Skip to main content

ICD Lifetime in \(\text {Ne}_{\mathbf {2}}\)

  • Chapter
  • First Online:
XUV Pump-Probe Experiments on Diatomic Molecules

Part of the book series: Springer Theses ((Springer Theses))

  • 500 Accesses

Abstract

ICD lifetimes span over several orders of magnitude from a few femtoseconds up to nanoseconds. The fastest decay times are found for excited ions embedded in an environment with a large number of neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although the notation \({2p}\) or \(2s\) is only valid for atoms, they are applied here as \(\text {Ne}_2\) is only weakly bound and thus the constituents are considered as almost free.

References

  1. V. Averbukh, L.S. Cederbaum, Calculation of interatomic decay widths of vacancy states delocalized due to inversion symmetry. J. Chem. Phys. 125, 094107 (2006)

    Article  ADS  Google Scholar 

  2. V. Averbukh, I.B. Müller, L.S. Cederbaum, Mechanism of interatomic Coulombic decay in clusters. Phys. Rev. Lett. 93, 263002 (2004)

    Article  ADS  Google Scholar 

  3. V. Averbukh, L.S. Cederbaum, Interatomic electronic decay in endohedral fullerenes. Phys. Rev. Lett. 96, 053401 (2006)

    Article  ADS  Google Scholar 

  4. V. Averbukh, P. Kolorenc, Collective interatomic decay of multiple vacancies in clusters. Phys. Rev. Lett. 103, 183001 (2009)

    Article  ADS  Google Scholar 

  5. K. Bartschat, D.V. Fursa, I. Bray, A detailed study of electron impact ionization of Ne(2s) and Ar(3s). J. Phys. B Atm. Mol. Opt. Phys. 43(12), 125202 (2010)

    Article  ADS  Google Scholar 

  6. P.V. Demekhin et al., Exploring interatomic coulombic decay by free electron lasers. Phys. Rev. Lett. 107, 273002 (2011)

    Article  ADS  Google Scholar 

  7. P.V. Demekhin et al., Interatomic Coulombic decay and its dynamics in NeAr following K-LL Auger transition in the Ne atom. J. Chem. Phys. 131, 104303 (2009)

    Article  ADS  Google Scholar 

  8. A. Furuhama, M. Dupuis, K. Hirao, Reactions associated with ionization in water: a direct ab initio dynamics study of ionization in \(({\rm {H}}_{2}{\rm {O}})_{17}\). J. Chem. Phys. 124(16), 164310 (2006)

    Article  ADS  Google Scholar 

  9. D.C. Griffin, D.M. Mitnik, N.R. Badnell, Electron-impact excitation of \({\rm {Ne}}^{+}\). J. Phys. B Atm. Mol. Opt. Phys. 34(22), 4401 (2001)

    Article  ADS  Google Scholar 

  10. T. Jahnke et al., Experimental observation of interatomic Coulombic decay in neon dimers. Phys. Rev. Lett. 93, 163401 (2004)

    Article  ADS  Google Scholar 

  11. T. Jahnke et al., Experimental separation of virtual photon exchange and electron transfer in interatomic Coulombic decay of neon dimers. Phys. Rev. Lett. 99, 153401 (2007)

    Article  ADS  Google Scholar 

  12. T. Jahnke et al., Photoelectron and ICD electron angular distributions from fixed-in-space neon dimers. J. Phys. B Atm. Mol. Opt. Phys. 40, 2597 (2007)

    Article  ADS  Google Scholar 

  13. T. Jahnke et al., Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139 (2010)

    Article  Google Scholar 

  14. T. Jahnke et al., Vibrationally resolved K-shell photoionization of CO with circularly polarized light. Phys. Rev. Lett. 93, 083002 (2004)

    Article  ADS  Google Scholar 

  15. T. Jahnke, Interatomic Coulombic decay—experimentelle untersuchung eines neuartigen, interatomaren Abregungsmechanismus, p. 201, PhD thesis. Frankfurt (2005)

    Google Scholar 

  16. V. Kaufman, L. Minnhagen, Accurate ground-term combinations in Ne I. J. Opt. Soc. Am. 62(1), 92–95 (1972)

    Article  ADS  Google Scholar 

  17. L.H.J.H. Kjeldsen, Absolute photoionization cross sections: measurements and applications. PhD thesis, University of Aarhus (2006)

    Google Scholar 

  18. A.E. Kramida, G. Nave, New FTS measurements, optimized energy levels and refined VUV standards in the Ne III spectrum. Eur. Phys. J. D Atm. Mol. Opt. Plasma Phys. 37(1), 1–21 (2006)

    Google Scholar 

  19. K. Kreidi et al., Photo- and Auger-electron recoil induced dynamics of interatomic Coulombic decay. Phys. Rev. Lett. 103, 033001 (2009)

    Article  ADS  Google Scholar 

  20. K. Meyer et al., Noisy optical pulses enhance the temporal resolution of pump- probe spectroscopy. Phys. Rev. Lett. 108, 098302 (2012)

    Article  ADS  Google Scholar 

  21. N. Moiseyev et al., Fingerprints of the nodal structure of autoionizing vibrational wave functions in clusters: interatomic Coulombic decay in Ne dimer. J. Chem. Phys. 114, 7351 (2001)

    Article  ADS  Google Scholar 

  22. M. Mucke et al., A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143 (2010)

    Article  Google Scholar 

  23. A. Niehaus, Analysis of post-collision interactions in Auger processes following near-threshold inner-shell photoionization. J. Phys. B Atm. Mol. Phys. 10(10), 1845 (1977)

    Article  ADS  Google Scholar 

  24. G. Öhrwall et al., Femtosecond interatomic Coulombic decay in free neon clusters: large lifetime differences between surface and bulk. Phys. Rev. Lett. 93, 173401 (2004)

    Article  ADS  Google Scholar 

  25. T. Ouchi et al., Interatomic Coulombic decay following Ne 1s Auger decay in NeAr. Phys. Rev. A 83, 053415 (2011)

    Article  ADS  Google Scholar 

  26. T. Ouchi et al., Three-electron interatomic Coulombic decay from the inner- valence double-vacancy states in NeAr. Phys. Rev. Lett. 107, 053401 (2011)

    Article  ADS  Google Scholar 

  27. W. Persson, The spectrum of singly ionized neon, Ne II. Phys. Scr. 3(3–4), 133 (1971)

    Article  ADS  Google Scholar 

  28. T. Pfeifer et al., Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35(20), 3441–3443 (2010)

    Article  ADS  Google Scholar 

  29. A. Russek, W. Mehlhorn, Post-collision interaction and the Auger lineshape. J. Phys. B Atm. Mol. Phys. 19(6), 911 (1986)

    Article  ADS  Google Scholar 

  30. R. Santra, L.S. Cederbaum, An efficient combination of computational techniques for investigating electronic resonance states in molecules. J. Chem. Phys. 115, 6853 (2001)

    Article  ADS  Google Scholar 

  31. R. Santra, J. Zobeley, L.S. Cederbaum, Electronic decay of valence holes in clusters and condensed matter. Phys. Rev. B 64, 245104 (2001)

    Article  ADS  Google Scholar 

  32. R. Santra, L.S. Cederbaum, Coulombic energy transfer and triple ionization in clusters. Phys. Rev. Lett. 90, 153401 (2003)

    Article  ADS  Google Scholar 

  33. S. Scheit, L.S. Cederbaum, H.-D. Meyer, Time-dependent interplay between electron emission and fragmentation in the interatomic Coulombic decay. J. Chem. Phys. 118, 2092 (2003)

    Article  ADS  Google Scholar 

  34. S. Scheit et al., On the interatomic Coulombic decay in the Ne dimer. J. Chem. Phys. 121, 8393 (2004)

    Article  ADS  Google Scholar 

  35. S. Scheit, Private Communication

    Google Scholar 

  36. K. Schnorr et al., Time-resolved measurement of interatomic Coulombic decay in \(\text{ Ne }_2\). Phys. Rev. Lett. 111, 093402 (2013)

    Google Scholar 

  37. K. Schulz et al., High-resolution experimental and theoretical study of singly and doubly excited resonances in ground-state photoionization of neon. Phys. Rev. A 54, 3095–3112 (1996)

    Article  ADS  Google Scholar 

  38. S.D. Stoychev et al., On the interatomic electronic processes following Auger decay in neon dimer. J. Chem. Phys. 129, 074307 (2008)

    Article  ADS  Google Scholar 

  39. S. Svensson et al., Electron shake-up and correlation satellites and continuum shake-off distributions in X-Ray photoelectron spectra of the rare gas atoms. J. Electr. Spectrosc. Relat. Phenom. 47, 327–384 (1988)

    Article  Google Scholar 

  40. F. Trinter et al., Evolution of interatomic Coulombic decay in the time domain. Phys. Rev. Lett. 111, 093401 (2013)

    Article  ADS  Google Scholar 

  41. N. Vaval, L.S. Cederbaum, Ab initio lifetimes in the interatomic Coulombic decay of neon clusters computed with propagators. J. Chem. Phys. 126, 164110 (2007)

    Article  ADS  Google Scholar 

  42. A. Wüest, F. Merkt, Determination of the interaction potential of the ground electronic state of \({\rm {Ne}}_{2}\) by high-resolution vacuum ultraviolet laser spectroscopy. J. Chem. Phys. 118(19), 8807–8812 (2003)

    Article  ADS  Google Scholar 

  43. J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 \(\le \) Z \(\le \) 103. Atm. Data Nucl. Data Tables 32(1), 1–155 (1985)

    Article  ADS  Google Scholar 

  44. J. Zobeley, R. Santra, L.S. Cederbaum, Electronic decay in weakly bound heteroclusters: energy transfer versus electron transfer. J. Chem. Phys. 115(11), 5076–5088 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Schnorr .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schnorr, K. (2015). ICD Lifetime in \(\text {Ne}_{\mathbf {2}}\) . In: XUV Pump-Probe Experiments on Diatomic Molecules. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12139-0_7

Download citation

Publish with us

Policies and ethics