Skip to main content

Prediction of Hydrological Risk for Sustainable Use of Water in Northern Mexico

  • Chapter
Sustainability of Integrated Water Resources Management

Abstract

Among surface hydrologic phenomena, it is common to find series of events of random occurrence in time. Poisson processes lead to probabilistic models that are appropriate to explain the number of events produced by certain phenomena. For instance, in surface hydrology, it is quite frequent to relate the Poisson distribution to the occurrence of rainfall events. The so-called leak distribution consists of the simultaneous use of a Poisson law to represent the probability of occurrence of an event and an exponential distribution applied to the mean magnitude of such event. Originally introduced to simulate gas leaks in distribution networks in France, from where it takes its name, the leak distribution has important applications in hydrology. In this paper, the theoretical basis of the law and the method for the estimation of its parameters are introduced. Some applications are included, such as further knowledge of the precipitation regime of hydrologic region No. 10 in Mexico. In this case, through the knowledge of the two parameters of this law, which can be associated to physical variables, it is possible to determine the temporal and spatial distribution of precipitation in detail. As an additional application, the use of this law in drought analysis is shown. Here, the distribution parameters are related to the Standardized Precipitation Index, SPI, allowing the construction of a modified SPI that much better represents the spatial variability of drought periods in the watershed. According to the results presented in this chapter, the use of the leak distribution in surface hydrology processes allows deeper knowledge of regional climatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Zeid I, Parent É, Bobée B (2004) The stochastic modeling of low flows by the alternating point processes approach: methodology and application. J Hydrol 285(1–4):41–61

    Article  Google Scholar 

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265(1–4):164–177

    Article  Google Scholar 

  • Babusiaux C (1969) Etude statistique de la loi de fuites. Thèse 3eme cycle, Faculté des sciences de Paris

    Google Scholar 

  • Bacchi B, Becciu G, Kottegoda N (1994) T. Bivariate exponential model applied to intensities and durations of extreme rainfall. J Hydrol 155(1–2):225–236

    Article  Google Scholar 

  • Calder IR (1986) A stochastic model of rainfall interception. J Hydrol 89(1–2):65–71

    Article  Google Scholar 

  • Cameron D, Beven K, Tawn J (2000) An evaluation of three stochastic rainfall models. J Hydrol 228(1–2):130–149

    Article  Google Scholar 

  • Coles S, Pericchi LR, Sisson S (2003) A fully probabilistic approach to extreme rainfall modeling. J Hydrol 273(1–4):35–50

    Article  Google Scholar 

  • Edwards D, McKee T (1997) Characteristics of 20th century drought in the United States at Multiple Time scales. Climatology Report No. 97–2. Colorado State University, Department of Atmospheric Science, Paper No. 634, 155 p

    Google Scholar 

  • Escalante C, Reyes L (2002) Técnicas estadísticas en hidrología. Facultad de Ingeniería, Universidad Nacional Autónoma de México, UNAM, México. 298 p

    Google Scholar 

  • Gutiérrez-López MA (2003) Modélisation stochastique des régimes pluviométriques a l’échelle régionale pour la prévision des crues au Nord-Mexique. Doctoral thesis, Institute National Polytechnique de Grenoble, Grenoble, France. http://www.lthe.fr/PagePerso/boudevil/THESES/gutierrez_lopez_03.pdf.

  • Gutiérrez-López A, Lebel T, Descroix L (2002) Statistical analysis for modelling the hydrological risk in Northern Mexico. International Association for Hydraulic Research (IAHR) Hydraulic and Hydrological Aspects of Reliability and Safety of Hydraulic Structures, St. Petersburg

    Google Scholar 

  • Gutiérrez-López A, Lebel T, Mejía R (2005) Estudio espacio-temporal del régimen pluviométrico en la zona meridional de la República Mexicana. Revista Ingeniería Hidráulica en México, IMTA XX(1):57–65

    Google Scholar 

  • Hughes RL (2003) On detecting anomalous behaviour in runs. J Hydrol 278(1–4):253–266

    Article  Google Scholar 

  • Istok JD, Boersma L (1989) A stochastic cluster model for hourly precipitation data. J Hydrol 106(3–4):257–285

    Article  Google Scholar 

  • Kite GW (1988) Frequency and risk analyses in hydrology, Rev ed. Water Resources Publications, Littleton, 257 p

    Google Scholar 

  • Le Barbé L, Lebel T (1997) Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J Hydrol 188–189(1–4):43–73

    Article  Google Scholar 

  • Le Barbé L, Lebel T, Tapsoba D (2002) Rainfall variability in West Africa during the years 1950–1990. J Clim 15(2):187–202

    Article  Google Scholar 

  • Lebel T, Laborde J (1988) A geostatistical approach for areal rainfall statistics assessment. Stoch Hydrol Hydraul 2:245–261

    Article  Google Scholar 

  • Lebel T, Le Barbé L (1997) Rainfall monitoring during HAPEX-Sahel. 2. Point and areal estimation at the event and seasonal scales. J Hydrol 188–189(1–4):97–122

    Article  Google Scholar 

  • López-Segovia L, Villaseñor-Alva J, Vaquera-Huerta H (2002) Dos pruebas de bondad de ajuste para procesos de Poisson no homogéneos. Revista Agrociencia 36:703–712

    Google Scholar 

  • McKee T, Doesken N, Kleist J (1993) Drought monitoring with multiple time scales. American Meteorological Society, 9th conference on applied climatology, pp 233–236

    Google Scholar 

  • Nouvelot JF, Descroix L (1996) Aridité et sécheresse du Nord-Mexique. Revue Trace México 30:9–25

    Google Scholar 

  • Onof C, Wheater HS (1994) Improvements to the modelling of British rainfall using a modified Ryom Parameter Bartlett-Lewis Rectangular Pulse Model. J Hydrol 157(1–4):177–195

    Article  Google Scholar 

  • Önöz BY, Bayazit M (2002) Troughs under threshold modeling of minimum flows in perennial streams. J Hydrol 258(1–4):187–197

    Article  Google Scholar 

  • Pandey GR, Nguyen V-T-V (1999) A comparative study of regression based methods in regional flood frequency analysis. J Hydrol 225(1–2):92–101

    Article  Google Scholar 

  • Pita M (2003) Un nouvel indice de sécheresse pour les domaines méditerranéens. Application au bassin du Guadalquivir (sud-ouest de l’Espagne). Publications de l’Association Intenrationale de Climatologie, vol 13, Nice, pp 225–234

    Google Scholar 

  • Saporta G (1990) Probabilités, analyse des données et statistique, Editions. Technip, Paris, 193 p. ISBN 2-7108-0565-0

    Google Scholar 

  • Seguis L (1989) La pluviometrie au Togo, Caracterisation Agronomique. Orstom Institut Francais de Recherche Scientifique pour le Developpement en Cooperation. Centre de Lomé. pp 63

    Google Scholar 

  • Sharma TC (1996) Simulation of the Kenyan longest dry and wet spells and the largest rain-sums using a Markov model. J Hydrol 178(1–4):55–67

    Article  Google Scholar 

  • Singh P, Kumar N (1997) Effect of orography on precipitation in the western Himalayan region. J Hydrol 199(1–2):183–206

    Article  Google Scholar 

  • Sivapalan M, Blöschl G (1998) Transformation of point rainfall to areal rainfall: intensity-duration-frequency curves. J Hydrol 204(1–4):150–167

    Article  Google Scholar 

  • Slimani M, Lebel T (1987) Comparison of three methods of estimating rainfall frequency parameters according to the duration of accumulation. Hydrologic frequency modeling. In: Singh VP (eds) Proceedings of the international symposium on flood frequency and risk analyses. Louisiana State University, Springer, Baton Rouge, pp 277–291, May 1986

    Google Scholar 

  • Tapsoba D (1997) Caracterisation evenementielle des regimes pluviometriques Ouest Africains et de leur recent changement. Th. D., Université de Paris XI (Orsay)

    Google Scholar 

  • Wilks DS (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210(1–4):178–191

    Article  Google Scholar 

  • Wotling G, Bouvier C, Danloux JY, Fritsch JM (2000) Regionalization of extreme precipitation distribution using the principal components of the topographical environment. J Hydrol 233(1–4):86–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Ruiz-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutiérrez-López, A., Lebel, T., Ruiz-González, I., Descroix, L., Duhne-Ramírez, M. (2015). Prediction of Hydrological Risk for Sustainable Use of Water in Northern Mexico. In: Setegn, S., Donoso, M. (eds) Sustainability of Integrated Water Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-319-12194-9_14

Download citation

Publish with us

Policies and ethics