Skip to main content

Modeling and Sequential Repairs of Systems Considering Aging and Repair Effects

  • Chapter
  • First Online:
  • 1684 Accesses

Part of the book series: Decision Engineering ((DECENGIN))

Abstract

The reliability of a repairable system depends on the system age and the number of repairs it experienced. When these effects are considered, predicting the system reliability metrics, such as the cumulative number of failures and failure intensity in the future, becomes a challenging problem. Many existing models utilize Monte Carlo simulations to do prediction but this entails significant computational efforts. This chapter presents a modified Proportional Failure Intensity model to analyze repairable systems. By further modification (approximation) to the model, the system reliability metrics and the associated confidence bounds can be effectively predicted without conducting time-consuming simulations. Moreover, to make repair/replacement decisions, most research assumes the repair model of the system is available beforehand. In practice, however, the model needs to be estimated based upon failures and sequential repair/replacement decisions must be made based on the predicted system reliability metrics. The proposed model is utilized in this decision-making paradigm considering a short-run cost rate criterion. Unlike the widely used long-run cost rate, this criterion emphasizes the economic impact of a repair/replacement decision on the next fail-and-fix cycle of the system. Two benchmark data sets are analyzed to demonstrate the model in practical use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cdf:

Cumulative distribution function

pdf:

Probability density function

N(t):

Cumulative number of failures up to time t

m(t):

\( E\left[ {N\left( t \right)} \right] \)

λ(t):

Failure intensity at time t

T i , t i :

Random time of the ith failure and its observation

\( \lambda_{0} ,\alpha ,\beta ,\gamma \) :

Model parameters

\( f\left( {t_{i + 1} \left| {\,t_{i} } \right.} \right) \) :

Conditional pdf of the (i + 1)th failure time given the ith failure is, observed at t i

\( F\left( {t\left| {\,t_{i} } \right.} \right) \), \( R\left( {t\left| {\,t_{i} } \right.} \right) \) :

Conditional Cdf and reliability given the ith failure is observed at t i

\( \eta \) :

Repair time with pdf \( h_{\eta } \left( \eta \right) = \lambda_{\eta } e^{{ - \lambda_{\eta } \eta }} \)

ξ:

Replacement time with pdf \( h_{\xi } \left( \xi \right) = \lambda_{\xi } e^{{ - \lambda_{\xi } \xi }} \)

C R :

Replacement cost per unit time

C r :

Repair cost per unit time

\( \psi \left( \cdot \right) \) :

Moment generating function of a random variable

References

  1. Cox DR (1972) The statistical analysis of dependencies in point processes. In: Lewis PAW (ed) Stochastic point processes. Wiley, New York, pp 55–66

    Google Scholar 

  2. Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Methuen, London

    Book  MATH  Google Scholar 

  3. Crow LH (1974) Reliability analysis for complex, repairable systems. In: Proschan F, Serfling RJ (eds) Reliability and biometry. SIAM, Philadelphia, pp 379–410

    Google Scholar 

  4. Elsayed EA (1996) Reliability engineering. Addison Wesley Longman Inc, New York

    Google Scholar 

  5. Kaminskiy M, Krivtsov V (1998) A Monte Carlo approach to repairable system reliability analysis. Probabilistic safety assessment and management. Springer, New York, pp 1063–1068

    Google Scholar 

  6. Kijima M (1989) Some results for repairable systems with general repair. J Appl Probab 26:89–102

    Article  MATH  MathSciNet  Google Scholar 

  7. Kijima M, Sumita N (1986) A useful generalization of renewal theory: counting process governed by non-negative Markovian increments. J Appl Probab 23:71–88

    Article  MATH  MathSciNet  Google Scholar 

  8. Kumar U, Klefjsö B (1992) Reliability analysis of hydraulic systems of LHD machines using the power law process model. Reliab Eng Syst Saf 35(3):217–224

    Article  Google Scholar 

  9. Lawless JF, Thiagarajah K (1996) A point-process model incorporating renewals and time trends, with application to repairable systems. Technometics 38:131–138

    Article  MATH  Google Scholar 

  10. Lie HC, Chun HY (1986) An algorithm for preventive maintenance policy. IEEE Trans Reliab 35:71–75

    Article  MATH  Google Scholar 

  11. Lindqvist BH, Elvebakk G, Heggland K (2003) The trend-renewal process for statistical analysis of repairable systems. Technometrics 45(1):31–44

    Article  MathSciNet  Google Scholar 

  12. Malik MAK (1979) Reliability preventive maintenance policy. AIIE Trans 11:221–228

    Article  Google Scholar 

  13. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    MATH  Google Scholar 

  14. Musa JD, Okumoto K (1984) A logarithmic poisson execution time model for software reliability measurement. In: Proceedings of seventh international conference on software engineering, pp 230–238

    Google Scholar 

  15. Park KS (1979) Optimal number of minimal repairs before replacement. IEEE Trans Reliab 28:137–140

    Article  MATH  Google Scholar 

  16. Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 5:375–383

    Article  Google Scholar 

  17. Ross S (1997) Introduction to probability models. Academic Press, New York

    MATH  Google Scholar 

  18. Wang H, Pham H (1996) Optimal age-dependent preventive maintenance policies with imperfect maintenance. Int J Reliab Qual Saf Eng 3:119–135

    Article  Google Scholar 

  19. Yanez M, Joglar F, Modarres M (2002) Generalized renewal process for analysis of repairable systems with limited failure experience. Reliab Eng Syst Saf 77(2):167–180

    Article  Google Scholar 

  20. Zhang YL, Yam RCM, Zuo MJ (2002) Optimal replacement policy for a multistate repairable system. J Oper Res Soc 53:336–341

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liao .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Theorem 1

Suppose both the replacement time and the first failure time after the replacement follow exponential distributions with parameters \( \lambda_{\xi } \) and \( \lambda_{0} \), respectively. Then, the pdf of X is:

$$ \begin{aligned} g_{X} \left( x \right) & = \int\limits_{0}^{\infty } {\frac{{C_{R} }}{{x^{2} }}\xi \lambda_{\xi } e^{{ - \lambda_{\xi } \xi }} \lambda_{0} e^{{\frac{{\lambda_{0} \left( {C_{R} - x} \right)\xi }}{x}}} d\xi = \frac{{C_{R} \lambda_{0} \lambda_{\xi } }}{{x^{2} }}\int\limits_{0}^{\infty } {\xi e^{{ - \left( {\lambda_{\xi } + \frac{{\lambda_{0} C_{R} - \lambda_{0} x}}{x}} \right)\xi }} d\xi } } \\ & = \frac{{C_{R} \lambda_{0} \lambda_{\xi } }}{{x^{2} }}\left( {\frac{x}{{\left( {\lambda_{\xi } - \lambda_{0} } \right)x + \lambda_{0} C_{R} }}} \right)^{2} = \frac{{C_{R} \lambda_{0} \lambda_{\xi } }}{{\left( {\left( {\lambda_{\xi } - \lambda_{0} } \right)x + \lambda_{0} C_{R} } \right)^{2} }}, \\ \end{aligned} $$
(10.25)

which is in the form of Cauchy distribution. Since \( X \in \left( {0,C_{R} } \right), \) X follows the Truncated Cauchy distribution.

Appendix 2: Proof of Theorem 2

Suppose the replacement time has the exponential distribution with parameter \( \lambda_{\xi } \) and the hazard rate of the first failure time after the replacement is in the form of \( \lambda \left( t \right) = \lambda_{0} \beta t^{\beta - 1} . \) Then, the pdf of \( X \) is:

$$ \begin{aligned} g_{X} \left( x \right) & = \int\limits_{0}^{\infty } {\frac{{C_{R} }}{{x^{2} }}\xi \lambda_{\xi } e^{{ - \lambda_{\xi } \xi }} } \lambda_{0} \beta \left( {\frac{{\left( {C_{R} - x} \right)\xi }}{x}} \right)^{\beta - 1} e^{{ - \lambda_{0} \left( {\frac{{\left( {C_{R} - x} \right)\xi }}{x}} \right)^{\beta } }} d\xi \\ & = \frac{{\lambda_{0} \beta C_{R} \left( {C_{R} - x} \right)^{\beta - 1} }}{{x^{\beta + 1} }}\int\limits_{0}^{\infty } {\xi^{\beta } e^{{ - \left( {\frac{{\lambda_{0} \left( {C_{R} - x} \right)^{\beta } }}{{x^{\beta } }}} \right)\xi^{\beta } }} \lambda_{\xi } e^{{ - \lambda_{\xi } \xi }} d\xi } \\ & = \frac{{\lambda_{\xi } C_{R} }}{{x\left( {C_{R} - x} \right)}}\int\limits_{0}^{\infty } {\left( {\xi e^{{ - \lambda_{\xi } \xi }} } \right)d\left( {1 - \exp \left( { - \left( {\frac{{\sqrt[\beta ]{{\lambda_{0} }}\left( {C_{R} - x} \right)}}{x}} \right)^{\beta } } \right)} \right).} \\ \end{aligned} $$
(10.26)

Considering \( \psi \left( a \right) = E\left[ {e^{a\xi } } \right] \) is the moment generating function of a random variable \( \xi \) and \( \psi^{\prime}\left( a \right) = E\left[ {\xi e^{a\xi } } \right] \) is the first derivative of the function with respect to a, the pdf of X becomes \( g_{X} \left( x \right) = \frac{{\lambda_{\xi } C_{R} }}{{x\left( {C_{R} - x} \right)}}\psi^{\prime}\left( { - \lambda_{\xi } } \right), \) where \( \psi^{\prime}\left( { - \lambda_{\xi } } \right) \) is the first derivative, with respect to \( - \lambda_{\xi } , \) of the moment generating function \( \psi \left( { - \lambda_{\xi } } \right) \) of the two-parameter Weibull random variable with scale parameter \( \frac{{\sqrt[\beta ]{{\lambda_{0} \left( {C_{R} - x} \right)}}}}{x} \) and shape parameter β. Furthermore, the integral in Eq. (10.26) exists because:

$$ \begin{aligned} & \xi \ge 0,\quad \lambda_{\xi } > 0 \Rightarrow e^{{ -^{{\lambda_{\xi } \xi }} }} \le 1 \Rightarrow \xi e^{{ - \lambda_{\xi } \xi }} \le \xi \Rightarrow \\ & \int\limits_{0}^{\infty } {(\xi e^{{ - \lambda_{\xi } \xi }} } d)\left( {1 - \exp \left( { - \left( {\frac{{\sqrt[\beta ]{{\lambda_{0} \left( {C_{R} - x} \right)}}}}{x}\xi } \right)^{\beta } } \right)} \right) < \int\limits_{0}^{\infty } {\xi d\left( {1 - \exp \left( { - \left( {\frac{{\sqrt[\beta ]{{\lambda_{0} }}\left( {C_{R} - x} \right)}}{x}\xi } \right)^{\beta } } \right)} \right),} \\ \end{aligned} $$

where the term on the right hand side is the expectation \( \left( { < \infty } \right) \) of the Weibull random variable.

Appendix 3: Proof of Theorem 3

Suppose the repair time has the exponential distribution with parameter \( \lambda_{\eta} \) and the failure intensity of the system follows the modified Proportional Failure Intensity model with the failure intensity \( \lambda \left( t \right) = \lambda_{0} \beta t^{\beta - 1} e^{{\gamma N\left( {t - } \right)}} \). Then, the pdf of Y i is:

$$ \begin{aligned} g_{{Y_{i} }} \left( {y_{i} } \right) & = \int\limits_{0}^{\infty } {\frac{{C_{r} }}{{y_{i}^{2} }}} \eta \lambda_{\eta } e^{{ - \lambda_{\eta } \eta }} \lambda_{0} \beta \left( {\frac{{\left( {C_{r} - y_{i} } \right)\eta }}{{y_{i} }} + t_{i} } \right)^{\beta - 1} e^{i\gamma } e^{{ - e^{i\gamma } \lambda_{0} \left( {\left( {\frac{{\left( {C_{r} - y_{i} } \right)\eta }}{{y_{i} }} + t_{i} } \right)^{\beta } - t^{\beta }_{i} } \right)}} d\eta \\ & = \frac{{\lambda_{0} \beta C_{r} e^{i\gamma } }}{{y_{i}^{2} }}e^{{\lambda_{0} e^{i\gamma } t_{i}^{\beta } }} \int\limits_{0}^{\infty } {\left( {\frac{{\left( {C_{r} - y_{i} } \right)\eta }}{{y_{i} }} + t_{i} } \right)^{\beta - 1} e^{{ - \lambda_{0} e^{{i\gamma \left( {\frac{{\left( {c_{r} - y_{i} } \right)\eta }}{{y_{i} }}} + t_{i}\right)^{\beta } }} }} \lambda_{\eta } \eta e^{{ - \lambda_{\eta } \eta }} d\eta } \\ & = \frac{{C_{r} \lambda_{\eta } e^{{\lambda_{0} e^{i\gamma } t_{i}^{\beta } }} }}{{y_{i} \left( {C_{r} - y_{i} } \right)}}\int\limits_{0}^{\infty } {\eta e^{{ - \lambda_{n} \eta }} d\left( {1 - \exp \left( { - \left( {\sqrt[\beta ]{{\lambda_{0} e^{i\gamma } \frac{{(C_{r} - y_{i} )}}{{y_{i} }}}}\left( {\eta - \frac{{ - y_{i} t_{i} }}{{C_{r} - y_{i} }}} \right)} \right)^{\beta } } \right)} \right),} \\ \end{aligned} $$
(10.27)

which is in the form of \( \frac{{\lambda_{\eta } C_{r} e^{{\lambda_{0} e^{i\gamma } t_{i}^{\beta } }} }}{{y_{i} \left( {C_{r} - y_{i} } \right)}}\psi^{\prime}\left( { - \lambda_{\eta } } \right), \) where \( \psi^{\prime}\left( { - \lambda_{\eta } } \right) \) is the first derivative, with respect to \( - \lambda_{\eta } \), of the moment generating function \( \psi \left( { - \lambda_{n} } \right) \) of the three-parameter Weibull random variable with location parameter \( \frac{{\sqrt[\beta ]{{\lambda_{0} e^{i\gamma } \left( {C_{r} - y_{i} } \right)}}}}{{y_{i} }} \) scale parameter \( \frac{{\sqrt[\beta ]{{\lambda_{0} e^{i\gamma } \left( {C_{r} - y_{i} } \right)}}}}{{y_{i} }} \) and shape parameter β.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liao, H., Guo, H. (2015). Modeling and Sequential Repairs of Systems Considering Aging and Repair Effects. In: Redding, L., Roy, R. (eds) Through-life Engineering Services. Decision Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12111-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12111-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12110-9

  • Online ISBN: 978-3-319-12111-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics