Advances in Structural Monitoring by an Integrated Analysis of Sensor Measurements and 3D Building Model

  • Thomas BeckerEmail author
  • Sven Weisbrich
  • Cheng-Chieh Wu
  • Frank Neitzel
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


The use of open GIS standards offers a broad variety of potential, particularly in the field of data exchange, data storage, and interoperability. GML and CityGML are excellent examples for the ontological description of real world objects by means of an open standard whereas SensorML serves to describe measurements, sensors and measuring platforms. The use of such standards offers not only the possibility of using a common standardised language, but also the use of open service standards. The combination of spatial data and sensor standards in services and service-oriented architectures goes far beyond previous existing solutions on the market and provides a novel platform for monitoring structures. That in fact is far more than a simple data storage model. The methods and models presented in this contribution allow a direct integration of sensor data and its provision through an open standard language. In this case, all the intermediate steps at any time through an open service interface are addressed and may be made available and provided to different actors and stakeholders participating in a construction scenario. The great potential and the added value of such an information system is the permanent availability of measurement and object data and an associated integrated analysis of sensor data in combination with a finite element model (FEM). The automatic derivation of a finite element model from the 3D structure model, the visualisation of FEM, the provision of raw (measurement) data and sensor information for each time of measurement transform the platform into a universal tool in the field of structural monitoring. This contribution introduces the individual components, the standards used and the interaction between the components to an overall system.


Structural monitoring SensorML Finite Element Method Integrated analysis City model Building model 


  1. Botts M, Percivall G, Reed C, Davidson J (2006) OGC® sensor web enablement: overview and high level architecture. In: Nittel S, Labrinidis A, Stefanidis A (Hrsg) GeoSensor networks. Springer, pp 175–190Google Scholar
  2. Boller C, Staszewski WJ (2004) Structural health monitoring. In: Proceedings of the second European workshop on structural health monitoring, München, pp 7–9Google Scholar
  3. Bröring A, Echterhoff J, Jirka S, Simonis I, Everding T, Stasch C, Liang S, Lemmens R (2011) New generation sensor web enablement. Sensors 11(3):2652–2699CrossRefGoogle Scholar
  4. Bröring A, Stasch C, Echterhoff J (2012) OGC® sensor observation service interface standard, OpenGIS® Implementation Standard, version 2.0. Accessed 17 June 2014
  5. Erl T (2008) Soa: principles of service design, vol 1. Prentice Hall, Upper Saddle RiverGoogle Scholar
  6. Farrar C, Worden K (2007) An introduction to structural health monitoring. Philos Trans Soc A: Math Phys Eng Sci 365(1851):303–315CrossRefGoogle Scholar
  7. FENICS (2014) Accessed 22 Apr 2014
  8. Furtner P, Stöger M, Schreyer M (2013) SHM DATA—management, treatment, analysis and interpretation—a solution for permanent monitoring systems. In: 6th International conference on structural health monitoring of intelligent infrastructure, Hong Kong, 9–11 Dec 2013Google Scholar
  9. Gröger G, Kolbe TH, Nagel C, Häfele KH (2012) Open-GIS® city geography markup language (CityGML) encoding standard, version 2.0.0, OGC 08-007r2Google Scholar
  10. INSPIRE directive (2007) Directive 2007/2/EC of the European parliament and of the council of 14 March 2007 establishing an Infrastructure for spatial information in the European community (INSPIRE). Online: Accessed 22 Apr 2014
  11. Jäger, R (1988) Analyse und Optimierung geodätischer Netze nach spektralen Kriterien und mechanischen Analogien, DGK, Reihe C, Nr. 342, MünchenGoogle Scholar
  12. Kunde F (2013) CityGML in PostGIS : Portierung, Anwendung und Performanz-Analyse am Beipiel der 3D City Database von Berlin, Masterarbeit am Institut für Geographie, Universität Potsdam, unveröffentlichtGoogle Scholar
  13. Lienhart W (2007) Analysis of inhomogeneous structural monitoring data. Shaker Verlag, AachenGoogle Scholar
  14. Nagel C, Stadler A (2008) Die Oracle-Schnittstelle des Berliner 3D-Stadtmodells In: Clemen C (Hrsg) Entwicklerforum Geoinformationstechnik, Shaker Verlag, pp 197–221Google Scholar
  15. Neitzel F, Weisbrich S, Wu CC (2014) Integration der finite-elemente-methode in die ausgleichungsrechnung zur parameteridentifikation. In: Wieser A (ed) Ingenieur-vermessung 2014, Beiträge zum 17. Internationalen Ingenieurvermessungskurs Zürich, Herbert Wichmann Verlag, pp 301–310Google Scholar
  16. Ray S, Simion B, Brown AD (2011) Jackpine: a benchmark to evaluate spatial database performance. In: International conference on data engineering, IEEEGoogle Scholar
  17. Resch B (2012) Standardisierte Geosensornetzwerke für Umweltbeobachtung in naher Echtzeit. Accessed 22 April 2014
  18. Stadler A, Nagel C, König G, Kolbe TH (2008) Making interoperability persistent: a 3D geo database based on CityGML, In: Lee J, Zlatanova S (Hrsg) 3D Geo-information sciences, selected papers from the 3rd international workshop on 3D geo-information, Seoul, Korea. LNG&C Series. Springer, pp 175–192Google Scholar
  19. Teskey WF (1988) Integrierte Analyse geodätischer und geotechnischer Daten sowie physikalischer Modelldaten zur Beschreibung des Deformationsverhaltens großer Erddämme unter statischer Belastung, DGK, Reihe C, Nr. 341, MünchenGoogle Scholar
  20. Welsch W, Heunecke O, Kuhlmann H (2000) Auswertung geodätischer Über-wachungsmessungen. In: Möser M, Müller G, Schlemmer H, Werner H (eds) Hand-buch Ingenieurgeodäsie. Herbert Wichmann Verlag, HeidelbergGoogle Scholar
  21. Worden K, Dulieu-Barton JM (2004) An overview of intelligent fault detection in systems and structures. Struct Health Monit 3(1):85–98CrossRefGoogle Scholar
  22. Zienkiewicz OC (1971) The finite element method in engineering science. McGraw-Hill, LondonGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Becker
    • 1
    Email author
  • Sven Weisbrich
    • 1
  • Cheng-Chieh Wu
    • 2
  • Frank Neitzel
    • 1
  1. 1.Institute of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany
  2. 2.Division 8.1—Sensors, Measurement and Testing MethodsFederal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations