A Comprehensive Exploration of Physical and Numerical Parameters in the Poisson–Boltzmann Equation for Applications to Receptor–Ligand Binding

A Practical Guide to PB
Chapter

Abstract

The prediction of ligand-binding affinities to biomolecules, such as proteins and nucleic acids, is a highly sought-after property in computational biophysics. In recent years, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) methodology has been widely adopted by the scientific community as an approach to obtain binding free energies. The application of the method to a range of biologically relevant systems can be attributed to its lower computational cost compared to alchemical free energy calculations, and recent developments in the software that make the method fairly easy to use. However, reports have shown that with this increased adoption by the scientific community, the error reported between computational predictions and experimental measurements has also increased. This increase in error may be attributed to incorrect or less rigorous usage of the underlying theories, particularly the PB implicit solvent model. The PB equation can seem trivial, yet in its application to biological systems it has a range of physical and numerical parameters to which its solution is highly sensitive. We comprehensively tested different parameters on three biological systems: Trypanosoma brucei RNA editing ligase–adenosine triphosphate, neuraminidase–oseltamivir, and DNA-netropsin complexes. In this chapter, we highlight the most notable of these parameters and propose practical guidelines for a handful of the most commonly utilized PB solvers.

Keywords

Poisson–Boltzmann equation Implicit solvent model Molecular surface Electrostatics Grid resolution Grid spacing Interior dielectric constant Polar solvation free energy Binding 

References

  1. 1.
    Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20(23):2839–2860Google Scholar
  2. 2.
    Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recog 24(2):149–164. doi:10.1002/jmr.1077
  3. 3.
    Shirts MR (2012) Best practices in free energy calculations for drug design computational drug discovery and design. In: Baron R (ed) Computational drug discovery and design, vol 819. Methods in molecular biology. Springer, New York, pp 425–467. doi:10.1007/978-1-61779-465-0_26
  4. 4.
    Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114(32):10235–10253. doi:10.1021/jp102971x
  5. 5.
    Gumbart JC, Roux B, Chipot C (2012) Standard binding free energies from computer simulations: what is the best strategy? J Chem Theor Comp 9(1):794–802. doi:10.1021/ct3008099 Google Scholar
  6. 6.
    Genheden S, Ryde U (2012) Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Proteins 80(5):1326–1342. doi:10.1002/prot.24029 PubMedGoogle Scholar
  7. 7.
    Singh N, Warshel A (2010) Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins 78(7):1705–1723. doi:10.1002/prot.22687 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Straatsma TP, Mccammon JA (1991) Multiconfiguration thermodynamic integration. J Chem Phys 95(2):1175–1188. doi:10.1063/1.461148 Google Scholar
  9. 9.
    Beveridge DL, DiCapua FM (1989) Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys. Biophys Chem 18:431–492. doi:10.1146/annurev.bb.18.060189.002243 PubMedGoogle Scholar
  10. 10.
    Aqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7(3):385–391. doi:10.1093/protein/7.3.385 PubMedGoogle Scholar
  11. 11.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897. doi:10.1021/ar000033j PubMedGoogle Scholar
  12. 12.
    Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate—DNA helices. J Am Chem Soc 120(37):9401–9409. doi:10.1021/ja981844+ Google Scholar
  13. 13.
    Swanson JMJ, Henchman RH, McCammon JA (2004) Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 86(1):67–74. doi:10.1016/s0006-3495(04)74084-9 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246(1–2):122–129. doi:10.1016/0009-2614(95)01082-K Google Scholar
  15. 15.
    Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born model suitable for macromolecules. J Phys Chem B 104(15):3712–3720. doi:10.1021/jp994072s Google Scholar
  16. 16.
    Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) Generalized born model with a simple, robust molecular volume correction. J Chem Theor Comp 3(1):156–169. doi:10.1021/ct600085e Google Scholar
  17. 17.
    Harris RC, Mackoy T, Fenley MO (2013) A Stochastic solver of the generalized born model. Mol Math Biol 1:63–74. doi:10.2478/mlbmb-2013-0003 Google Scholar
  18. 18.
    Beglov D, Roux B (1997) An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B 101(39):7821–7826. doi:10.1021/jp971083h Google Scholar
  19. 19.
    Du Q, Beglov D, Roux B (2000) Solvation free energy of polar and nonpolar molecules in water:? an extended interaction site integral equation theory in three dimensions. J Phys Chem B 104(4):796–805. doi:10.1021/jp992712l Google Scholar
  20. 20.
    Genheden S, Luchko T, Gusarov S, Kovalenko A, Ryde U (2010) An MM/3D-RISM approach for ligand binding affinities. J Phys Chem B 114(25):8505–8516. doi:10.1021/jp101461s PubMedGoogle Scholar
  21. 21.
    Palmer DS, Sørensen J, Schiøtt B, Fedorov MV (2013) Solvent binding analysis and computational alanine scanning of the Bovine Chymosin-Bovine k-casein complex using molecular integral equation theory. J Chem Theor Comp 9(12):5706–5717. doi:10.1021/ct400605x Google Scholar
  22. 22.
    Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25(2):238–250. doi:10.1002/jcc.10379 PubMedGoogle Scholar
  23. 23.
    Wang JM, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123(22):5221–5230. doi:10.1021/ja003834q PubMedGoogle Scholar
  24. 24.
    Moreira IS, Fernandes PA, Ramos MJ (2007) Computational alanine scanning mutagenesis—an improved methodological approach. J Comput Chem 28:644–654. doi:10.1002/jcc.20566 PubMedGoogle Scholar
  25. 25.
    Wong S, Amaro RE, McCammon JA (2009) MM-PBSA captures key role of intercalating water molecules at a protein-protein interface. J Chem Theor Comput 5(2):422–429. doi:10.1021/ct8003707 Google Scholar
  26. 26.
    Rastelli G, Rio AD, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31(4):797–810. doi:10.1002/jcc.21372 PubMedGoogle Scholar
  27. 27.
    Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. the accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. doi:10.1021/ci100275a PubMedCentralPubMedGoogle Scholar
  28. 28.
    Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48(12):4040–4048. doi:10.1021/jm049081q PubMedGoogle Scholar
  29. 29.
    Shirts MR, Mobley DL, Brown SP (2010) Free-energy calculations in structure-based drug design drug design. In: Merz KM, Ringe D, Reynolds CH (eds) Drug design—structure- and ligand-based approaches. Cambridge University Press, Cambridge, pp 61–86. doi:10.1017/CBO9780511730412.007
  30. 30.
    Moreira IS, Fernandes PA, Ramos MJ (2005) Accuracy of the numerical solution of the Poisson-Boltzmann equation. J Mol Struct Theochem 729(1–2):11–18. doi:10.1016/j.theochem.2004.12.049 Google Scholar
  31. 31.
    Dong F, Vijayakumar M, Zhou H-X (2003) Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of Barnase and Barstar. Biophys J 85:49–60PubMedCentralPubMedGoogle Scholar
  32. 32.
    Gilson MK, Rashin A, Fine R, Honig B (1985) On the calculation of electrostatic interactions in proteins. J Mol Biol 184(3):503–516. doi:10.1016/0022-2836(85)90297-9 PubMedGoogle Scholar
  33. 33.
    Gilson MK, Sharp KA, Honig BH (1988) Calculating the electrostatic potential of molecules in solution: Method and error assessment. J Comput Chem 9(4):327–335. doi:10.1002/jcc.540090407 Google Scholar
  34. 34.
    Tjong H, Zhou H-X (2008) On the dielectric boundary in Poisson-Boltzmann calculations. J Chem Theor Comp 4:507–514Google Scholar
  35. 35.
    Boschitsch AH, Fenley MO, Zhou H-X (2002) Fast boundary element method for the linear Poisson-Boltzmann equation. J Phys Chem B 106(10):2741–2754. doi:10.1021/jp013607q Google Scholar
  36. 36.
    Harris RC, Boschitsch AH, Fenley MO (2013) Influence of grid spacing in Poisson-Boltzmann equation binding energy estimation. J Chem Theo Comp 9(8):3677–3685. doi:10.1021/ct300765w Google Scholar
  37. 37.
    Fenley MO, Harris RC, Jayaram B, Boschitsch AH (2010) Revisiting the association of cationic groove-binding drugs to DNA using a Poisson-Boltzmann approach. Biophys J 99(3):879–886. doi:10.1016/j.bpj.2010.04.066 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Altman MD, Bardhan JP, White JK, Tidor B (2009) Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements. J Comput Chem 30(1):132–153. doi:10.1002/jcc.21027 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Bruccoleri RE, Novotny J, Davis ME, Sharp KA (1997) Finite difference Poisson-Boltzmann electrostatic calculations: Increased accuracy achieved by harmonic dielectric smoothing and charge antialiasing. J Comput Chem 18(2):268–276Google Scholar
  40. 40.
    Kottmann S (2008) Harmonic averaging of smooth permittivity functions in finite-difference Poisson-Boltzmann electrostatics. Theor Chem Account 119(5–6):421–427. doi:10.1007/s00214-007-0397-0 Google Scholar
  41. 41.
    Fogolari F, Brigo A, Molinari H (2002) The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recog 15(6):377–392. doi:10.1002/jmr.577 Google Scholar
  42. 42.
    Genheden S, Mikulskis P, Hu L, Kongsted J, Soderhjelm P, Ryde U (2011) Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. J Am Chem Soc 133(33):13081–13092. doi:10.1021/ja202972m PubMedGoogle Scholar
  43. 43.
    Tan C, Tan Y-H, Luo R (2007) Implicit nonpolar solvent models. J Phys Chem B 111(42):12263–12274. doi:10.1021/jp073399n PubMedGoogle Scholar
  44. 44.
    Wagoner JA, Baker NA (2006) Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc Natl Acad Sci U S A 103(22):8331–8336. doi:10.1073/pnas.0600118103 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Dzubiella J, Swanson JMJ, McCammon JA (2006) Coupling nonpolar and polar solvation free energies in implicit solvent models. J Chem Phys 124(8):-. doi:10.1063/1.2171192
  46. 46.
    Dzubiella J, Swanson JMJ, McCammon JA (2006) Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys Rev Lett 96(8):087802PubMedGoogle Scholar
  47. 47.
    Sørensen J, Palmer DS, Schiott B (2013) Hot-spot mapping of the interactions between Chymosin and Bovine Kappa-Casein. J Agric Food Chem 61(33):7949–7959. doi:10.1021/jf4021043 PubMedGoogle Scholar
  48. 48.
    Shaikh SA, Ahmed SR, Jayaram B (2004) A molecular thermodynamic view of DNA-drug interactions: a case study of 25 minor-groove binders. Arch. Biochem. Biophys. 429(1):81–99. doi:10.1016/j.abb.2004.05.019 PubMedGoogle Scholar
  49. 49.
    Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–913. doi:10.1016/S0022-2836(03)00610-7 PubMedGoogle Scholar
  50. 50.
    Warwicker J, Watson HC (1982) Calculation of the electric potential in the active site cleft due to \(\alpha \)-helix dipoles. J Mol Biol 157(4):671–679. doi: 10.1016/0022-2836(82)90505-8 PubMedGoogle Scholar
  51. 51.
    Klapper I, Hagstrom R, Fine R, Sharp K, Honig B (1986) Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification. Proteins 1(1):47–59. doi:10.1002/prot.340010109 PubMedGoogle Scholar
  52. 52.
    Bredenberg JH, Russo C, Fenley MO (2008) Salt-mediated electrostatics in the association of TATA binding proteins to DNA: A combined molecular mechanics/Poisson-Boltzmann study. Biophys J 94(12):4634–4645PubMedCentralPubMedGoogle Scholar
  53. 53.
    Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE (1985) Binding of an antitumor drug to DNA: Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. J Mol Biol 183(4):553–563. doi:10.1016/0022-2836(85)90171-8 PubMedGoogle Scholar
  54. 54.
    Deng J, Schnaufer A, Salavati R, Stuart KD, Hol WG (2004) High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. J Mol Biol 343(3):601–613. doi:10.1016/j.jmb.2004.08.041 PubMedGoogle Scholar
  55. 55.
    Li Q, Qi J, Zhang W, Vavricka CJ, Shi Y, Wei J, Feng E, Shen J, Chen J, Liu D, He J, Yan J, Liu H, Jiang H, Teng M, Li X, Gao GF (2010) The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17(10):1266–1268. doi:10.1038/nsmb.1909 PubMedGoogle Scholar
  56. 56.
    Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107):45–49. doi:10.1038/nature05114 PubMedGoogle Scholar
  57. 57.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28(1):235–242 gkd090[pii]PubMedCentralPubMedGoogle Scholar
  58. 58.
    Bren U, Hodoscek M, Koller J (2005) Development and validation of empirical force field parameters for netropsin. J Chem Inf Model 45(6):1546–1552. doi:10.1021/ci050151r PubMedGoogle Scholar
  59. 59.
    Meagher KL, Redman LT, Carlson HA (2003) Development of polyphosphate parameters for use with the AMBER force field. J Comput Chem 24:1016–1025PubMedGoogle Scholar
  60. 60.
    Amaro RE, Minh DD, Cheng LS, Lindstrom WM Jr, Olson AJ, Lin JH, Li WW, McCammon JA (2007) Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc 129(25):7764–7765. doi:10.1021/ja0723535 PubMedGoogle Scholar
  61. 61.
    Case TAD DA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M.-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, and Kollman PA (2010) Amber 11, 11th edn. University of California, San FranciscoGoogle Scholar
  62. 62.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci 98(18):10037–10041. doi:10.1073/pnas.181342398 PubMedCentralPubMedGoogle Scholar
  63. 63.
    Luo R, David L, Gilson MK (2002) Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J Comput Chem 23(13):1244–1253. doi:10.1002/jcc.10120 PubMedGoogle Scholar
  64. 64.
    Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi:10.1002/jcc.20290 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIRE Comp Mol Sci 3(2):198–210. doi:10.1002/wcms.1121 Google Scholar
  66. 66.
    Li L, Li C, Sarkar S, Zhang J, Witham S, Zhang Z, Wang L, Smith N, Petukh M, Alexov E (2012) DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys 5(1):1–11. doi:10.1186/2046-1682-5-9 Google Scholar
  67. 67.
    Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. J Comput Chem 23(1):128–137. doi:10.1002/jcc.1161 PubMedGoogle Scholar
  68. 68.
    Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, Ryde U (2006) Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49(22):6596–6606. doi:10.1021/jm0608210 PubMedGoogle Scholar
  69. 69.
    Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL (2004) Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25(2):265–284. doi:10.1002/jcc.10378 PubMedGoogle Scholar
  70. 70.
    Singh SB, Kollman PA (1999) Calculating the absolute free energy of association of netropsin and DNA. J Am Chem Soc 121:3267–3271. doi:10.1021/ja983118c Google Scholar
  71. 71.
    Masukawa KM, Kollman PA, Kuntz ID (2003) Investigation of Neuraminidase-substrate recognition using molecular dynamics and free energy calculations. J Med Chem 46(26):5628–5637. doi:10.1021/jm030060q PubMedGoogle Scholar
  72. 72.
    Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for End-state free energy calculations. J Chem Theor Comp 8(9):3314–3321. doi:10.1021/ct300418h Google Scholar
  73. 73.
    Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68(3):441–451. doi:10.1021/j100785a001 Google Scholar
  74. 74.
    Tsui V, Case DA (2001) Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers 56(4):275–291. doi:10.1002/1097-0282(2000)56:4275:AID-BIP100243.0.CO;2-E Google Scholar
  75. 75.
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Gr Model 25(2):247–260. doi:10.1016/j.jmgm.2005.12.005 Google Scholar
  76. 76.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25(9):1157–1174. doi:10.1002/jcc.20035 PubMedGoogle Scholar
  77. 77.
    Nina M, Im W, Bt Roux (1999) Optimized atomic radii for protein continuum electrostatics solvation forces. Biophys Chem 78(1–2):89–96. doi:10.1016/S0301-4622(98)00236-1 PubMedGoogle Scholar
  78. 78.
    Nina M, Beglov D, Roux B (1997) Atomic radii for continuum electrostatics calculations based on molecular dynamics free energy simulations. J Phys Chem B 101(26):5239–5248. doi:10.1021/jp970736r Google Scholar
  79. 79.
    Swanson JMJ, Wagoner JA, Baker NA, McCammon JA (2007) Optimizing the Poisson dielectric boundary with explicit solvent forces and energies: Lessons learned with Atom-centered dielectric functions. J Chem Theor Comp 3(1):170–183. doi:10.1021/ct600216k Google Scholar
  80. 80.
    Swanson JMJ, Adcock SA, McCammon JA (2005) Optimized radii for Poisson-Boltzmann calculations with the AMBER force field. J Chem Theor Comp 1(3):484–493. doi:10.1021/ct049834o Google Scholar
  81. 81.
    Tan CH, Yang LJ, Luo R (2006) How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? a quantitative analysis. J Phys Chem B 110:18680–18687PubMedGoogle Scholar
  82. 82.
    Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration Free-energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988. doi:10.1021/j100058a043 Google Scholar
  83. 83.
    Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting Small-molecule solvation free energies: An informal blind test for computational chemistry. J Med Chem 51(4):769–779. doi:10.1021/jm070549+ PubMedGoogle Scholar
  84. 84.
    Czodrowski P, Dramburg I, Sotriffer CA, Klebe G (2006) Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes. Proteins 65(2):424–437. doi:10.1002/prot.21110 PubMedGoogle Scholar
  85. 85.
    Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucl Acids Res 35:W522–525. doi:10.1093/nar/gkm276 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA (2012) Biomolecular electrostatics and solvation: a computational perspective. Q Rev Biophys 45(4):427–491. doi:10.1017/S003358351200011X PubMedCentralPubMedGoogle Scholar
  87. 87.
    Connolly ML (1983) Analytical molecular surface calculation. J Appl Cryst 16:548–558Google Scholar
  88. 88.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi:10.1063/1.445869 Google Scholar
  89. 89.
    Sørensen J, Hamelberg D, Schiott B, McCammon JA (2007) Comparative MD analysis of the stability of transthyretin providing insight into the fibrillation mechanism. Biopolymers 86(1):73–82. doi:10.1002/bip.20705 PubMedGoogle Scholar
  90. 90.
    Pang X, Zhou H-X (2013) Poisson-Boltzmann calculations: van der Waals or molecular surface? Commun Comput Phys 13(1):1–12PubMedCentralPubMedGoogle Scholar
  91. 91.
    Aguilar B, Shadrach R, Onufriev AV (2010) Reducing the secondary structure Bias in the generalized born model via R6 effective radii. J Chem Theor Comp 6(12):3613–3630. doi:10.1021/ct100392h Google Scholar
  92. 92.
    Lee MS, Feig M, Salsbury FR, Brooks CL (2003) New analytic approximation to the standard molecular volume definition and its application to generalized born calculations. J Comput Chem 24(11):1348–1356. doi:10.1002/jcc.10272 PubMedGoogle Scholar
  93. 93.
    Swanson JMJ, Mongan J, McCammon JA (2005) Limitations of atom-centered dielectric functions in implicit solvent models. J Phys Chem B 109(31):14769–14772. doi:10.1021/jp052883s PubMedGoogle Scholar
  94. 94.
    Tsui V, Case DA (2001) Calculations of the absolute free energies of binding between RNA and metal Ions using molecular dynamics simulations and continuum electrostatics. J Phys Chem B 105:11314–11325. doi:10.1021/jp011923z Google Scholar
  95. 95.
    Grazioso G, Cavalli A, De Amici M, Recanatini M, De Micheli C (2008) Alpha7 nicotinic acetylcholine receptor agonists: Prediction of their binding affinity through a molecular mechanics Poisson-Boltzmann surface area approach. J Comput Chem 29(15):2593–2602. doi:10.1002/jcc.21019 PubMedGoogle Scholar
  96. 96.
    Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55(2):383–394. doi:10.1002/prot.20033 PubMedGoogle Scholar
  97. 97.
    Nguyen H, Roe DR, Simmerling C (2013) Improved generalized born solvent model parameters for protein simulations. J Chem Theor Comput 9(4):2020–2034. doi:10.1021/ct3010485 Google Scholar
  98. 98.
    Muddana HS, Sapra NV, Fenley AT, Gilson MK (2013) The electrostatic response of water to neutral polar solutes: Implications for continuum solvent modeling. J Chem Phys 138(22):224504. doi:10.1063/1.4808376 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Greenidge PA, Kramer C, Mozziconacci J-C, Wolf RM (2012) MM/GBSA binding energy prediction on the PDBbind data set: Successes, failures, and directions for further improvement. J Chem Inf Model 53(1):201–209. doi:10.1021/ci300425v PubMedGoogle Scholar
  100. 100.
    Zhu Y-L, Beroza P, Artis DR (2013) Including explicit water molecules as part of the protein structure in MM/PBSA calculations. J Chem Inf Model 54(2):462–469. doi:10.1021/ci4001794 Google Scholar
  101. 101.
    Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorg Med Chem 15(24):7865–7877. doi:10.1016/j.bmc.2007.08.019 PubMedGoogle Scholar
  102. 102.
    Schutz CN, Warshel A (2001) What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 44(4):400–417. doi:10.1002/prot.1106 PubMedGoogle Scholar
  103. 103.
    Kostjukov VV, Hernandez Santiago AA, Rojas Rodriguez F, Rosas Castilla S, Parkinson JA, Evstigneev MP (2012) Energetics of ligand binding to the DNA minor groove. Phys Chem Chem Phys 14(16):5588–5600. doi:10.1039/c2cp40182g PubMedGoogle Scholar
  104. 104.
    Gilson MK, Honig BH (1986) The dielectric-constant of a folded protein. Biopolymers 25(11):2097–2119. doi:10.1002/bip.360251106 PubMedGoogle Scholar
  105. 105.
    Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069. doi:10.1016/S0006-3495(97)78756-3 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Karp DA, Gittis AG, Stahley MR, Fitch CA, Stites WE, Garcia-Moreno EB (2007) High apparent dielectric constant inside a protein reflects structural reorganization coupled to the ionization of an internal Asp. Biophys J 92(6):2041–2053. doi:10.1529/biophysj.106.090266 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Wang W, Kollman PA (2000) Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol 303(4):567–582. doi:10.1006/jmbi.2000.4057 PubMedGoogle Scholar
  108. 108.
    Bt Roux, Simonson T (1999) Implicit solvent models. Biophys Chem 78(1–2):1–20. doi:10.1016/S0301-4622(98)00226-9 Google Scholar
  109. 109.
    Simonson T (2008) Dielectric relaxation in proteins: the computational perspective. Photosynth. Res. 97(1):21–32. doi:10.1007/s11120-008-9293-2 PubMedGoogle Scholar
  110. 110.
    Simonson T (2001) Macromolecular electrostatics: continuum models and their growing pains. Curr Opin Struc Biol 11(2):243–252. doi:10.1016/S0959-440X(00)00197-4 Google Scholar
  111. 111.
    Simonson T (1999) Dielectric relaxation in proteins: Microscopic and macroscopic models. Int J Quantum Chem 73(1):45–57. doi:10.1002/(SICI)1097-461X(1999) 73:1<45:AID-QUA5>3.0.CO;2-Q Google Scholar
  112. 112.
    Teixeira VH, Cunha CA, Machuqueiro M, Oliveira ASF, Victor BL, Soares CM, Baptista AM (2005) On the use of different dielectric constants for computing individual and pairwise terms in Poisson-Boltzmann studies of protein ionization equilibrium. J Phys Chem B 109(30):14691–14706. doi:10.1021/jp052259f PubMedGoogle Scholar
  113. 113.
    Sham YY, Muegge I, Warshel A (1998) The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophys J 74(4):1744–1753. doi:10.1016/S0006-3495(98)77885-3 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Kukic P, Farrell D, McIntosh LP, García-Moreno EB, Jensen KS, Toleikis Z, Teilum K, Nielsen JE (2013) Protein dielectric constants determined from NMR chemical shift perturbations. J Am Chem Soc 135(45):16968–16976. doi:10.1021/ja406995j PubMedGoogle Scholar
  115. 115.
    Bone S, Pethig R (1985) Dielectric studies of protein hydration and hydration-induced flexibility. J Mol Biol 181(2):323–326. doi:10.1016/0022-2836(85)90096-8 PubMedGoogle Scholar
  116. 116.
    Im W, Beglov D, Roux B (1998) Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comp Phys Comm 111(1–3):59–75. doi:10.1016/s0010-4655(98)00016-2 Google Scholar
  117. 117.
    Chen Z, Baker NA, Wei GW (2010) Differential geometry based solvation model I: Eulerian formulation. J Comp Phys 229(22):8231–8258. doi:10.1016/j.jcp.2010.06.036 Google Scholar
  118. 118.
    Grant JA, Pickup BT, Nicholls A (2001) A smooth permittivity function for Poisson-Boltzmann solvation methods. J Comput Chem 22(6):608–640. doi:10.1002/jcc.1032 Google Scholar
  119. 119.
    Gallicchio E, Levy RM (2004) AGBNP: An analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J Comput Chem 25(4):479–499. doi:10.1002/jcc.10400
  120. 120.
    Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric “Constant” of proteins: Smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theor Comp 9(4):2126–2136. doi:10.1021/ct400065j Google Scholar
  121. 121.
    Tjong H, Zhou H-X (2007) GBr(6): A parameterization-free, accurate, analytical generalized born method. J Phys Chem B 111(11):3055–3061. doi:10.1021/jp066284c PubMedGoogle Scholar
  122. 122.
    Boschitsch AH, Fenley MO (2007) A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation. J Comput Chem 28(5):909–921. doi:10.1002/jcc.20565 PubMedGoogle Scholar
  123. 123.
    Bruccoleri RE (1993) Grid positioning independence and the reduction of self-energy in the solution of the Poisson-Boltzmann equation. J Comput Chem 14(12):1417–1422. doi:10.1002/jcc.540141202 Google Scholar
  124. 124.
    Woods C, King M, Essex J (2001) The configurational dependence of binding free energies: A Poisson-Boltzmann study of Neuraminidase inhibitors. J Comp-Aid Mol Design 15(2):129–144. doi:10.1023/A:1008197913568
  125. 125.
    Shen J, Quiocho FA (1995) Calculation of binding energy differences for receptor-ligand systems using the Poisson-Boltzmann method. J Comput Chem 16(4):445–448. doi:10.1002/jcc.540160407 Google Scholar
  126. 126.
    Yam WK, Wahab HA (2009) Molecular insights into 14-membered macrolides using the MM-PBSA method. J Chem Inf Model 49:1558–1567. doi:10.1021/ci8003495 PubMedGoogle Scholar
  127. 127.
    Talley K, Kundrotas P, Alexov E (2008) Modeling salt dependence of protein-protein association: Linear vs non-linear Poisson-Boltzmann equation. Commun Comput Phys 3:1071–1086Google Scholar
  128. 128.
    Li C, Petukh M, Li L, Alexov E (2013) Continuous development of schemes for parallel computing of the electrostatics in biological systems: Implementation in DelPhi. J Comput Chem 34(22):1949–1960. doi:10.1002/jcc.23340 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Baker NA, Sept D, Holst MJ, McCammon JA (2001) The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers. IBM J Res Devel 45(3.4):427–438. doi:10.1147/rd.453.0427 Google Scholar
  130. 130.
    Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent Ions. J Phys Chem B 105(28):6507–6514. doi:10.1021/jp010454y Google Scholar
  131. 131.
    Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90(3):509–521. doi:10.1021/cr00101a005 Google Scholar
  132. 132.
    Boschitsch AH, Fenley MO (2004) Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation. J Comput Chem 25(7):935–955. doi:10.1002/jcc.20000 PubMedGoogle Scholar
  133. 133.
    Fogolari F, Zuccato P, Esposito G, Viglino P (1999) Biomolecular electrostatics with the linearized Poisson-Boltzmann equation. Biophys J 76(1):1–16PubMedCentralPubMedGoogle Scholar
  134. 134.
    Murtola T, Vattulainen I, Falck E (2008) Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations. Proteins 71(4):1995–2011. doi:10.1002/prot.21878 PubMedGoogle Scholar
  135. 135.
    Ramos RM, Moreira IS (2013) Computational alanine scanning mutagenesis-an improved methodological approach for protein-DNA complexes. J Chem Theor Comp 9(9):4243–4256. doi:10.1021/ct400387r Google Scholar
  136. 136.
    Tjong H, Zhou H-X (2007) GBr 6NL: A generalized born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation. J Chem Phys 126(19):-. doi:10.1063/1.2735322
  137. 137.
    Colmenares J, Ortiz J, Rocchia W (2013) GPU linear and nonlinear Poisson-Boltzmann solver module for DelPhi. Bioinform. doi:10.1093/bioinformatics/btt699 Google Scholar
  138. 138.
    Gilson MK, Honig BH (1987) Calculation of electrostatic potentials in an enzyme active site. Nature 330(6143):84–86PubMedGoogle Scholar
  139. 139.
    Boschitsch AH, Fenley MO (2011) A fast and robust Poisson-Boltzmann solver based on adaptive Cartesian grids. J Chem Theor Comp 7(5):1524–1540. doi:10.1021/ct1006983 Google Scholar
  140. 140.
    Mirzadeh M, Theillard M, Gibou F (2011) A second-order discretization of the nonlinear Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids. J Comp Phys 230(5):2125–2140. doi:10.1016/j.jcp.2010.12.008 Google Scholar
  141. 141.
    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Binding DB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucl Acids Res 35:D198–D201. doi:10.1093/nar/gkl999
  142. 142.
    Ellingson BA, Skillman AG, Nicholls A (2010) Analysis of SM8 and zap TK calculations and their geometric sensitivity. J Comput Aid Mol Des 24(4):335–342. doi:10.1007/s10822-010-9355-3 Google Scholar
  143. 143.
    Nicholls A, Wlodek S, Grant JA (2010) SAMPL2 and continuum modeling. J Comput Aid Mol Des 24(4):293–306. doi:10.1007/s10822-010-9334-8 Google Scholar
  144. 144.
    Webb LJ, Boxer SG (2008) Electrostatic fields near the active site of human aldose reductase: 1. new inhibitors and vibrational stark effect measurements. Biochemistry 47:1588–1598PubMedGoogle Scholar
  145. 145.
    Park ES, Andrews SS, Hu RB, Boxer SG (1999) Vibrational stark spectroscopy in proteins: A probe and calibration for electrostatic fields. J Phys Chem B 103:9813–9817Google Scholar
  146. 146.
    Ritchie AW, Webb LJ (2013) Optimizing electrostatic field calculations with the adapative Poisson-Boltzman solver to predicted electric fields at protein-protein interfaces. J Phys Chem B. doi:10.1021/jp4092656
  147. 147.
    Rankin KN, Sulea T, Purisima EO (2003) On the transferability of hydration-parametrized continuum electrostatics models to solvated binding calculations. J Comput Chem 24(8):954–962. doi:10.1002/jcc.10261 PubMedGoogle Scholar
  148. 148.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. doi:10.1002/jcc.21367 PubMedCentralPubMedGoogle Scholar
  149. 149.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. doi:10.1021/jp973084f
  150. 150.
    Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236. doi:10.1021/Ja9621760 Google Scholar
  151. 151.
    Decherchi S, Rocchia W (2013) A general and robust Ray-Casting-based algorithm for triangulating surfaces at the nanoscale. PLoS One 8(4):e59744. doi:10.1371/journal.pone.0059744 PubMedCentralPubMedGoogle Scholar
  152. 152.
    Chen Z, Baker N, Wei G (2011) Differential geometry based solvation model II: Lagrangian formulation. J Math Biol 63(6):1139–1200. doi:10.1007/s00285-011-0402-z PubMedCentralPubMedGoogle Scholar
  153. 153.
    Chen D, Chen Z, Chen C, Geng W, Wei G-W (2011) MIBPB: A software package for electrostatic analysis. J Comput Chem 32(4):756–770. doi:10.1002/jcc.21646 PubMedCentralPubMedGoogle Scholar
  154. 154.
    Jo S, Vargyas M, Vasko-Szedlar J, Roux B, Im W (2008) PBEQ-solver for online visualization of electrostatic potential of biomolecules. Nucl Acids Res 36:W270–W275. doi:10.1093/nar/gkn314 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: The biomolecular simulation program. J Comput Chem 30(10):1545–1614. doi:10.1002/jcc.21287 PubMedCentralPubMedGoogle Scholar
  156. 156.
    Ilin A, Bagheri B, Scott LR, Briggs James M, McCammon JA (1995) Parallelization of Poisson-Boltzmann and Brownian dynamics calculations. In: Parallel computing in computational chemistry. ACS symposium series, vol 592. American Chemical Society, pp 170–185. doi:10.1021/bk-1995-0592.ch012
  157. 157.
    Bashford D, Gerwert K (1992) Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol 224(2):473–486. doi:10.1016/0022-2836(92)91009-E PubMedGoogle Scholar
  158. 158.
    Bashford D (1997) An object-oriented programming suite for electrostatic effects in biological molecules an experience report on the MEAD project. In: Ishikawa Y, Oldehoeft R, Reynders JW, Tholburn M (eds) Scientific computing in object-oriented parallel environments. Lecture Notes in Computer Science, vol 1343. Springer, Berlin, pp 233-240. doi:10.1007/3-540-63827-X_66
  159. 159.
    Thomas DG, Chun J, Chen Z, Wei G, Baker NA (2013) Parameterization of a geometric flow implicit solvation model. J Comput Chem 34(8):687–695. doi:10.1002/jcc.23181 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of California at San DiegoLa JollaUSA
  2. 2.Institute of Molecular BiophysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations