate that ZnO nanostructures grown by low temperature methods allow excellent characterization of ultrafast pulses and are efficient for third harmonic generation and thus are excellent candidate materials for a variety of technological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.B. Djurisic, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2, 944–961 (2006)

    Article  Google Scholar 

  2. D. Byrne, E. McGlynn, J. Cullen, M.O. Henry, A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates. Nanoscale 3, 1675–1682 (2011)

    Article  ADS  Google Scholar 

  3. E. McGlynn, M.O. Henry, J.-P. Mosnier, ZnO wide bandgap semiconductor nanostructures: growth, characterisation and applications, in Handbook of Nanoscience and Technology, vol. II ed. by A.V. Narlikar, Y.Y. Fu (Oxford University Press, Oxford, 2009), pp. 575–624

    Google Scholar 

  4. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, General route to vertical ZnO nanowire arrays using textured seeds. Nano Letters 5, 1231–1236 (2005)

    Article  ADS  Google Scholar 

  5. B. Postels, M. Kreye, H.H. Wehmann, A. Bakin, N. Boukos, A. Travlos, A. Waag, Selective growth of ZnO nanorods in aqueous solution. Superlattices Microstruct. 42, 425–430 (2007)

    Article  ADS  Google Scholar 

  6. W. Bai, K. Yu, Q.X. Zhang, X. Zhu, D.Y. Peng, Z.Q. Zhu, N. Dai, Y. Sun, Large-scale synthesis of zinc oxide rose-like structures and their optical properties. Phys. E-Low-Dimens. Syst. Nanostruct. 40, 822–827 (2008)

    Article  ADS  Google Scholar 

  7. C. Bekeny, T. Voss, H. Gafsi, J. Gutowski, B. Postels, M. Kreye, A. Waag, Origin of the near-band-edge photoluminescence emission in aqueous chemically grown ZnO nanorods. J. Appl. Phys. 100, 104317 (2006)

    Article  ADS  Google Scholar 

  8. J. Grabowska, A. Meaney, K. Nanda, J.-P. Mosnier, M. Henry, J.-R. Duclère, E. McGlynn, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential. Phys. Rev. B 71, 115439 (2005)

    Article  ADS  Google Scholar 

  9. G.I. Petrov, V. Shcheslavskiy, V.V. Yakovlev, I. Ozerov, E. Chelnokov, W. Marine, Efficient third-harmonic generation in a thin nanocrystalline film of ZnO. Appl. Phys. Lett. 83, 3993–3995 (2003)

    Article  ADS  Google Scholar 

  10. K. Wang, J. Zhou, L. Yuan, Y. Tao, J. Chen, P. Lu, Z.L. Wang, Anisotropic third-order optical nonlinearity of a single micro/nanowire. Nano Letters 12, 833–838 (2012)

    Article  ADS  Google Scholar 

  11. S.K. Das, M. Bock, C. O’Neill, R. Grunwald, K.M. Lee, H.W. Lee, S. Lee, F. Rotermund, Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses. Appl. Phys. Lett. 93, 181112 (2008)

    Article  ADS  Google Scholar 

  12. K. Pedersen, C. Fisker, T.G. Pedersen, Second-harmonic generation from ZnO nanowires. Phys. Stat. Sol. 5, 2671–2674 (2008)

    Article  Google Scholar 

  13. Y. Kobayashi, D. Yoshitomi, K. Iwata, H. Takada, K. Torizuka, Ultrashort pulse characterization by ultra-thin ZnO, GaN, and AlN crystals. Opt. Express 15, 9748–9754 (2007)

    Article  ADS  Google Scholar 

  14. S.K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, R. Grunwald, Highly efficient THG in TiO2 nanolayers for third-order pulse characterization. Opt. Express 19, 16985–16995 (2011)

    Article  ADS  Google Scholar 

  15. C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, J. Xu, Multiphoton absorption induced amplified spontaneous emission from biocatalyst-synthesized ZnO nanorods. Appl. Phys. Lett. 92, 233116 (2008)

    Article  ADS  Google Scholar 

  16. D. Sridhar, J.N. Xie, J.K. Abraham, V.K. Varadan, Synthesis arid photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe. Nanosens. Microsens. Biosens. Syst. 6528 L5281–L5281 510 (2007)

    Google Scholar 

  17. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, A. Zappettini, Metal oxide nanocrystals for gas sensing. Sens. Actuators B Chem. 109, 2–6 (2005)

    Article  Google Scholar 

  18. J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, B. Chen, The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Res. Lett. 5, 1063–1071 (2010)

    Article  ADS  Google Scholar 

  19. S.M. Al-Hilli, M. Willander, A. Öst, P. Strålfors, ZnO nanorods as an intracellular sensor for pH measurements. J. Appl. Phys. 102, 084304 (2007)

    Article  ADS  Google Scholar 

  20. G. Stibenz, G. Steinmeyer, Interferometric frequency-resolved optical gating. Opt. Express 13, 2617–2626 (2005)

    Article  ADS  Google Scholar 

  21. G. Stibenz, G. Steinmeyer, Structures of interferometric frequency-resolved optical gating. IEEE J. Sel. Top. Quantum Electron. 12, 286–296 (2006)

    Article  Google Scholar 

  22. D. Byrne, E. McGlynn, K. Kumar, M. Biswas, M.O. Henry, G. Hughes, A study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays. Cryst. Growth Des. 10, 2400–2408 (2010)

    Article  Google Scholar 

  23. D. Byrne, E. McGlynn, M.O. Henry, K. Kumar, G. Hughes, A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays. Thin Solid Films 518, 4489–4492 (2010)

    Article  ADS  Google Scholar 

  24. F. Güell, J.O. Ossó, A.R. Goñi, A. Cornet, J.R. Morante, Synthesis and optical spectroscopy of ZnO nanowires. Superlattices Microstruct. 45, 271–276 (2009)

    Article  ADS  Google Scholar 

  25. F. Güell, J.O. Ossó, A.R. Goñi, A. Cornet, J.R. Morante, Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy. Nanotechnology 20, 315701 (2009)

    Article  Google Scholar 

  26. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Bound exciton and donor–acceptor pair recombinations in ZnO. Phys. Stat. Solid 241, 231–260 (2004)

    Google Scholar 

  27. M. Strassburg, A. Rodina, M. Dworzak, U. Haboeck, I.L. Krestnikov, A. Hoffmann, O. Gelhausen, M.R. Phillips, H.R. Alves, A. Zeuner, D.M. Hofmann, B.K. Meyer, Identification of bound complexes in ZnO. Phys. Status Sol. 241, 607–611 (2004)

    Article  ADS  Google Scholar 

  28. M. Biswas, Growth and characterisation of ZnO nanostructures: excitonic properties and morphology. Ph.D. thesis, Dublin City University, School of Physical Sciences, 2010

    Google Scholar 

  29. M. Biswas, Y.S. Jung, H.K. Kim, K. Kumar, G.J. Hughes, S. Newcomb, M.O. Henry, E. McGlynn, Microscopic origins of the surface exciton photoluminescence peak in nanostructures. Phys. Rev. B 83, 235320 (2011)

    Article  ADS  Google Scholar 

  30. T. Tsang, Optical third-harmonic generation at interfaces. Phys. Rev. A 52, 4116–4125 (1995)

    Article  ADS  Google Scholar 

  31. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, W. Seeber, Second-harmonic performance of a-axis-oriented ZnO nanolayers on sapphire substrates. Appl. Phys. Lett. 87, 171108 (2005)

    Article  ADS  Google Scholar 

  32. A. Anderson, K.S. Deryckx, X.G. Xu, G. Steinmeyer, M.B. Raschke, Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Letters 10, 2519–2524 (2010)

    Article  ADS  Google Scholar 

  33. D. Marcuse, distortion in single-mode fibers. Appl. Opt. 19, 1653–1660 (1980)

    Article  ADS  Google Scholar 

  34. I. Walmsley, L. Waxer, C. Dorrer, The role of dispersion in ultrafast optics. Rev. Sci. Instrum. 72, 1–29 (2001)

    Google Scholar 

  35. RP Photonics Webpages, chromatic dispersion. http://www.rp-photonics.com/chromatic_dispersion.html

  36. S.K. Das, F. Güell, C. Gray, P.K. Das, R. Grunwald, E. McGlynn, ZnO nanorods for efficient third harmonic UV generation. Opt. Mater. Express 4.701–709 (2014)

    Google Scholar 

  37. S.K. Das, F. Güell, C. Gray, P.K. Das, R. Grunwald, E. McGlynn, ZnO nanorods for efficient third harmonic UV generation: erratum. Opt. Mater. Express 4, 1243 (2014)

    Google Scholar 

Download references

Acknowledgments

EMcG, FG and RG acknowledge LaserLab Europe funding under project MBI001954 enabling travel by EMcG and FG to MBI for extended research visits. RG also acknowledges partial funding of the work by DFG grants (numbers GR1782-12-1 and GR1782-12-2). CG and EMcG acknowledge the Irish Research Council (IRC; formerly the Irish Research Council for Science, Engineering and Technology, IRCSET) for a postgraduate scholarship under the EMBARK initiative. DB and EMcG acknowledge support from Science Foundation Ireland via the Strategic Research Cluster grant entitled “Functional Oxides and Related Materials for Electronics” (FORME). Finally, we gratefully acknowledge T. Elsaesser and M. Tischer (both MBI) for essential support and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enda McGlynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar Das, S. et al. (2015). Comparison of Linear and Nonlinear Optical Properties of ZnO Nanorods. In: Sakabe, S., Lienau, C., Grunwald, R. (eds) Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-12217-5_11

Download citation

Publish with us

Policies and ethics