Domain Ontology As Conceptual Model for Big Data Management: Application in Biomedical Informatics

  • Catherine Jayapandian
  • Chien-Hung Chen
  • Aman Dabir
  • Samden Lhatoo
  • Guo-Qiang Zhang
  • Satya S. Sahoo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8824)


The increasing capability and sophistication of biomedical instruments has led to rapid generation of large volumes of disparate data that is often characterized as biomedical “big data”. Effective analysis of biomedical big data is providing new insights to advance healthcare research, but it is difficult to efficiently manage big data without a conceptual model, such as ontology, to support storage, query, and analytical functions. In this paper, we describe the Cloudwave platform that uses a domain ontology to support optimal data partitioning, efficient network transfer, visualization, and querying of big data in the neurology disease domain. The domain ontology is used to define a new JSON-based Cloudwave Signal Format (CSF) for neurology signal data. A comparative evaluation of the ontology-based CSF with existing data format demonstrates that it significantly reduces the data access time for query and visualization of large scale signal data.


Domain Ontology Biomedical Big Data Cloud-based Data Management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Madden, S.: From databases to big data. IEEE Internet Computing 16, 4–6 (2012)CrossRefGoogle Scholar
  2. 2.
    Embley, D.W., Liddle, S.W.: Big Data - Conceptual Modeling to the Rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology Language Primer. World Wide Web Consortium W3C (2009)Google Scholar
  4. 4.
    Ashburner, M., et al.: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)CrossRefGoogle Scholar
  5. 5.
    Rosse, C., Mejino Jr., J.L.: A reference ontology for biomedical informatics: The Foundational Model of Anatomy. Journal of Biomedical Informatics 36, 478–500 (2003)CrossRefGoogle Scholar
  6. 6.
    Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 Web Ontology Language Direct Semantics, World Wide Web Consortium W3C December 11 (2012)Google Scholar
  7. 7.
    Ferrucci, D., et al.: Building Watson: An Overview of the DeepQA Project. AI Magazine 31, 59–79 (2010)Google Scholar
  8. 8.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies with DOLCE. In: 13th International Conference on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web, Siguenza, Spain, pp. 166–181 (2002)Google Scholar
  9. 9.
    Smith, B., Ceusters, W., Klagges, B., Kohler, J., Kumar, A., Lomax, J., Mungall, C., Neuhaus, F., Rector, A.L., Rosse, C.: Relations in biomedical ontologies. Genome Biol. 6, R46 (2005)Google Scholar
  10. 10.
    Brain Research through Advancing Innovative Neurotechnologies (BRAIN), The White House, Washington, D.C. (2013)Google Scholar
  11. 11.
    Schwartzkroin, P.A.: Cellular electrophysiology of human epilepsy. Epilepsy Research 17, 185–192 (1994)CrossRefGoogle Scholar
  12. 12.
    Koden, N.: Nihon Koden Neurology,
  13. 13.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. Presented at the IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), NV (2010)Google Scholar
  14. 14.
    Kemp, B., Olivan, J.: European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clinical Neurophysiology 114, 1755–1761 (2003)CrossRefGoogle Scholar
  15. 15.
    Henson, C.A., Thirunarayan, K., Sheth, A.P.: An Efficient Bit Vector Approach to Semantics-Based Machine Perception in Resource-Constrained Devices. In: International Semantic Web Conference, Washington D.C, pp. 149–164 (2012)Google Scholar
  16. 16.
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: A column-oriented DBMS. In: 31st International Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, pp. 553–564 (2005)Google Scholar
  17. 17.
    Sekhavat, Y.A., Parsons, J.: Sliced column-store (SCS): ontological foundations and practical implications. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 102–115. Springer, Heidelberg (2012)Google Scholar
  18. 18.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI 2004, San Francisco (2004)Google Scholar
  19. 19.
    Hamer, H.M., Lüders, H.O.: Electrode montages and localization of potentials in clinical electroencephalography. In: Levin, K., Luders, H.O. (eds.) Comprehensive Clinical Neurophysiology, pp. 358–386. WB Saunders Company (2000)Google Scholar
  20. 20.
    Sahoo, S.S., Lhatoo, S.D., Gupta, D.K., Cui, L., Zhao, M., Jayapandian, C., Bozorgi, A., Zhang, G.Q.: Epilepsy and seizure ontology: towards an epilepsy informatics infrastructure for clinical research and patient care. Journal of American Medical Association 21, 82–89 (2014)Google Scholar
  21. 21.
    Sahoo, S.S., Zhao, M., Luo, L., Bozorgi, A., Gupta, A., Lhatoo, S.D., Zhang, G.Q.: OPIC: Ontology-driven Patient Information Capturing System for Epilepsy. In: The American Medical Informatics Association (AMIA) Annual Symposium, Chicago, pp. 799–808 (2012)Google Scholar
  22. 22.
    Cui, L., Bozorgi, A., Lhatoo, S.D., Zhang, G.Q., Sahoo, S.S.: EpiDEA: Extracting Structured Epilepsy and Seizure Information from Patient Discharge Summaries for Cohort Identification. In: The American Medical Informatics Association (AMIA) Annual Symposium, Chicago, pp. 1191–1200 (2012)Google Scholar
  23. 23.
    Loddenkemper, T., Kellinghaus, C., Wyllie, E., Najm, I.M., Gupta, A., Rosenow, F., Luders, H.O.: A proposal for a five-dimensional patient oriented epilepsy classification. Epileptic Disord 7, 308–316 (2005)Google Scholar
  24. 24.
    Kellinghaus, C., et al.: Suggestion for a new, patient-oriented epilepsy classification. Nervenarzt 77, 961–969 (2006)CrossRefGoogle Scholar
  25. 25.
    Nelson, S.J., et al.: Normalized names for clinical drugs: RxNorm at 6 years. J. Am. Med. Inform. Assoc. 18, 441–448 (2011)CrossRefGoogle Scholar
  26. 26.
    Crockford, D.: Introducing JSON (1999),

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Catherine Jayapandian
    • 1
  • Chien-Hung Chen
    • 1
  • Aman Dabir
    • 2
  • Samden Lhatoo
    • 2
  • Guo-Qiang Zhang
    • 1
  • Satya S. Sahoo
    • 1
  1. 1.Division of Medical InformaticsCase Western Reserve UniversityClevelandUSA
  2. 2.Department of NeurologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations