Skip to main content

Requirements on Building Models Enabling the Guidance in a Navigation Scenario Using Cognitive Concepts

  • Chapter
  • First Online:
3D Geoinformation Science

Abstract

The increased growth of location-based services and the ongoing work on 3D GIS applications along with the fact that people spend most of their time indoors lead to a strong motivation for support and development in indoor space applications. When we ask someone the way, it is noticeable that people give route descriptions in an abstract and symbolic manner referring to landmarks or signs. Moreover, we know that people comprehend and structure space in recurring imaginative patterns—image schemata—while moving through and interacting with their environment. However, existing indoor navigation frameworks as well as building models do not integrate these cognitive concepts since mechanisms for defining such required semantics have not been developed yet. In order to support a navigation scenario in indoor environments by integrating human wayfinding principles in route instructions, we (1) identified potential landmarks based on cognitive concepts; (2) evaluated them according to a set of requirements; and (3) established a thematic framework for enhancing existing building models with the needed semantics and requirements. This framework will help developers to add the required attributes to the correct semantic classes of CityGML, IFC, or KML models to provide suitable routing instructions in terms of in-house routing out of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams D (2000) Wayfinding tasks with image schemata and affordances during disasters. Executive analysis of fire department operations in emergency management. National Fire Academy, Kissimmee, pp 1–75

    Google Scholar 

  • Anagnostopoulos C, Tsetsos V, Kikiras P, Hadjiefthymiades SP (2005) OntoNav: a semantic indoor navigation system. First workshop on semantics in mobile environments, Ayia, Cyprus, pp 1–8

    Google Scholar 

  • Becker T, Nagel C, Kolbe TH (2009) A multilayered space-event model for navigation in indoor spaces. In: Lee J, Zlatanova S (eds) Advances in 3D geoinformation systems. Springer, Berlin, pp 61–77

    Google Scholar 

  • Brown G, Nagel C, Zlatanova S, Kolbe TH (2013) Modelling 3D topographic space against indoor navigation requirements. In: Pouliot J, Daniel S, Hubert F, Zamyadi A (eds) Progress and new trends in 3D geoinformation sciences. Springer, Berlin, pp 1–22

    Google Scholar 

  • Brunner-Friedrich B, Radoczky V (2006) Active landmarks in indoor environments. In: Bres S, Laurini R (eds) Visual information and information systems. Springer, Berlin, pp 203–215

    Chapter  Google Scholar 

  • Burnett G (2000) “Turn right at the traffic lights”: the requirement for landmarks in vehicle navigation systems. J Navig 53:499–510

    Article  Google Scholar 

  • Burnett G, Smith D, May A (2001) Supporting the navigation task: characteristics of “good” landmarks. Contemp Ergonomics 1:441–446

    Google Scholar 

  • Dudas PM, Ghafourian M, Karimi HA (2009) ONALIN: ontology and algorithm for indoor routing. In: MDM’09 tenth international conference on mobile data management: systems, services and middleware. IEEE, New York, pp 720–725

    Chapter  Google Scholar 

  • Frank AU, Raubal M (1999) Formal specification of image schemata—a step towards interoperability in geographic information systems. Spat Cogn Comput 1:67–101

    Google Scholar 

  • Freundschuh S, Sharma M (1995) Spatial image schemata, locative terms, and geographic spaces in children’s narrative: fostering spatial skills in children. Cartographica: Int J Geogr Inf Geovisualization 32:38–49

    Article  Google Scholar 

  • Gröger G, Kolbe TH, Nagel C, Häfele K-H (2012) OGC city geography markup language (CityGML) encoding standard, V. 2.0, Document No. 12-019

    Google Scholar 

  • Hagedorn B, Trapp M, Glander T, Döllner J (2009) Towards an indoor level-of-detail model for route visualization. In: Tenth international conference on mobile data management: systems, services and middleware. IEEE, New York, pp 692–697

    Chapter  Google Scholar 

  • Hampe B (2005) Image schemas in cognitive linguistics: Introduction. In: Hampe B, Grady JE (eds) From perception to meaning: image schemas in cognitive linguistics. Mouton de Gruyter, Berlin, pp 1–14

    Google Scholar 

  • Heiniz P, Krempels K-H, Terwelp C, Wuller S (2012) Landmark-based navigation in complex buildings. International conference on indoor positioning and indoor navigation (IPIN). IEEE, New York, pp 1–9

    Chapter  Google Scholar 

  • Heth CD, Cornell EH, Alberts DM (1997) Differential use of landmarks by 8-and 12-year-old children during route reversal navigation. J Environ Psychol 17:199–213

    Article  Google Scholar 

  • Hurtienne J (2011) Image schemas and design for intuitive use—exploring new guidance for user interface design. PhD thesis, TU Berlin, p 268

    Google Scholar 

  • IBIS- Projekt (2012) Image_Schemata_Definitionen_Skizzen_Schlüsselwörter. Available at http://www.ibis-projekt.de/icc/assisto/med/8e2/8e210d57-442a-aa31-ec07-08366350fd4c,11111111-1111-1111-1111-111111111111.pdf. Accessed 6 April 2014

  • Johnson M (1987) The body in the mind: the bodily basis of reason and imagination. University of Chicago Press, Chicago, p 272

    Google Scholar 

  • Klippel A, Winter S (2005) Structural salience of landmarks for route directions. In: Cohn G, Mark MD (eds) Spatial information theory—COSIT05 Elllicottville. Springer, Berlin, pp 347–362

    Chapter  Google Scholar 

  • Klippel A, Richter K, Hansen S (2009) Cognitively ergonomic route directions. In: Karimi HA (ed) Handbook of research on geoinformatics. Information Science Reference (IGI Global), Hershey, London, pp 230–238

    Chapter  Google Scholar 

  • Kritsotakis M, Michou M, Nikoloudakis E, Bikakis A, Patkos T, Antoniou G, Plexousakis D (2009) Design and implementation of a semantics-based contextual navigation guide for indoor environments. J Ambient Intell Smart Environ 1:261–285

    Google Scholar 

  • Lee J, Zlatanova S (2008) A 3D data model and topological analyses for emergency response in urban areas. In: Zlatanova S, Li J (eds) Geospatial information technology for emergency response, vol 6. Taylor & Francis, London, pp 143–168

    Google Scholar 

  • Lee J, Li K-J, Zlatanova S, Kolbe TH, Nagel C, Becker T (2014) OGC candidate IndoorGML Encoding Standard, V. 0.8.2, Document No. 14–005

    Google Scholar 

  • Lin Y-H, Liu Y-S, Gao G, Han X-G, Lai C-Y, Gu M (2013) The IFC-based path planning for 3D indoor spaces. Adv Eng Inform 27:189–205

    Article  Google Scholar 

  • Lorenz A, Thierbach C (2012) Bewusst Wo? Gewusst Wie! Entwicklung innovativer kartographischer Methoden zur effektiven Navigation in Innenräumen. In: Weisbrich S, Kaden R (eds) Entwicklerforum Geodäsie und Geoinformationstechnik 2011. Shaker, Berlin, pp 89–100

    Google Scholar 

  • Lorenz A, Thierbach C, Kolbe TH, Baur N (2010) Untersuchung der Effizienz und Akzeptanz von 2D- und 3D-Kartenvarianten für die Innenraumnavigation. In: Kohlhofer G, Franzen M (eds) Vorträge Dreiländertagung OVG, DGPF und SGPF - 30. Wissenschaftlich-Technische Jahrestagung der DGPF. Vienna, p 342–355

    Google Scholar 

  • Lorenz A, Thierbach C, Baur N, Kolbe TH (2013) App-free zone: paper maps as alternative to electronic indoor navigation aids and their empirical evaluation with large user bases. In: Krisp JM (ed) Progress in location-based services. Springer, Berlin, pp 319–338

    Chapter  Google Scholar 

  • Lorenz B, Ohlbach HJ, Stoffel E-P (2006) A hybrid spatial model for representing indoor environments. In: Carswell JD, Tezuka T (eds) Web and wireless geographical information systems. Springer, Berlin, pp 102–112

    Chapter  Google Scholar 

  • Lovelace KL, Hegarty M, Montello DR (1999) Elements of good route directions in familiar and unfamiliar environments. In: Freksa C, Mark D (eds) Spatial information theory. Cognitive and computational foundations of geographic information science. Springer, Berlin, pp 65–82

    Chapter  Google Scholar 

  • Nagel C, Becker T, Kaden R, Li K-J, Lee J, Kolbe TH (2010) OpenGIS® requirements and space-event modeling for indoor navigation, Discussion Paper, OGC 10–191r1

    Google Scholar 

  • Nuhn E, Munich U, Reinhardt W, Haske B (2012) Generation of landmarks from 3D city models and OSM data. In: Gensel J, Josselin D, Vandenbroucke D (eds) Proceedings of the AGILE’2012 international conference on geographic information science. Avignon, pp 365–369

    Google Scholar 

  • Passini R, Proulx G (1988) Wayfinding without vision an experiment with congenitally totally blind people. Environ Behav 20:227–252

    Article  Google Scholar 

  • Radoczky V (2007) How to design a pedestrian navigation system for indoor and outdoor environments. In: Gartner G, Peterson MP (eds) Location based services and telecartography. Springer, Berlin, pp 301–316

    Chapter  Google Scholar 

  • Raubal M, Egenhofer M (1998) Comparing the complexity of wayfinding tasks in built environments. Environ Plann B 25:895–913

    Article  Google Scholar 

  • Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks. In: Egenhofer MJ, Mark DM (eds) Geographic information Science. Springer, Berlin, pp 243–259

    Chapter  Google Scholar 

  • Raubal M, Egenhofer MJ, Pfoser D, Tryfona N (1997) Structuring space with image schemata: wayfinding in airports as a case study. In: Hirtle SC, Frank AU (eds) Spatial information theory a theoretical basis for GIS. Springer, Berlin, pp 85–102

    Chapter  Google Scholar 

  • Shayeganfar F, Anjomshoaa A, Tjoa A (2008) A smart indoor navigation solution based on building information model and google android. In: Miesenberger K, Zagler W, Karshmer A (eds) Computers helping people with special needs. Springer, Berlin, pp 1050–1056

    Chapter  Google Scholar 

  • Sorrows M, Hirtle S (1999) The nature of landmarks for real and electronic spaces. In: Freksa C, Mark D (eds) Spatial information theory, cognitive and computational foundations of geographic information science. Springer, Berlin, pp 37–50

    Chapter  Google Scholar 

  • Stoffel E-P, Lorenz B, Ohlbach HJ (2007) Towards a semantic spatial model for pedestrian indoor navigation. In: Hainaut J-L, Rundensteiner EA, Kirchberg M, Bertolotto M, Brochhausen M, Chen Y-PP, Cherfi SS-S, Doerr M, Han H, Hartmann S, Parsons J, Poels G, Rolland C, Trujillo J, Yu E, Zimányie E (eds) Advances in conceptual modeling–foundations and applications. Springer, Berlin, pp 328–337

    Chapter  Google Scholar 

  • Swobodzinski M, Raubal M (2009) An indoor routing algorithm for the blind: development and comparison to a routing algorithm for the sighted. Int J Geogr Inf Sci 23:1315–1343

    Article  Google Scholar 

  • Tomko M (2007) Destination descriptions in urban environments. PhD thesis, University of Melbourne, p 193

    Google Scholar 

  • Winter S, Raubal M, Nothegger C (2005) Focalizing measures of salience for wayfinding. In: Meng L, Reichenbacher T, Zipf A (eds) Map-based mobile services, theories, methods and implementations. Springer, Berlin, pp 125–139

    Chapter  Google Scholar 

  • Wolfe J (2000) Visual attention. In: De Valois KK (ed) Seeing: handbook of perception and cognition. Academic press, San Diego, pp 335–386

    Chapter  Google Scholar 

  • Worboys M (2011) Modeling indoor space. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on indoor spatial awareness. ACM, pp 1–6

    Google Scholar 

  • Yuan W, Schneider M (2010) Supporting 3D route planning in indoor space based on the LEGO representation. In: Proceedings of the 2nd ACM SIGSPATIAL international workshop on indoor spatial awareness. ACM, pp 16–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Arendholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arendholz, K., Becker, T. (2015). Requirements on Building Models Enabling the Guidance in a Navigation Scenario Using Cognitive Concepts. In: Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P., Benner, J., Haefele, K. (eds) 3D Geoinformation Science. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-12181-9_10

Download citation

Publish with us

Policies and ethics