Skip to main content

DNA Damage Response Pathways in Cancer Predisposition and Progression

  • Chapter
  • First Online:
Genomic Instability and Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 20))

  • 1345 Accesses

Abstract

Cells are continually challenged by DNA assaults from endogenous and exogenous sources. Without appropriate repair, DNA damage can cause genome instability and the development of various diseases such as cancer, Immunodeficiency, neurological abnormalities, and premature aging. To maintain genome integrity, cells have evolved highly conserved defense mechanisms, collectively known as the DNA damage response (DDR), to identify the lesions, signal their presence, and activate the appropriate DNA repair pathway. In this chapter, we will discuss the recent advances in DDR, cancers with heritable defect in DNA repair, and secondary cancers developed following treatment with chemotherapeutic drugs that damage the DNA. We will focus on four major repair pathways with particular attention to the exploitation of recent knowledge to improve cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5′ dRP:

5′ deoxyribose phosphate

8-oxodG:

7,8 dihydro-8-oxo-2′-deoxyguanosine

8-oxoGua:

8-oxo-7,8-dihydroguanine

9-1-1:

Rad9-Rad1-Hus1

AML:

Acute myeloid leukemia

A-NHEJ:

Alternative NHEJAPE-1:Apurinic endonuclease

aCGH:

Array comparative genomic hybridization

B-CLL:

B-cell chronic lymphocytic leukemia

BER:

Base excision repair

BIR:

Break-induced replication

BMF:

Bone marrow failure

C-NHEJ:

Classical NHEJ

CRC:

Colorectal cancer

DDR:

DNA damage response

dHJ:

Double Holliday junction

DSB:

Double strand break

DSBR:

DSB repair

dsDNA:

Double-stranded DNA

EC:

Endometrial cancer

EDM:

Exonuclease domain mutations

FA:

Fanconi anemia

hESC:

Human embryonic stem cell

HSC:

Hematopoietic stem cell

HR:

Homologous recombination

ICLs:

Interstrand crosslinks

IDLs:

Insertion-deletion loops

iPSC:

Induced pluripotent stem cells

IR:

Ionizing radiation

LS:

Lynch syndrome

MGMT:

Methylguanine methyltransferase

MIN or MSI:

Microsatellite instability

MMR:

Mismatch repair

NEIL1:

Endonuclease VIII-like 1

NHEJ:

Non-Homologous end joining

OGG1:

8-oxoguanine glycosylase

PAR:

Poly ADP-ribose

PARG:

Poly(ADP-ribose) glycohydrolase

PARP:

poly (ADP-ribose) polymerase

PNK:

polynucleotide kinase

PUA:

α, ß-unsaturated aldehyde

ROS:

Reactive oxygen species

SCE:

Sister chromatid exchange

SL:

Synthetic lethality

SSA:

Single-strand annealing

SSB:

Single strand break

SSBR:

SSB repair

SSDA:

Synthesis-dependent strand annealingss DNA Single-stranded DNA

t-AML:

Therapy-related AML

TLS:

Translesion synthesis

t-MDS:

Therapy-related myelodysplastic syndrome

t-MDS/MPN:

Therapy-related myelodysplastic/myeloproliferative neoplasms

UAF1:

USP1-associated protein

USP1:

Ubiquitin-specific peptidase 1

t-MN:

Therapy-related myeloid neoplasms

UV:

Ultraviolet

VUS:

Variants of uncertain significance

References

  1. Abbotts R, Madhusudan S (2012) Targeting DNA base excision repair: a new strategy for personalised cancer therapy. Clin Med 12(6):42–46. doi:10.7861/clinmedicine.12-6-s42

    Google Scholar 

  2. Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, Smith-McCune K, Broaddus R, Lu KH, Chen J, Tran TV, Williams D, Iliev D, Jammulapati S, FitzGerald LM, Krivak T, DeLoia JA, Gutin A, Mills GB, Lanchbury JS (2012) Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 107(10):1776–1782. doi:10.1038/bjc.2012.451

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, Ward JD, Martinez-Perez E, Boulton SJ, La Volpe A (2010) Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 39(1):25–35. doi:10.1016/j.molcel.2010.06.026

    CAS  PubMed  Google Scholar 

  4. Adelman CA, Lolo RL, Birkbak NJ, Murina O, Matsuzaki K, Horejsi Z, Parmar K, Borel V, Skehel JM, Stamp G, D’Andrea A, Sartori AA, Swanton C, Boulton SJ (2013). HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature 502(7471):381–384. doi:10.1038/nature12565

    Google Scholar 

  5. Akkari YM, Bateman RL, Reifsteck CA, D’Andrea AD, Olson SB, Grompe M (2001) The 4N cell cycle delay in Fanconi anemia reflects growth arrest in late S phase. Mol Genet Metab 74(4):403–412

    CAS  PubMed  Google Scholar 

  6. Alagoz M, Wells OS, El-Khamisy SF (2014) TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy. Nucleic Acids Res 42(5):3089–3103. doi:10.1093/nar/gkt1260

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Ali AM, Pradhan A, Singh TR, Du C, Li J, Wahengbam K, Grassman E, Auerbach AD, Pang Q, Meetei AR (2012) FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood 119(14):3285–3294. doi:10.1182/blood-2011-10-385963

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Andersen PL, Xu F, Xiao W (2008) Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18(1):162–173. doi:10.1038/cr.2007.114

    CAS  PubMed  Google Scholar 

  9. Arlow T, Scott K, Wagenseller A, Gammie A (2013) Proteasome inhibition rescues clinically significant unstable variants of the mismatch repair protein Msh2. Proc Natl Acad Sci U S A 110(1):246–251. doi:10.1073/pnas.1215510110

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Auerbach AD (1993) Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp hematol 21(6):731–733

    CAS  PubMed  Google Scholar 

  11. Auerbach AD (2009) Fanconi anemia and its diagnosis. Mutat Res 668:4–10

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bhagwat N, Olsen AL, Wang AT, Hanada K, Stuckert P, Kanaar R, D’Andrea A, Niedernhofer LJ, McHugh PJ (2009) XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair. Mol Cell Biol 29(24):6427–6437. doi:10.1128/MCB.00086-09

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275(31):23899–23903. doi:10.1074/jbc.C000276200

    CAS  PubMed  Google Scholar 

  14. Blackford AN, Schwab RA, Nieminuszczy J, Deans AJ, West SC, Niedzwiedz W (2012) The DNA translocase activity of FANCM protects stalled replication forks. Hum Mol Genet 21(9):2005–2016. doi:10.1093/hmg/dds013

    CAS  PubMed  Google Scholar 

  15. Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y, Raams A, Trujillo JP, Minguillon J, Ramirez MJ, Pujol R, Casado JA, Banos R, Rio P, Knies K, Zuniga S, Benitez J, Bueren JA, Jaspers NG, Scharer OD, de Winter JP, Schindler D, Surralles J (2013) Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am J Hum Genet 92(5):800–806. doi:10.1016/j.ajhg.2013.04.002

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Boulton S, Kyle S, Durkacz BW (2000) Mechanisms of enhancement of cytotoxicity in etoposide and ionising radiation-treated cells by the protein kinase inhibitor wortmannin. Eur J Cancer 36(4):535–541

    CAS  PubMed  Google Scholar 

  17. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q, Haffty BG, Tommiska J, Blomqvist C, Drapkin R, Adams DJ, Nevanlinna H, Bartek J, Tarsounas M, Ganesan S, Jonkers J (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17(6):688–695. doi:10.1038/nsmb.1831

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Branch P, Aquilina G, Bignami M, Karran P (1993) Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature 362(6421):652–654. doi:10.1038/362652a0

    CAS  PubMed  Google Scholar 

  19. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368(6468):258–261. doi:10.1038/368258a0

    CAS  PubMed  Google Scholar 

  20. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917. doi:10.1038/nature03443

    CAS  PubMed  Google Scholar 

  21. Budke B, Logan HL, Kalin JH, Zelivianskaia AS, Cameron McGuire W, Miller LL, Stark JM, Kozikowski AP, Bishop DK, Connell PP (2012) RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res 40(15):7347–7357. doi:10.1093/nar/gks353

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bunting SF, Callen E, Kozak ML, Kim JM, Wong N, Lopez-Contreras AJ, Ludwig T, Baer R, Faryabi RB, Malhowski A, Chen HT, Fernandez-Capetillo O, D'Andrea A, Nussenzweig A (2012) BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell 46(2):125–135. doi:10.1016/j.molcel.2012.02.015

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Bunting SF, Nussenzweig A (2013) End-joining, translocations and cancer. Nat Rev Cancer 13(7):443–454. doi:10.1038/nrc3537

    CAS  PubMed  Google Scholar 

  24. Burdett V, Baitinger C, Viswanathan M, Lovett ST, Modrich P (2001) In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc Natl Acad Sci U S A 98(12):6765–6770. doi:10.1073/pnas.121183298

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284(7):4041–4045. doi:10.1074/jbc.R800062200

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Burrows AE, Elledge SJ (2008) How ATR turns on: TopBP1 goes on ATRIP with ATR. Genes Dev 22(11):1416–1421. doi:10.1101/gad.1685108

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD (1994) Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 84(5):1650–1655

    CAS  PubMed  Google Scholar 

  28. Caldecott KW (2007) Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair 6(4):443–453. doi:10.1016/j.dnarep.2006.10.006

    CAS  PubMed  Google Scholar 

  29. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631. doi:10.1038/nrg2380

    CAS  PubMed  Google Scholar 

  30. Cannavo E, Marra G, Sabates-Bellver J, Menigatti M, Lipkin SM, Fischer F, Cejka P, Jiricny J (2005) Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 65(23):10759–10766. doi:10.1158/0008-5472.CAN-05-2528

    CAS  PubMed  Google Scholar 

  31. Casorelli I, Bossa C, Bignami M (2012) DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. Int J Environ Res Public Health 9(8):2636–2657. doi:10.3390/ijerph9082636

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Chernikova SB, Game JC, Brown JM (2012) Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther 13(2):61–68. doi:10.4161.cbt.13.2.18872, doi:10.4161/cbt.13.2.18872

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Choudhury A, Zhao H, Jalali F, Al Rashid S, Ran J, Supiot S, Kiltie AE, Bristow RG (2009) Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Cancer Ther 8(1):203–213. doi:10.1158/1535-7163.MCT-08-0959

    CAS  PubMed  Google Scholar 

  34. Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV, Kaur K, Taylor J, Tomlinson IP (2013) DNA polymerase epsilon and delta exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22(14):2820–2828. doi:10.1093/hmg/ddt131

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. doi:10.1016/j.molcel.2010.09.019

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, Meetei AR, Laghmani el H, Joenje H, McDonald N, de Winter JP, Wang W, West SC (2007) Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell 25(3):331–343. doi:10.1016/j.molcel.2007.01.003

    CAS  PubMed  Google Scholar 

  37. Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9(8):616–627. doi:10.1038/nrm2450

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, D’Andrea AD (2007) A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell 28(5):786–797. doi:10.1016/j.molcel.2007.09.031

    CAS  PubMed  Google Scholar 

  39. Collis SJ, Barber LJ, Clark AJ, Martin JS, Ward JD, Boulton SJ (2007) HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat Cell Biol 9(4):391–401. doi:10.1038/ncb1555

    CAS  PubMed  Google Scholar 

  40. Collis SJ, Ciccia A, Deans AJ, Horejsi Z, Martin JS, Maslen SL, Skehel JM, Elledge SJ, West SC, Boulton SJ (2008) FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell 32(3):313–324. doi:10.1016/j.molcel.2008.10.014

    CAS  PubMed  Google Scholar 

  41. Constantin N, Dzantiev L, Kadyrov FA, Modrich P (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280(48):39752–39761. doi:10.1074/jbc.M509701200

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214. doi:10.1096/fj.02-0752rev

    CAS  PubMed  Google Scholar 

  43. Crossan GP, van der Weyden L, Rosado IV, Langevin F, Gaillard PH, McIntyre RE, Gallagher F, Kettunen MI, Lewis DY, Brindle K, Arends MJ, Adams DJ, Patel KJ (2011) Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nat Genet 43(2):147–152. doi:10.1038/ng.752

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12(12):801–817. doi:10.1038/nrc3399

    CAS  PubMed  Google Scholar 

  45. de Wind N, Dekker M, Berns A, Radman M, te Riele H (1995) Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82(2):321–330

    PubMed  Google Scholar 

  46. de Winter JP, Joenje H (2009) The genetic and molecular basis of Fanconi anemia. Mutat Res 668(1–2):11–19. doi:10.1016/j.mrfmmm.2008.11.004

    PubMed  Google Scholar 

  47. Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A (2011) Break-induced replication is highly inaccurate. PLoS Biol 9(2):e1000594. doi:10.1371/journal.pbio.1000594

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455. doi:10.1146/annurev-genet-110711-155540

    CAS  PubMed  Google Scholar 

  49. Dianov G, Price A, Lindahl T (1992) Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol Cell Biol 12 (4):1605–1612

    Google Scholar 

  50. Drost M, Lutzen A, van Hees S, Ferreira D, Calleja F, Zonneveld JB, Nielsen FC, Rasmussen LJ, de Wind N (2013) Genetic screens to identify pathogenic gene variants in the common cancer predisposition Lynch syndrome. Proc Natl Acad Sci U S A 110(23):9403–9408. doi:10.1073/pnas.1220537110

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Drummond JT, Genschel J, Wolf E, Modrich P (1997) DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSalpha/hMutSbeta ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci U S A 94(19):10144–10149

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Drummond JT, Li GM, Longley MJ, Modrich P (1995) Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Sci 268(5219):1909–1912

    CAS  Google Scholar 

  53. Dupre A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee JH, Nicolette ML, Kopelovich L, Jasin M, Baer R, Paull TT, Gautier J (2008) A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat Chem Biol 4(2):119–125. doi:10.1038/nchembio.63

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Duval A, Hamelin R (2002a) Genetic instability in human mismatch repair deficient cancers. Ann Genet 45(2):71–75

    PubMed  Google Scholar 

  55. Duval A, Hamelin R (2002b) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62(9):2447–2454

    CAS  PubMed  Google Scholar 

  56. Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, Modrich P (2004) A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell 15(1):31–41. doi:10.1016/j.molcel.2004.06.016

    CAS  PubMed  Google Scholar 

  57. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451(7182):1111–1115. doi:10.1038/nature06548

    CAS  PubMed  Google Scholar 

  58. Eich M, Roos WP, Nikolova T, Kaina B (2013) Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide. Mol Cancer Ther 12(11):2529–2540. doi:10.1158/1535-7163.MCT-13-0136

    CAS  PubMed  Google Scholar 

  59. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31(19):5526–5533

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5(6):435–445. doi:10.1038/nrg1348

    CAS  PubMed  Google Scholar 

  61. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. doi:10.1038/nature03445

    CAS  PubMed  Google Scholar 

  62. Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, Dong MQ, Ruse C, Yates JR, 3rd, Russell P, Fuchs RP, McGowan CH, Gaillard PH (2009) Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138(1):78–89. doi:10.1016/j.cell.2009.06.029

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Flynn RL, Zou L (2011) ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 36(3):133–140. doi:10.1016/j.tibs.2010.09.005

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, Vallis KA, Hammond EM, Olcina MM, Gillies McKennaW, Muschel RJ, Brunner TB (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3:e441. doi:10.1038/cddis.2012.181

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Foksinski M, Kotzbach R, Szymanski W, Olinski R (2000) The level of typical biomarker of oxidative stress 8-hydroxy-2′-deoxyguanosine is higher in uterine myomas than in control tissues and correlates with the size of the tumor. Free Radic Biol Med 29(7):597–601

    CAS  PubMed  Google Scholar 

  66. Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair 6(4):398–409. doi:10.1016/j.dnarep.2006.10.008

    CAS  PubMed  Google Scholar 

  67. Fortini P, Pascucci B, Parlanti E, Sobol RW, Wilson SH, Dogliotti E (1998) Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37(11):3575–3580. doi:10.1021/bi972999h

    CAS  PubMed  Google Scholar 

  68. Frosina G, Fortini P, Rossi O, Carrozzino F, Raspaglio G, Cox LS, Lane DP, Abbondandolo A, Dogliotti E (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271(16):9573–9578

    CAS  PubMed  Google Scholar 

  69. Gari K, Decaillet C, Delannoy M, Wu L, Constantinou A (2008a) Remodeling of DNA replication structures by the branch point translocase FANCM. Proc Natl Acad Sci U S A 105(42):16107–16112. doi:10.1073/pnas.0804777105

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Gari K, Decaillet C, Stasiak AZ, Stasiak A, Constantinou A (2008b) The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol Cell 29(1):141–148. doi:10.1016/j.molcel.2007.11.032

    CAS  PubMed  Google Scholar 

  71. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4(4):296–307. doi:10.1038/nrc1319

    CAS  PubMed  Google Scholar 

  72. Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, Artola-Boran M, Cejka P, Reijns MA, Jackson AP, Plevani P, Muzi-Falconi M, Jiricny J (2013) Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol Cell 50(3):323–332. doi:10.1016/j.molcel.2013.03.019

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Giglia-Mari G, Zotter A, Vermeulen W (2011) DNA damage response. Cold Spring Harb Perspect Biol 3(1):a000745. doi:10.1101/cshperspect.a000745

    PubMed Central  PubMed  Google Scholar 

  74. Godley LA, Larson RA (2008) Therapy-related myeloid leukemia. Semin Oncol 35(4):418–429. doi:10.1053/j.seminoncol.2008.04.012

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Goellner EM, Grimme B, Brown AR, Lin YC, Wang XH, Sugrue KF, Mitchell L, Trivedi RN, Tang JB, Sobol RW (2011) Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res 71(6):2308–2317. doi:10.1158/0008-5472.CAN-10-3213

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J, Orr N, Parton M, Smith IE, Reis-Filho JS, Dowsett M, Ashworth A, Turner NC (2010) A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 16(24):6159–6168. doi:10.1158/1078-0432.CCR-10-1027

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Hahnel PS, Enders B, Sasca D, Roos WP, Kaina B, Bullinger L, Theobald M, Kindler T (2014) Targeting components of the alternative NHEJ pathway sensitizes KRAS mutant leukemic cells to chemotherapy. Blood 123(15):2355–2366. doi:10.1182/blood-2013-01-477620

    PubMed  Google Scholar 

  78. Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R (2006) The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25(20):4921–4932. doi:10.1038/sj.emboj.7601344

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Harrington JM, Kolodner RD (2007) Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol Cell Bio 27(18):6546–6554. doi:10.1128/MCB.00855-07

    CAS  Google Scholar 

  80. Helleday T (2010) Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31(6):955–960. doi:10.1093/carcin/bgq064

    CAS  PubMed  Google Scholar 

  81. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair 6(7):923–935. doi:10.1016/j.dnarep.2007.02.006

    CAS  PubMed  Google Scholar 

  82. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95(12):6870–6875

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Hickman MJ, Samson LD (2004) Apoptotic signaling in response to a single type of DNA lesion, O(6)-methylguanine. Mol Cell 14(1):105–116

    CAS  PubMed  Google Scholar 

  84. Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A (2012) Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J Exp Med 209(8):1419–1426. doi:10.1084/jem.20120876

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485. doi:10.1056/NEJMra0804615

    CAS  PubMed  Google Scholar 

  86. Holmes J Jr, Clark S, Modrich P (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A 87(15):5837–5841

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D’Andrea AD (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297(5581):606–609. doi:10.1126/science.1073834

    CAS  PubMed  Google Scholar 

  88. Hsieh P, Yamane K (2008) DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 129(7–8):391–407. doi:10.1016/j.mad.2008.02.012

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV (2011a) Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem Biol 6(6):628–635. doi:10.1021/cb100428c

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Huang M, Kennedy R, Ali AM, Moreau LA, Meetei AR, D'Andrea AD, Chen CC (2011b) Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi Anemia pathway. DNA Repair 10(12):1203–1212. doi:10.1016/j.dnarep.2011.09.006

    CAS  PubMed  Google Scholar 

  91. Huang M, Kim JM, Shiotani B, Yang K, Zou L, D’Andrea AD (2010) The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell 39(2):259–268. doi:10.1016/j.molcel.2010.07.005

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Bio 17(1):11–16. doi:10.1038/nsmb.1710

    CAS  Google Scholar 

  93. Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP (2008) CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455(7213):689–692. doi:10.1038/nature07215

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Huhn D, Bolck HA, Sartori AA (2013) Targeting DNA double-strand break signalling and repair: recent advances in cancer therapy. Swiss Med Wkly 143:w13837. doi:10.4414/smw.2013.13837

    PubMed  Google Scholar 

  95. Isaacs RJ, Spielmann HP (2004) A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility. DNA Repair 3(5):455–464

    CAS  PubMed  Google Scholar 

  96. Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A, Uchida E, Saberi A, Kinoshita E, Kinoshita-Kikuta E, Koike T, Tashiro S, Elledge SJ, Takata M (2008) FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Bio 15(11):1138–1146. doi:10.1038/nsmb.1504

    CAS  Google Scholar 

  97. Jiricny J (1994) Colon cancer and DNA repair: have mismatches met their match? Trends Genet (TIG) 10(5):164–168

    CAS  Google Scholar 

  98. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Bio 7(5):335–346. doi:10.1038/nrm1907

    CAS  Google Scholar 

  99. Jung B, Doctolero RT, Tajima A, Nguyen AK, Keku T, Sandler RS, Carethers JM (2004) Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology 126(3):654–659

    CAS  PubMed  Google Scholar 

  100. Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308. doi:10.1016/j.cell.2006.05.039

    CAS  PubMed  Google Scholar 

  101. Kadyrov FA, Holmes SF, Arana ME, Lukianova OA, O’Donnell M, Kunkel TA, Modrich P (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181–37190. doi:10.1074/jbc.M707617200

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Kamimae-Lanning AN, Goloviznina NA, Kurre P (2013) Fetal origins of hematopoietic failure in a murine model of Fanconi anemia. Blood 121(11):2008–2012. doi:10.1182/blood-2012-06-439679

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Kantake N, Sugiyama T, Kolodner RD, Kowalczykowski SC (2003) The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein. J Biol Chem 278(26):23410–23417. doi:10.1074/jbc.M302995200

    CAS  PubMed  Google Scholar 

  104. Kashiyama K, Nakazawa Y, Pilz DT, Guo C, Shimada M, Sasaki K, Fawcett H, Wing JF, Lewin SO, Carr L, Li TS, Yoshiura K, Utani A, Hirano A, Yamashita S, Greenblatt D, Nardo T, Stefanini M, McGibbon D, Sarkany R, Fassihi H, Takahashi Y, Nagayama Y, Mitsutake N, Lehmann AR, Ogi T (2013) Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet 92(5):807–819. doi:10.1016/j.ajhg.2013.04.007

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kim H, Yang K, Dejsuphong D, D’Andrea AD (2012) Regulation of Rev1 by the Fanconi anemia core complex. Nat Struct Mol Bio 19(2):164–170. doi:10.1038/nsmb.2222

    CAS  Google Scholar 

  106. Kim JM, Kee Y, Gurtan A, D'Andrea AD (2008) Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood 111(10):5215–5222. doi:10.1182/blood-2007-09-113092

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Kim JM, Parmar K, Huang M, Weinstock DM, Ruit CA, Kutok JL, D’Andrea AD (2009) Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell 16(2):314–320. doi:10.1016/j.devcel.2009.01.001

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Kim TM, Laird PW, Park PJ (2013a) The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155(4):858–868. doi:10.1016/j.cell.2013.10.015

    CAS  PubMed  Google Scholar 

  109. Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A (2011) Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 43(2):142–146. doi:10.1038/ng.750

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Kim Y, Spitz GS, Veturi U, Lach FP, Auerbach AD, Smogorzewska A (2013b) Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood 121(1):54–63. doi:10.1182/blood-2012-07-441212

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, Elledge SJ, Walter JC (2009) The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326(5960):1698–1701. doi:10.1126/science.1182372

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kolodner R (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 10(12):1433–1442

    CAS  PubMed  Google Scholar 

  113. Kondo N, Takahashi A, Ono K, Ohnishi T (2010) DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010:543531. doi:10.4061/2010/543531

    PubMed Central  PubMed  Google Scholar 

  114. Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT, Jaspers NG, Sharan SK, Kanaar R, Zdzienicka MZ (2002) Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Bio 22(2):669–679

    CAS  Google Scholar 

  115. Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C, Cannavo E, Sartori AA, Hengartner MO, Jiricny J (2010) Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142(1):77–88. doi:10.1016/j.cell.2010.06.022

    CAS  PubMed  Google Scholar 

  116. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710. doi:10.1146/annurev.biochem.74.082803.133243

    CAS  PubMed  Google Scholar 

  117. Kutler DI, Singh B, Satagopan J, Batish SD, Berwick M, Giampietro PF, Hanenberg H, Auerbach AD (2003) A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 101(4):1249–1256. doi:10.1182/blood-2002-07-2170

    CAS  PubMed  Google Scholar 

  118. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75(6):1215–1225

    CAS  PubMed  Google Scholar 

  119. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304(5667):93–96. doi:10.1126/science.1091496

    CAS  PubMed  Google Scholar 

  120. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551–554. doi:10.1126/science.1108297

    CAS  PubMed  Google Scholar 

  121. Lee JY, Chang J, Joseph N, Ghirlando R, Rao DN, Yang W (2005) MutH complexed with hemi- and unmethylated DNAs: coupling base recognition and DNA cleavage. Mol Cell 20(1):155–166. doi:10.1016/j.molcel.2005.08.019

    CAS  PubMed  Google Scholar 

  122. Leung JW, Wang Y, Fong KW, Huen MS, Li L, Chen J (2012) Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc Natl Acad Sci U S A 109(12):4491–4496. doi:10.1073/pnas.1118720109

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, Elghalbzouri-Maghrani E, Steltenpool J, Rooimans MA, Pals G, Arwert F, Mathew CG, Zdzienicka MZ, Hiom K, De Winter JP, Joenje H (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet 37(9):934–935. doi:10.1038/ng1625

    CAS  PubMed  Google Scholar 

  124. Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153(3):590–600. doi:10.1016/j.cell.2013.03.025

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Li F, Tian L, Gu L, Li GM (2009) Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 284(48):33056–33061. doi:10.1074/jbc.M109.049874

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98. doi:10.1038/cr.2007.115

    CAS  PubMed  Google Scholar 

  127. Li L, Wang H, Yang ES, Arteaga CL, Xia F (2008) Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells. Cancer Res 68(22):9141–9146. doi:10.1158/0008-5472.CAN-08-1127

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Li YH, Wang X, Pan Y, Lee DH, Chowdhury D, Kimmelman AC (2012) Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response. PloS ONE 7(6):e39588. doi:10.1371/journal.pone.0039588

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4(9):712–720. doi:10.1038/nrm1202

    CAS  PubMed  Google Scholar 

  130. Lin DP, Wang Y, Scherer SJ, Clark AB, Yang K, Avdievich E, Jin B, Werling U, Parris T, Kurihara N, Umar A, Kucherlapati R, Lipkin M, Kunkel TA, Edelmann W (2004) An Msh2 point mutation uncouples DNA mismatch repair and apoptosis. Cancer Res 64(2):517–522

    CAS  PubMed  Google Scholar 

  131. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715. doi:10.1038/362709a0

    CAS  PubMed  Google Scholar 

  132. Ling C, Ishiai M, Ali AM, Medhurst AL, Neveling K, Kalb R, Yan Z, Xue Y, Oostra AB, Auerbach AD, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Takata M, Meetei AR, Wang W (2007) FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J 26(8):2104–2114. doi:10.1038/sj.emboj.7601666

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Lips EH, Mulder L, Hannemann J, Laddach N, Vrancken Peeters MT, van de Vijver MJ, Wesseling J, Nederlof PM, Rodenhuis S (2011) Indicators of homologous recombination deficiency in breast cancer and association with response to neoadjuvant chemotherapy. Annals Oncol 22(4):870–876. doi:10.1093/annonc/mdq468

    CAS  Google Scholar 

  134. Liu T, Ghosal G, Yuan J, Chen J, Huang J (2010a) FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329(5992):693–696. doi:10.1126/science.1192656

    CAS  PubMed  Google Scholar 

  135. Liu TX, Howlett NG, Deng M, Langenau DM, Hsu K, Rhodes J, Kanki JP, D’Andrea AD, Look AT (2003) Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell 5(6):903–914

    CAS  PubMed  Google Scholar 

  136. Liu Y, Fang Y, Shao H, Lindsey-Boltz L, Sancar A, Modrich P (2010b) Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway. J Biol Chem 285(8):5974–5982. doi:10.1074/jbc.M109.076109

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Long DT, Raschle M, Joukov V, Walter JC (2011) Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333(6038):84–87. doi:10.1126/science.1204258

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294. doi:10.1038/nature10760

    CAS  PubMed  Google Scholar 

  139. Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA (2013) Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 50(3):437–443. doi:10.1016/j.molcel.2013.03.017

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Lujan SA, Williams JS, Pursell ZF, Abdulovic-Cui AA, Clark AB, Nick McElhinny SA, Kunkel TA (2012) Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet 8(10):e1003016. doi:10.1371/journal.pgen.1003016

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Luke-Glaser S, Luke B, Grossi S, Constantinou A (2010) FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J 29(4):795–805. doi:10.1038/emboj.2009.371

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Machida YJ, Machida Y, Chen Y, Gurtan AM, Kupfer GM, D’Andrea AD, Dutta A (2006) UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol Cell 23(4):589–596. doi:10.1016/j.molcel.2006.06.024

    CAS  PubMed  Google Scholar 

  143. MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, Hofmann K, Gartner A, West SC, Helleday T, Lilley DM, Rouse J (2010) Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142(1):65–76. doi:10.1016/j.cell.2010.06.021

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Maher RL, Branagan AM, Morrical SW (2011) Coordination of DNA replication and recombination activities in the maintenance of genome stability. J Cell Biochem 112(10):2672–2682. doi:10.1002/jcb.23211

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Margison GP, Povey AC, Kaina B, Santibanez Koref MF (2003) Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis 24(4):625–635

    CAS  PubMed  Google Scholar 

  146. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338

    CAS  PubMed  Google Scholar 

  147. Marra G, Iaccarino I, Lettieri T, Roscilli G, Delmastro P, Jiricny J (1998) Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci U S A 95(15):8568–8573

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Marsischky GT, Filosi N, Kane MF, Kolodner R (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10(4):407–420

    CAS  PubMed  Google Scholar 

  149. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18(6):3563–3571

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Matson SW, Robertson AB (2006) The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 34(15):4089–4097. doi:10.1093/nar/gkl450

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269(5224):699–702

    CAS  PubMed  Google Scholar 

  152. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30(1):2–10. doi:10.1093/carcin/bgn250

    CAS  PubMed Central  PubMed  Google Scholar 

  153. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66(16):8109–8115. doi:10.1158/0008-5472.CAN-06-0140

    CAS  PubMed  Google Scholar 

  154. McNally R, Bowman GD, Goedken ER, O'Donnell M, Kuriyan J (2010) Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct Biol 10:3. doi:10.1186/1472-6807-10-3

    PubMed Central  PubMed  Google Scholar 

  155. Medina-Arana V, Delgado L, Bravo A, Martin J, Fernandez-Peralta AM, Gonzalez-Aguilera JJ (2012) Tumor spectrum in lynch syndrome, DNA mismatch repair system and endogenous carcinogens. J Surg Oncol 106(1):10–16. doi:10.1002/jso.23054

    CAS  PubMed  Google Scholar 

  156. Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, Bier P, Steltenpool J, Stone S, Dokal I, Mathew CG, Hoatlin M, Joenje H, de Winter JP, Wang W (2005) A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 37(9):958–963. doi:10.1038/ng1626

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Meyer S, Neitzel H, Tonnies H (2012) Chromosomal aberrations associated with clonal evolution and leukemic transformation in fanconi anemia: clinical and biological implications. Anemia 2012:349837. doi:10.1155/2012/349837

    PubMed Central  PubMed  Google Scholar 

  158. Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Gen Dev 21(24):3342–3355. doi:10.1101/gad.455407

    CAS  Google Scholar 

  159. Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, Gonzalez S, Guino E, Capella G, Canzian F (2006) Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 12(7 Pt 1):2101–2108. doi:10.1158/1078-0432.CCR-05-1363

    CAS  PubMed  Google Scholar 

  160. Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB, Johnson M, Langevin F, Pace P, Patel KJ (2005) The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat Struct Mol Biol 12(9):763–771. doi:10.1038/nsmb981

    CAS  PubMed  Google Scholar 

  161. Moynahan ME, Cui TY, Jasin M (2001) Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61(12):4842–4850

    CAS  PubMed  Google Scholar 

  162. Mueser TC, Williams KJ (2011) Alkylation chemotherapy: Mechanistic potential and pitfalls. In: Advances in Genetics Research (Urbano KV, ed.), Nova Science Publishers, pp 179–196

    Google Scholar 

  163. Mukhopadhyay A, Elattar A, Cerbinskaite A, Wilkinson SJ, Drew Y, Kyle S, Los G, Hostomsky Z, Edmondson RJ, Curtin NJ (2010) Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin Cancer Res 16(8):2344–2351. doi:10.1158/1078-0432.CCR-09-2758

    CAS  PubMed  Google Scholar 

  164. Muller LU, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park IH, London WB, Strait K, Schlaeger T, Devine AL, Grassman E, D'Andrea A, Daley GQ, Williams DA (2012) Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119(23):5449–5457. doi:10.1182/blood-2012-02-408674

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Munoz IM, Hain K, Declais AC, Gardiner M, Toh GW, Sanchez-Pulido L, Heuckmann JM, Toth R, Macartney T, Eppink B, Kanaar R, Ponting CP, Lilley DM, Rouse J (2009) Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell 35(1):116–127. doi:10.1016/j.molcel.2009.06.020

    CAS  PubMed  Google Scholar 

  166. Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D’Andrea AD (2011) The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol 31(12):2462–2469. doi:10.1128/MCB.05058-11

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D’Andrea AD, Wang ZQ, Jasin M (2005) Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A 102(4):1110–1115. doi:10.1073/pnas.0407796102

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30(2):137–144. doi:10.1016/j.molcel.2008.02.022

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Nick McElhinny SA, Kissling GE, Kunkel TA (2010a) Differential correction of lagging-strand replication errors made by DNA polymerases {alpha} and {delta}. Proc Natl Acad Sci U S A 107(49):21070–21075. doi:10.1073/pnas.1013048107

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB, Burgers PM, Johansson E, Chabes A, Kunkel TA (2010b) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci U S A 107(11):4949–4954. doi:10.1073/pnas.0914857107

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundstrom EB, Johansson E, Chabes A, Kunkel TA (2010c) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6:774–781. doi:10.1038/nchembio.424

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ (2004) The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell 15(4):607–620. doi:10.1016/j.molcel.2004.08.009

    CAS  PubMed  Google Scholar 

  173. Nojima K, Hochegger H, Saberi A, Fukushima T, Kikuchi K, Yoshimura M, Orelli BJ, Bishop DK, Hirano S, Ohzeki M, Ishiai M, Yamamoto K, Takata M, Arakawa H, Buerstedde JM, Yamazoe M, Kawamoto T, Araki K, Takahashi JA, Hashimoto N, Takeda S, Sonoda E (2005) Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res 65(24):11704–11711. doi:10.1158/0008-5472.CAN-05-1214

    CAS  PubMed  Google Scholar 

  174. Oestergaard VH, Langevin F, Kuiken HJ, Pace P, Niedzwiedz W, Simpson LJ, Ohzeki M, Takata M, Sale JE, Patel KJ (2007) Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol Cell 28(5):798–809. doi:10.1016/j.molcel.2007.09.020

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Pabla N, Ma Z, McIlhatton MA, Fishel R, Dong Z (2011) hMSH2 recruits ATR to DNA damage sites for activation during DNA damage-induced apoptosis. J Biol Chem 286(12):10411–10418. doi:10.1074/jbc.M110.210989

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ (2010) Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329(5988):219–223. doi:10.1126/science.1192277

    CAS  PubMed  Google Scholar 

  177. Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, Salguero I, Sherborne A, Chubb D, Carvajal-Carmona LG, Ma Y, Kaur K, Dobbins S, Barclay E, Gorman M, Martin L, Kovac MB, Humphray S, Lucassen A, Holmes CC, Bentley D, Donnelly P, Taylor J, Petridis C, Roylance R, Sawyer EJ, Kerr DJ, Clark S, Grimes J, Kearsey SE, Thomas HJ, McVean G, Houlston RS, Tomlinson I (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45(2):136–144. doi:10.1038/ng.2503

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Pascual AM, Tellez N, Bosca I, Mallada J, Belenguer A, Abellan I, Sempere AP, Fernandez P, Magraner MJ, Coret F, Sanz MA, Montalban X, Casanova B (2009) Revision of the risk of secondary leukaemia after mitoxantrone in multiple sclerosis populations is required. Mult Scler 15(11):1303–1310. doi:10.1177/1352458509107015

    CAS  PubMed  Google Scholar 

  179. Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A 108(8):3406–3411. doi:10.1073/pnas.1013715108

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Peasland A, Wang LZ, Rowling E, Kyle S, Chen T, Hopkins A, Cliby WA, Sarkaria J, Beale G, Edmondson RJ, Curtin NJ (2011) Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 105(3):372–381. doi:10.1038/bjc.2011.243

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Pedersen-Bjergaard J, Rowley JD (1994) The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation. Blood 83(10):2780–2786

    CAS  PubMed  Google Scholar 

  182. Pena-Diaz J, Jiricny J (2010) PCNA and MutLalpha: partners in crime in triplet repeat expansion? Proc Natl Acad Sci U S A 107(38):16409–16410. doi:10.1073/pnas.1011692107

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Pena-Diaz J, Jiricny J (2012) Mammalian mismatch repair: error-free or error-prone? Trends Biochem Sci 37(5):206–214. doi:10.1016/j.tibs.2012.03.001

    CAS  PubMed  Google Scholar 

  184. Preston BD, Albertson TM, Herr AJ (2010) DNA replication fidelity and cancer. Semin Cancer Bio 20(5):281–293. doi:10.1016/j.semcancer.2010.10.009

    CAS  Google Scholar 

  185. Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci U S A 107(37):16066–16071. doi:10.1073/pnas.1010662107

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Podlutsky AJ, Dianova II, Podust VN, Bohr VA, Dianov GL (2001) Human DNA polymerase beta initiates DNA synthesis during long-patch repair of reduced AP sites in DNA. EMBO J 20(6):1477–1482. doi:10.1093/emboj/20.6.1477

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317(5834):127–130. doi:10.1126/science.1144067

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Quennet V, Beucher A, Barton O, Takeda S, Lobrich M (2011) CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res 39(6):2144–2152. doi:10.1093/nar/gkq1175

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969

    CAS  PubMed  Google Scholar 

  190. Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Scharer OD, Walter JC (2008) Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134(6):969–980. doi:10.1016/j.cell.2008.08.030

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Rasmussen LJ, Heinen CD, Royer-Pokora B, Drost M, Tavtigian S, Hofstra RM, de Wind N (2012) Pathological assessment of mismatch repair gene variants in Lynch syndrome: past, present, and future. Hum Mutat 33(12):1617–1625. doi:10.1002/humu.22168

    CAS  PubMed  Google Scholar 

  192. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E, Gonzalez F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surralles J, Bueren J, Izpisua Belmonte JC (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59. doi:10.1038/nature08129

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney PS, Sexton D, Grimes G, Holt IJ, Hill RE, Taylor MS, Lawson KA, Dorin JR, Jackson AP (2012) Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149(5):1008–1022. doi:10.1016/j.cell.2012.04.011

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Robertson AB, Pattishall SR, Gibbons EA, Matson SW (2006) MutL-catalyzed ATP hydrolysis is required at a post-UvrD loading step in methyl-directed mismatch repair. J Biol Chem 281(29):19949–19959. doi:10.1074/jbc.M601604200

    CAS  PubMed  Google Scholar 

  195. Romanova NV, Crouse GF (2013) Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet 9(10):e1003920. doi:10.1371/journal.pgen.1003920

    PubMed Central  PubMed  Google Scholar 

  196. Romick-Rosendale LE, Lui VW, Grandis JR, Wells SI (2013) The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 743–744:78–88. doi:10.1016/j.mrfmmm.2013.01.001

    PubMed  Google Scholar 

  197. Rosenberg PS, Alter BP, Ebell W (2008) Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematol 93(4):511–517. doi:10.3324/haematol.12234

    Google Scholar 

  198. Rosenberg PS, Greene MH, Alter BP (2003) Cancer incidence in persons with Fanconi anemia. Blood 101(3):822–826. doi:10.1182/blood-2002-05-1498

    CAS  PubMed  Google Scholar 

  199. Rosenzweig KE, Youmell MB, Palayoor ST, Price BD (1997) Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clinical cancer research: an official journal of the American Association for. Cancer Res 3(7):1149–1156

    CAS  Google Scholar 

  200. Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y, Deem A, Ira G, Haber JE, Lobachev KS, Malkova A (2013) Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502(7471):389–392. doi:10.1038/nature12584

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, Sekiguchi M, Nakabeppu Y (2003) Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res 63(5):902–905

    CAS  PubMed  Google Scholar 

  202. Schopf B, Bregenhorn S, Quivy JP, Kadyrov FA, Almouzni G, Jiricny J (2012) Interplay between mismatch repair and chromatin assembly. Proc Natl Acad Sci U S A 109(6):1895–1900. doi:10.1073/pnas.1106696109

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Schwab RA, Blackford AN, Niedzwiedz W (2010) ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J 29(4):806–818. doi:10.1038/emboj.2009.385

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Sharma S, Salehi F, Scheithauer BW, Rotondo F, Syro LV, Kovacs K (2009) Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer Res 29(10):3759–3768

    CAS  PubMed  Google Scholar 

  205. Shereda RD, Machida Y, Machida YJ (2010) Human KIAA1018/FAN1 localizes to stalled replication forks via its ubiquitin-binding domain. Cell Cycle 9(19):3977–3983

    CAS  PubMed  Google Scholar 

  206. Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349(6308):431–434. doi:10.1038/349431a0

    CAS  PubMed  Google Scholar 

  207. Shigechi T, Tomida J, Sato K, Kobayashi M, Eykelenboom JK, Pessina F, Zhang Y, Uchida E, Ishiai M, Lowndes NF, Yamamoto K, Kurumizaka H, Maehara Y, Takata M (2012) ATR-ATRIP kinase complex triggers activation of the Fanconi anemia DNA repair pathway. Cancer Res 72(5):1149–1156. doi:10.1158/0008-5472.CAN-11-2904

    CAS  PubMed  Google Scholar 

  208. Simpson LJ, Sale JE (2003) Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J 22(7):1654–1664. doi:10.1093/emboj/cdg161

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Singh TR, Ali AM, Paramasivam M, Pradhan A, Wahengbam K, Seidman MM, Meetei AR (2013) ATR-dependent phosphorylation of FANCM at serine 1045 is essential for FANCM functions. Cancer Res 73(14):4300–4310. doi:10.1158/0008-5472.CAN-12-3976

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y, Sung P, Meetei AR (2010) MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 37(6):879–886. doi:10.1016/j.molcel.2010.01.036

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Slupianek A, Dasgupta Y, Ren SY, Gurdek E, Donlin M, Nieborowska-Skorska M, Fleury F, Skorski T (2011) Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia. Blood 118(4):1062–1068. doi:10.1182/blood-2010-09-307256

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, Clark AB, Kunkel TA, Harper JW, Colaiacovo MP, Elledge SJ (2010) A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell 39(1):36–47. doi:10.1016/j.molcel.2010.06.023

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Spratt TE, Levy DE (1997) Structure of the hydrogen bonding complex of O6-methylguanine with cytosine and thymine during DNA replication. Nucleic Acids Res 25(16):3354–3361

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M, Kumar S, Pandey M, Singh RK, Ray P, Natarajan R, Kelkar M, De A, Choudhary B, Raghavan SC (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151(7):1474–1487. doi:10.1016/j.cell.2012.11.054

    CAS  PubMed  Google Scholar 

  215. Sugo N, Aratani Y, Nagashima Y, Kubota Y, Koyama H (2000) Neonatal lethality with abnormal neurogenesis in mice deficient in DNA polymerase beta. EMBO J 19(6):1397–1404. doi:10.1093/emboj/19.6.1397

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278(44):42729–42732. doi:10.1074/jbc.R300027200

    CAS  PubMed  Google Scholar 

  217. Svendsen JM, Smogorzewska A, Sowa ME, O’Connell BC, Gygi SP, Elledge SJ, Harper JW (2009) Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138(1):63–77. doi:10.1016/j.cell.2009.06.030

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th ed. IARC, France

    Google Scholar 

  219. Takata K, Reh S, Tomida J, Person MD, Wood RD (2013) Human DNA helicase HELQ participates in DNA interstrand crosslink tolerance with ATR and RAD51 paralogs. Nat Commu 4:2338. doi:10.1038/ncomms3338

    Google Scholar 

  220. Takeda S, Nakamura K, Taniguchi Y, Paull TT (2007) Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination. Mol Cell 28(3):351–352. doi:10.1016/j.molcel.2007.10.016

    CAS  PubMed  Google Scholar 

  221. Tang JB, Goellner EM, Wang XH, Trivedi RN, Croix CM St, Jelezcova E, Svilar D, Brown AR, Sobol RW (2010) Bioenergetic metabolites regulate base excision repair-dependent cell death in response to DNA damage. Mol Cancer Res (MCR) 8(1):67–79. doi:10.1158/1541-7786.MCR-09-0411

    CAS  Google Scholar 

  222. Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D’Andrea AD (2002) S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100(7):2414–2420. doi:10.1182/blood-2002-01-0278

    CAS  PubMed  Google Scholar 

  223. Thomas DC, Roberts JD, Kunkel TA (1991) Heteroduplex repair in extracts of human HeLa cells. J Biol Chem 266(6):3744–3751

    CAS  PubMed  Google Scholar 

  224. Tischkowitz MD, Hodgson SV (2003) Fanconi anaemia. J Med Genet 40(1):1–10

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, Oyarzabal J, Pastor J, Bischoff JR, Fernandez-Capetillo O (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18 (6):721–727. doi:10.1038/nsmb.2076

    Google Scholar 

  226. Tomida J, Itaya A, Shigechi T, Unno J, Uchida E, Ikura M, Masuda Y, Matsuda S, Adachi J, Kobayashi M, Meetei AR, Maehara Y, Yamamoto K, Kamiya K, Matsuura A, Matsuda T, Ikura T, Ishiai M, Takata M (2013) A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair. Nucleic Acids Res 41(14):6930–6941. doi:10.1093/nar/gkt467

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Trivedi RN, Wang XH, Jelezcova E, Goellner EM, Tang JB, Sobol RW (2008) Human methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide. Mol Pharmacol 74(2):505–516. doi:10.1124/mol.108.045112

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Trujillo JP, Mina LB, Pujol R, Bogliolo M, Andrieux J, Holder M, Schuster B, Schindler D, Surralles J (2012) On the role of FAN1 in Fanconi anemia. Blood 120(1):86–89. doi:10.1182/blood-2012-04-420604

    CAS  PubMed  Google Scholar 

  229. Tulpule A, Lensch MW, Miller JD, Austin K, D’Andrea A, Schlaeger TM, Shimamura A, Daley GQ (2010) Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood 115(17):3453–3462. doi:10.1182/blood-2009-10-246694

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Ueda K, Oka J, Naruniya S, Miyakawa N, Hayaishi O (1972) Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem Biophys Res Commun 46(2):516–523

    CAS  PubMed  Google Scholar 

  231. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42(5):406–409. doi:10.1038/ng.570

    CAS  PubMed  Google Scholar 

  232. Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S, Li GM, Drummond J, Modrich PL, Sedwick WD, Markowitz SD (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A 95(15):8698–8702

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW (2003) Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 63(18):6008–6015

    CAS  PubMed  Google Scholar 

  234. Wallace SS, Murphy DL, Sweasy JB (2012) Base excision repair and cancer. Cancer Lett 327(1–2):73–89. doi:10.1016/j.canlet.2011.12.038

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Wang AT, Sengerova B, Cattell E, Inagawa T, Hartley JM, Kiakos K, Burgess-Brown NA, Swift LP, Enzlin JH, Schofield CJ, Gileadi O, Hartley JA, McHugh PJ (2011) Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 25(17):1859–1870. doi:10.1101/gad.15699211

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Wang W (2007) Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8(10):735–748. doi:10.1038/nrg2159

    CAS  PubMed  Google Scholar 

  237. Wang Y, Leung JW, Jiang Y, Lowery MG, Do H, Vasquez KM, Chen J, Wang W, Li L (2013a) FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol Cell 49(5):997–1009. doi:10.1016/j.molcel.2012.12.010

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Wang Y, Yuan JL, Zhang YT, Ma JJ, Xu P, Shi CH, Zhang W, Li YM, Fu Q, Zhu GF, Xue W, Lei YH, Gao JY, Wang JY, Shao C, Yi CG, Wang H (2013b) Inhibition of both EGFR and IGF1R sensitized prostate cancer cells to radiation by synergistic suppression of DNA homologous recombination repair. PloS ONE 8(8):e68784. doi:10.1371/journal.pone.0068784

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Weterings E, Chen DJ (2008) The endless tale of non-homologous end-joining. Cell Res 18(1):114–124. doi:10.1038/cr.2008.3

    CAS  PubMed  Google Scholar 

  240. Weterings E, van Gent DC (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair 3(11):1425–1435. doi:10.1016/j.dnarep.2004.06.003

    CAS  PubMed  Google Scholar 

  241. Williams HL, Gottesman ME, Gautier J (2013) The differences between ICL repair during and outside of S phase. Trends Biochem Sci 38(8):386–393. doi:10.1016/j.tibs.2013.05.004

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A, Ananth S, Glazer PM, Semmes OJ, Bale AE, Jones NJ, Kupfer GM (2011) Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet 20(22):4395–4410. doi:10.1093/hmg/ddr366

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, Durkacz BW (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103(12):4659–4665. doi:10.1182/blood-2003-07-2527

    CAS  PubMed  Google Scholar 

  244. Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39(2):159–161. doi:10.1038/ng1942

    CAS  PubMed  Google Scholar 

  245. Xue Y, Li Y, Guo R, Ling C, Wang W (2008) FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum Mol Genet 17(11):1641–1652. doi:10.1093/hmg/ddn054

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Yamamoto KN, Kobayashi S, Tsuda M, Kurumizaka H, Takata M, Kono K, Jiricny J, Takeda S, Hirota K (2011) Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc Natl Acad Sci U S A 108(16):6492–6496. doi:10.1073/pnas.1018487108

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra AB, Du H, Steltenpool J, Lin T, Schuster B, Decaillet C, Stasiak A, Stasiak AZ, Stone S, Hoatlin ME, Schindler D, Woodcock CL, Joenje H, Sen R, de Winter JP, Li L, Seidman MM, Whitby MC, Myung K, Constantinou A, Wang W (2010) A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell 37(6):865–878. doi:10.1016/j.molcel.2010.01.039

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Yan Z, Guo R, Paramasivam M, Shen W, Ling C, Fox D 3rd, Wang Y, Oostra AB, Kuehl J, Lee DY, Takata M, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Li L, Seidman MM, Wang W (2012) A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. Mol Cell 47(1):61–75. doi:10.1016/j.molcel.2012.05.026

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Yang G, Scherer SJ, Shell SS, Yang K, Kim M, Lipkin M, Kucherlapati R, Kolodner RD, Edelmann W (2004) Dominant effects of an Msh6 missense mutation on DNA repair and cancer susceptibility. Cancer Cell 6(2):139–150. doi:10.1016/j.ccr.2004.06.024

    CAS  PubMed  Google Scholar 

  250. York SJ, Modrich P (2006) Mismatch repair-dependent iterative excision at irreparable O6-methylguanine lesions in human nuclear extracts. J Biol Chem 281(32):22674–22683. doi:10.1074/jbc.M603667200

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Yoshikiyo K, Kratz K, Hirota K, Nishihara K, Takata M, Kurumizaka H, Horimoto S, Takeda S, Jiricny J (2010) KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proc Natl Acad Sci U S A 107(50):21553–21557. doi:10.1073/pnas.1011081107

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Yoshioka K, Yoshioka Y, Hsieh P (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22(4):501–510. doi:10.1016/j.molcel.2006.04.023

    CAS  PubMed Central  PubMed  Google Scholar 

  253. You Z, Shi LZ, Zhu Q, Wu P, Zhang YW, Basilio A, Tonnu N, Verma IM, Berns MW, Hunter T (2009) CtIP links DNA double-strand break sensing to resection. Mol Cell 36(6):954–969. doi:10.1016/j.molcel.2009.12.002

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Yung SK, Tilgner K, Ledran MH, Habibollah S, Neganova I, Singhapol C, Saretzki G, Stojkovic M, Armstrong L, Przyborski S, Lako M (2013) Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors. Stem Cells 31(5):1022–1029. doi:10.1002/stem.1308

    CAS  PubMed  Google Scholar 

  255. Zhang Y, Yuan F, Presnell SR, Tian K, Gao Y, Tomkinson AE, Gu L, Li GM (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122(5):693–705. doi:10.1016/j.cell.2005.06.027

    CAS  PubMed  Google Scholar 

  256. Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, Diaz K, Lach FP, Bennett GR, Gee HY, Ghosh AK, Natarajan S, Thongthip S, Veturi U, Allen SJ, Janssen S, Ramaswami G, Dixon J, Burkhalter F, Spoendlin M, Moch H, Mihatsch MJ, Verine J, Reade R, Soliman H, Godin M, Kiss D, Monga G, Mazzucco G, Amann K, Artunc F, Newland RC, Wiech T, Zschiedrich S, Huber TB, Friedl A, Slaats GG, Joles JA, Goldschmeding R, Washburn J, Giles RH, Levy S, Smogorzewska A, Hildebrandt F (2012) FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet 44(8):910–915. doi:10.1038/ng.23

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif F. El-Khamisy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashour, M., El-Shafie, L., El-Khamisy, S. (2015). DNA Damage Response Pathways in Cancer Predisposition and Progression. In: Maxwell, C., Roskelley, C. (eds) Genomic Instability and Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-12136-9_3

Download citation

Publish with us

Policies and ethics