Skip to main content

P450 Biotechnology

  • Chapter
  • First Online:
Book cover Cytochrome P450

Abstract

Cytochrome P450s accept a broad spectrum of substrates and catalyze a vast variety of chemical transformations under mild reaction conditions. Therefore, P450s are considered as attractive candidates for the synthesis of valuable compounds. Moreover, these enzymes have a great potential for the development of biosensors, as well as in bioremediation. However, the use of P450s in industrial processes is a challenging task because of their multicomponent nature, relatively low activity, and the need for the reducing cofactors nicotinamide adenine dinucleotide phosphate (NAD(P)H). Over the last two decades, the fundamental understanding of P450 systems has greatly improved and tremendous progress has been made towards industrial application of these complex systems. In this chapter, we highlight several basic aspects and recent advances in P450 biotechnology, including the exploitation of the natural diversity of P450s, their engineering to achieve higher activity, enhanced stability, and altered selectivity. Considerable progress has also been made in terms of electron flow optimization between P450s and their redox partners and implementation of cofactor regeneration, thus overcoming the need for stoichiometric addition of NAD(P)H. Finally, several examples of established P450-based whole-cell biocatalysts are discussed, with special focus on microbial de novo synthesis of plant secondary metabolites and the generation of transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen MS, White MC (2007) A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318:783–787

    CAS  PubMed  Google Scholar 

  2. Godula K, Sames D (2006) C–H bond functionalization in complex organic synthesis. Science 312:67–72

    CAS  PubMed  Google Scholar 

  3. Newhouse T, Baran PS (2011) If C–H bonds could talk: selective C–H bond oxidation. Angew Chem Int Ed Engl 50:3362–3374

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Fasan R (2012) Tuning P450 enzymes as oxidation catalysts. ACS Catal 2:647–666

    CAS  Google Scholar 

  5. Lewis JC, Coelho PS, Arnold FH (2011) Enzymatic functionalization of carbon-hydrogen bonds. Chem Soc Rev 40:2003–2021

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Garfinkel D (1958) Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch Biochem Biophys 77:493–509

    CAS  PubMed  Google Scholar 

  7. Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75:376–386

    CAS  PubMed  Google Scholar 

  8. Davies HG, Green RH, Kelly DR, Roberts SM (1989) Biotransformations in preparative organic chemistry: the use of isolated enzymes and whole-cell systems in synthesis. Academic, London, pp 1–23

    Google Scholar 

  9. Bernhardt R (1996) Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev Physiol Biochem Pharmacol 127:137–221

    CAS  PubMed  Google Scholar 

  10. Hlavica P, Kunzel-Mulas U (1993) Metabolic N-oxide formation by rabbit-liver microsomal cytochrome P-4502B4: involvement of superoxide in the NADPH-dependent N-oxygenation of N, N-dimethylaniline. Biochim Biophys Acta 1158:83–90

    CAS  PubMed  Google Scholar 

  11. Seto Y, Guengerich FP (1993) Partitioning between N-dealkylation and N-oxygenation in the oxidation of N, N-dialkylarylamines catalyzed by cytochrome P450 2B1. J Biol Chem 268:9986–9997

    CAS  PubMed  Google Scholar 

  12. Kashiyama E, Yokoi T, Odomi M, Funae Y, Inoue K, Kamataki T (1997) Cytochrome P450 responsible for the stereoselective S-oxidation of flosequinan in hepatic microsomes from rats and humans. Drug Metab Dispos 25:716–724

    CAS  PubMed  Google Scholar 

  13. Bischoff D, Bister B, Bertazzo M, Pfeifer V, Stegmann E, Nicholson GJ, Keller S, Pelzer S, Wohlleben W, Sussmuth RD (2005) The biosynthesis of vancomycin-type glycopeptide antibiotics—a model for oxidative side-chain cross-linking by oxygenases coupled to the action of peptide synthetases. Chembiochem 6:267–272

    CAS  PubMed  Google Scholar 

  14. Dalvie DK, O’Connell TN (2004) Characterization of novel dihydrothienopyridinium and thienopyridinium metabolites of ticlopidine in vitro: role of peroxidases, cytochromes P450, and monoamine oxidases. Drug Metab Dispos 32:49–57

    CAS  PubMed  Google Scholar 

  15. Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, Takatsuto S, Kim SK (2005) Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17:2397–2412

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Cryle MJ, Stok JE, De Voss JJ (2003) Reactions catalyzed by bacterial cytochromes P450. Aust J Chem 56:749–762

    CAS  Google Scholar 

  17. Isin EM, Guengerich FP (2007) Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta 1770:314–329

    CAS  PubMed  Google Scholar 

  18. Ortiz de Montellano PR, Nelson SD (2011) Rearrangement reactions catalyzed by cytochrome P450s. Arch Biochem Biophys 507:95–110

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    CAS  PubMed  Google Scholar 

  20. Guengerich FP (2001) Uncommon P450-catalyzed reactions. Curr Drug Metab 2:93–115

    CAS  PubMed  Google Scholar 

  21. Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    CAS  PubMed  Google Scholar 

  22. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888

    CAS  PubMed  Google Scholar 

  23. Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, Krasnoff SB, Crane BR, Gibson DM, Loria R, Challis GL (2012) Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol 8:814–816

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Coelho PS, Brustad EM, Kannan A, Arnold FH (2013) Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339:307–310

    CAS  PubMed  Google Scholar 

  26. McIntosh JA, Coelho PS, Farwell CC, Wang ZJ, Lewis JC, Brown TR, Arnold FH (2013) Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew Chem Int Ed Engl 52:9309–9312

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    CAS  PubMed  Google Scholar 

  28. Trager WF (1989) Stereochemistry of cytochrome P450 reactions. Drug Metab Rev 20:489–496

    CAS  PubMed  Google Scholar 

  29. Gonzalez FJ, Korzekwa KR (1995) Cytochromes P450 expression systems. Annu Rev Pharmacol Toxicol 35:369–390

    CAS  PubMed  Google Scholar 

  30. Park JB (2007) Oxygenase-based whole-cell biocatalysis in organic synthesis. J Microbiol Biotechnol 17:379–392

    CAS  PubMed  Google Scholar 

  31. Pawlowska M, Augustin E (2011) Expression systems of cytochrome P450 proteins in studies of drug metabolism in vitro. Postepy Hig Med Dosw (Online) 65:367–376

    Google Scholar 

  32. Yabusaki Y (1998) Expression of mammalian cytochromes P450 in yeast. Methods Mol Biol 107:195–202

    CAS  PubMed  Google Scholar 

  33. Zelasko S, Palaria A, Das A (2013) Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems. Protein Expr Purif 20:00143–00145

    Google Scholar 

  34. van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    PubMed  Google Scholar 

  35. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    CAS  PubMed  Google Scholar 

  36. Ewen KM, Hannemann F, Iametti S, Morleo A, Bernhardt R (2011) Functional characterization of Fdx1: evidence for an evolutionary relationship between P450-type and ISC-type ferredoxins. J Mol Biol 413:940–951

    CAS  PubMed  Google Scholar 

  37. Ewen KM, Kleser M, Bernhardt R (2010) Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. Biochim Biophys Acta 1814:111–125

    PubMed  Google Scholar 

  38. Hanukoglu I, Rapoport R, Weiner L, Sklan D (1993) Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system. Arch Biochem Biophys 305:489–498

    CAS  PubMed  Google Scholar 

  39. Sligar SG, Makris TM, Denisov IG (2005) Thirty years of microbial P450 monooxygenase research: peroxo-heme intermediates—the central bus station in heme oxygenase catalysis. Biochem Biophys Res Commun 338:346–354

    CAS  PubMed  Google Scholar 

  40. Loida PJ, Sligar SG (1993) Molecular recognition in cytochrome P450—mechanism for the control of uncoupling reactions. Biochemistry 32:11530–11538

    CAS  PubMed  Google Scholar 

  41. Makris TM, Davydov R, Denisov IG, Hoffman BM, Sligar SG (2002) Mechanistic enzymology of oxygen activation by the cytochromes P450. Drug Metab Rev 34:691–708

    CAS  PubMed  Google Scholar 

  42. Nelson DR (2013) A world of cytochrome P450s. Philos Trans R Soc Lond B Biol Sci 368:20120430

    PubMed Central  PubMed  Google Scholar 

  43. Furuya T, Kino K (2010) Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol 86:991–1002

    CAS  PubMed  Google Scholar 

  44. Thaker MN, Wang W, Spanogiannopoulos P, Waglechner N, King AM, Medina R, Wright GD (2013) Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol 31:922–927

    CAS  PubMed  Google Scholar 

  45. D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264

    Google Scholar 

  46. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962

    CAS  PubMed  Google Scholar 

  47. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    CAS  PubMed  Google Scholar 

  48. Nelson DR (2006) Cytochrome P450 nomenclature, 2004. Methods Mol Biol 320:1–10

    CAS  PubMed  Google Scholar 

  49. Nelson DR (2010) Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta 1814:14–18

    PubMed  Google Scholar 

  50. Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Fischer M, Knoll M, Sirim D, Wagner F, Funke S, Pleiss J (2007) The cytochrome P450 engineering database: a navigation and prediction tool for the cytochrome P450 protein family. Bioinformatics 23:2015–2017

    CAS  PubMed  Google Scholar 

  52. Sirim D, Wagner F, Lisitsa A, Pleiss J (2009) The cytochrome P450 engineering database: integration of biochemical properties. BMC Biochem 10:27

    PubMed Central  PubMed  Google Scholar 

  53. Park J, Lee S, Choi J, Ahn K, Park B, Kang S, Lee YH (2008) Fungal cytochrome P450 database. BMC Genomics 9:402

    PubMed Central  PubMed  Google Scholar 

  54. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R (2010) SuperCYP: a comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 38:D237–243

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Schulz S, Girhard M, Urlacher VB (2012) Biocatalysis: key to selective oxidations. Chem Cat Chem 4:1889–1895

    CAS  Google Scholar 

  56. Liese A, Zelinski T, Kula MR, Kierkels H, Karutz M, Kragl U, Wandrey C (1998) A novel reactor concept for the enzymatic reduction of poorly soluble ketones. J Mol Catal B Enzym 4:91–99

    CAS  Google Scholar 

  57. Kim KR, Oh DK (2013) Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 31:1473–1485

    CAS  PubMed  Google Scholar 

  58. Funhoff EG, van Beilen JB (2007) Alkane activation by P450 oxygenases. Biocatal Biotransform 25:186–193

    CAS  Google Scholar 

  59. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Rothlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    PubMed Central  PubMed  Google Scholar 

  60. Kubota M, Nodate M, Yasumoto-Hirose M, Uchiyama T, Kagami O, Shizuri Y, Misawa N (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421–2430

    CAS  PubMed  Google Scholar 

  61. Funhoff EG, Salzmann J, Bauer U, Witholt B, van Beilen JB (2007) Hydroxylation and epoxidation reactions catalyzed by CYP153 enzymes. Enzyme Microb Technol 40:806–812

    CAS  Google Scholar 

  62. Gudiminchi RK, Randall C, Opperman DJ, Olaofe OA, Harrison STL, Albertyn J, Smit MS (2012) Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon. Appl Microbiol Biotechnol 96:1507–1516

    CAS  PubMed  Google Scholar 

  63. Scheps D, Malca SH, Hoffmann H, Nestl BM, Hauer B (2011) Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Org Biomol Chem 9:6727–6733

    CAS  PubMed  Google Scholar 

  64. Honda Malca S, Scheps D, Kühnel L, Venegas-Venegas E, Seifert A, Nestl BM, Hauer B (2012) Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chem Commun (Camb) 48:5115–5117

    CAS  Google Scholar 

  65. von Buhler CJ, Urlacher VB (2014) A novel P450-based biocatalyst for the selective production of chiral 2-alkanols. Chem Commun (Camb) 50:4089–4091

    Google Scholar 

  66. Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to alpha, omega-dicarboxylic acids. Appl Environ Microbiol 69:5983–5991

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Ohkuma M, Muraoka S, Tanimoto T, Fujii M, Ohta A, Takagi M (1995) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol 14:163–173

    CAS  PubMed  Google Scholar 

  68. Takai H, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A (2012) Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52. Fungal Genet Biol 49:58–64

    CAS  PubMed  Google Scholar 

  69. Kim D, Cryle MJ, Voss JJ, Ortiz de Montellano PR (2007) Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch Biochem Biophys 464:213–220

    PubMed Central  CAS  PubMed  Google Scholar 

  70. van Bogaert IN, De Mey M, Develter D, Soetaert W, Vandamme EJ (2009) Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS Yeast Res 9:87–94

    PubMed  Google Scholar 

  71. Zhao Y-J, Cheng Q-Q, Su P, Chen X, Wang X-J, Gao W, Huang L-Q (2014) Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants. Appl Microbiol Biotechnol 98:2371–2383

    CAS  PubMed  Google Scholar 

  72. Hardwick JP (2008) Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem Pharmacol 75:2263–2275

    CAS  PubMed  Google Scholar 

  73. Edson KZ, Rettie AE (2013) CYP4 Enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid omega-hydroxylase activities. Curr Top Med Chem 13:1429–1440

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Gandhi AV, Saxena S, Relles D, Sarosiek K, Kang CY, Chipitsyna G, Sendecki JA, Yeo CJ, Arafat HA (2013) Differential expression of cytochrome P450 omega-hydroxylase isoforms and their association with clinicopathological features in pancreatic ductal adenocarcinoma. Ann Surg Oncol 20:S636–S643

    Google Scholar 

  75. Nakano M, Kelly EJ, Rettie AE (2009) Expression and characterization of CYP4V2 as a fatty acid omega-hydroxylase. Drug Metab Dispos 37:2119–2122

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Fisher MB, Zheng YM, Rettie AE (1998) Positional specificity of rabbit CYP4B1 for omega-hydroxylation of short-medium chain fatty acids and hydrocarbons. Biochem Biophys Res Commun 248:352–355

    CAS  PubMed  Google Scholar 

  77. Cane DE, Ikeda H (2012) Exploration and mining of the bacterial terpenome. Acc Chem Res 45:463–472

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Schewe H, Mirata MA, Holtmann D, Schrader J (2011) Biooxidation of monoterpenes with bacterial monooxygenases. Process Biochem 46:1885–1899

    CAS  Google Scholar 

  79. Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23:193–198

    CAS  PubMed  Google Scholar 

  80. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    CAS  PubMed  Google Scholar 

  81. Chang MC, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    CAS  PubMed  Google Scholar 

  82. Eschenmoser W, Uebelhart P, Eugster CH (1981) Synthesis and chirality of the enantiomeric 6-hydroxy-alpha-ionones and of cis and trans-5,6-dihydroxy-5,6-dihydro-beta-ionones. Helv Chim Acta 64:2681–2690

    CAS  Google Scholar 

  83. Roberts DL, Heckman RA, Hege BP, Bellin SA (1968) Synthesis of (RS)-abscisic acid. J Org Chem 33:3566–3569

    CAS  Google Scholar 

  84. Dietrich M, Eiben S, Asta C, Do TA, Pleiss J, Urlacher VB (2008) Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 79:931–940

    CAS  PubMed  Google Scholar 

  85. Girhard M, Klaus T, Khatri Y, Bernhardt R, Urlacher VB (2010) Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotechnol 87:595–607

    CAS  PubMed  Google Scholar 

  86. Khatri Y, Girhard M, Romankiewicz A, Ringle M, Hannemann F, Urlacher VB, Hutter MC, Bernhardt R (2010) Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56. Appl Microbiol Biotechnol 88:485–495

    CAS  PubMed  Google Scholar 

  87. Ly TTB, Khatri Y, Zapp J, Hutter MC, Bernhardt R (2012) CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase. Appl Microbiol Biotechnol 95:123–133

    CAS  PubMed  Google Scholar 

  88. Bleif S, Hannemann F, Lisurek M, Kries JP, Zapp J, Dietzen M, Antes I, Bernhardt R (2011) Identification of CYP106A2 as a regioselective allylic bacterial diterpene hydroxylase. Chembiochem 12:576–582

    CAS  PubMed  Google Scholar 

  89. Bleif S, Hannemann F, Zapp J, Hartmann D, Jauch J, Bernhardt R (2012) A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-beta-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl Microbiol Biotechnol 93:1135–1146

    CAS  PubMed  Google Scholar 

  90. Schmitz D, Zapp J, Bernhardt R (2012) Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. FEBS J 279:1663–1674

    CAS  PubMed  Google Scholar 

  91. Janocha S, Zapp J, Hutter M, Kleser M, Bohlmann J, Bernhardt R (2013) Resin acid conversion with CYP105A1: an enzyme with potential for the production of pharmaceutically relevant diterpenoids. Chembiochem 14:467–473

    CAS  PubMed  Google Scholar 

  92. Janocha S, Bernhardt R (2013) Design and characterization of an efficient CYP105A1-based whole-cell biocatalyst for the conversion of resin acid diterpenoids in permeabilized Escherichia coli. Appl Microbiol Biotechnol 97:7639–7649

    CAS  PubMed  Google Scholar 

  93. Zhan J (2009) Biosynthesis of bacterial aromatic polyketides. Curr Top Med Chem 9:1958–1610

    PubMed  Google Scholar 

  94. Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41:425–431

    CAS  PubMed  Google Scholar 

  95. Guengerich FP, Tang Z, Salamanca-Pinzon SG, Cheng Q (2010) Characterizing proteins of unknown function: orphan cytochrome P450 enzymes as a paradigm. Mol Interv 10:153–163

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Lamb DC, Waterman MR, Zhao B (2013) Streptomyces cytochromes P450: applications in drug metabolism. Expert Opin Drug Metab Toxicol 9:1279–1294

    CAS  PubMed  Google Scholar 

  97. Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, Podust LM (2006) The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J Biol Chem 281:26289–26297

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Lee SK, Park JW, Kim JW, Jung WS, Park SR, Choi CY, Kim ES, Kim BS, Ahn JS, Sherman DH, Yoon YJ (2006) Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Nat Prod 69:847–849

    CAS  PubMed  Google Scholar 

  99. Lee SK, Basnet DB, Hong JSJ, Jung WS, Choi CY, Lee HC, Sohng JK, Ryu KG, Kim DJ, Ahn JS, Kim BS, Oh HC, Sherman DH, Yoon YJ (2005) Structural diversification of macrolactones by substrate-flexible cytochrome P450 monooxygenases. Adv Synth Catal 347:1369–1378

    CAS  Google Scholar 

  100. Basnet DB, Park JW, Yoon YJ (2008) Combinatorial biosynthesis of 5-O-desosaminyl erythronolide A as a potent precursor of ketolide antibiotics. J Biotechnol 135:92–96

    CAS  PubMed  Google Scholar 

  101. Anzai Y, Li S, Chaulagain MR, Kinoshita K, Kato F, Montgomery J, Sherman DH (2008) Functional analysis of MycCI and MycG, cytochrome P450 enzymes involved in biosynthesis of mycinamicin macrolide antibiotics. Chem Biol 15:950–959

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36

    CAS  PubMed  Google Scholar 

  103. Lamb DC, Guengerich FP, Kelly SL, Waterman MR (2006) Exploiting Streptomyces coelicolor A3(2) P450s as a model for application in drug discovery. Expert Opin Drug Metab Toxicol 2:27–40

    CAS  PubMed  Google Scholar 

  104. Gillam EM (2008) Engineering cytochrome P450 enzymes. Chem Res Toxicol 21:220–231

    PubMed  Google Scholar 

  105. Grogan G (2011) Cytochromes P450: exploiting diversity and enabling application as biocatalysts. Curr Opin Chem Biol 15:241–248

    CAS  PubMed  Google Scholar 

  106. Jung ST, Lauchli R, Arnold FH (2011) Cytochrome P450: taming a wild type enzyme. Curr Opin Biotechnol 22:809–817

    PubMed Central  CAS  PubMed  Google Scholar 

  107. McIntosh JA, Farwell CC, Arnold FH (2014) Expanding P450 catalytic reaction space through evolution and engineering. Curr Opin Chem Biol 19C:126–134

    Google Scholar 

  108. O’Reilly E, Kohler V, Flitsch SL, Turner NJ (2011) Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 47:2490–2501

    Google Scholar 

  109. Whitehouse CJ, Bell SG, Wong LL (2012) P450(BM3) (CYP102A1): connecting the dots. Chem Soc Rev 41:1218–1260

    CAS  PubMed  Google Scholar 

  110. Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5:137–143

    CAS  PubMed  Google Scholar 

  111. Arnold FH (2009) How proteins adapt: lessons from directed evolution. Cold Spring Harb Symp Quant Biol 74:41–46

    CAS  PubMed  Google Scholar 

  112. McLean KJ, Girvan HM, Munro AW (2007) Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects. Expert Opin Drug Metab Toxicol 3:847–863

    CAS  PubMed  Google Scholar 

  113. Capdevila JH, Wei S, Helvig C, Falck JR, Belosludtsev Y, Truan G, Graham-Lorence SE, Peterson JA (1996) The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450 BM-3. J Biol Chem 271:22663–22671

    CAS  PubMed  Google Scholar 

  114. Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  115. Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450 BM3 exhibiting nativelike catalytic properties. Angew Chem Int Ed Engl 46:8414–8418

    CAS  PubMed  Google Scholar 

  116. Appel D, Lutz-Wahl S, Fischer P, Schwaneberg U, Schmid RD (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J Biotechnol 88:167–171

    CAS  PubMed  Google Scholar 

  117. Budde M, Morr M, Schmid RD, Urlacher VB (2006) Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium. Chembiochem 7:789–794

    CAS  PubMed  Google Scholar 

  118. Li QS, Ogawa J, Schmid RD, Shimizu S (2001) Engineering cytochrome P450 BM3 for oxidation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5735–5739

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Li QS, Schwaneberg U, Fischer P, Schmid RD (2000) Directed evolution of the fatty-acid hydroxylase P450 BM3 into an indole-hydroxylating catalyst. Chemistry 6:1531–1536

    CAS  PubMed  Google Scholar 

  120. Sulistyaningdyah WT, Ogawa J, Li QS, Shinkyo R, Sakaki T, Inouye K, Schmid RD, Shimizu S (2004) Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM3 and its mutant. Biotechnol Lett 26:1857–1860

    CAS  PubMed  Google Scholar 

  121. Watanabe Y, Laschat S, Budde M, Affolter O, Shimada Y, Urlacher VB (2007) Oxidation of acyclic monoterpenes by P450 BM3 monooxygenase: influence of the substrate E/Z-isomerism on enzyme chemo- and regioselectivity. Tetrahedron 63 9413–9422

    CAS  Google Scholar 

  122. van Vugt-Lussenburg BM, Damsten MC, Maasdijk DM, Vermeulen NP, Commandeur JN (2006) Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochem Biophys Res Commun 346:810–818

    PubMed  Google Scholar 

  123. Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH (2006) Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol Bioeng 93:494–499

    CAS  PubMed  Google Scholar 

  124. Landwehr M, Hochrein L, Otey CR, Kasrayan A, Backvall JE, Arnold FH (2006) Enantioselective alpha-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM3. J Am Chem Soc 128:6058–6059

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Damsten MC, van Vugt-Lussenburg BM, Zeldenthuis T, de Vlieger JS, Commandeur JN, Vermeulen NP (2008) Application of drug metabolising mutants of cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites. Chem Biol Interact 171:96–107

    CAS  PubMed  Google Scholar 

  126. Damsten MC, de Vlieger JS, Niessen WM, Irth H, Vermeulen NP, Commandeur JN (2008) Trimethoprim: novel reactive intermediates and bioactivation pathways by cytochrome P450s. Chem Res Toxicol 21:2181–2187

    CAS  PubMed  Google Scholar 

  127. Kadkhodayan S, Coulter ED, Maryniak DM, Bryson TA, Dawson JH (1995) Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450cam. Direct observation of an intermolecular isotope effect for substrate C–H activation. J Biol Chem 270:28042–28048

    CAS  PubMed  Google Scholar 

  128. Bell SG, Stevenson JA, Boyd HD, Campbell S, Riddle AD, Orton EL, Wong LL (2002) Butane and propane oxidation by engineered cytochrome P450cam. Chem Commun (Camb) 5:490–491

    Google Scholar 

  129. Xu F, Bell SG, Lednik J, Insley A, Rao Z, Wong LL (2005) The heme monooxygenase cytochrome P450cam can be engineered to oxidize ethane to ethanol. Angew Chem Int Ed Engl 44:4029–4032

    CAS  PubMed  Google Scholar 

  130. Huang W, Johnston WA, Hayes MA, De Voss JJ, Gillam EM (2007) A shuffled CYP2C library with a high degree of structural integrity and functional versatility. Arch Biochem Biophys 467:193–205

    CAS  PubMed  Google Scholar 

  131. Robinson JK, Pollack SV, Robins P (1980) Invasion of cartilage by basal cell carcinoma. J Am Acad Dermatol 2:499–505

    CAS  PubMed  Google Scholar 

  132. Pikuleva IA, Bjorkhem I, Waterman MR (1996) Studies of distant members of the P450 superfamily (P450scc and P450c27) by random chimeragenesis. Arch Biochem Biophys 334:183–192

    CAS  PubMed  Google Scholar 

  133. Chen CK, Berry RE, Shokhireva T, Murataliev MB, Zhang H, Walker FA (2010) Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7. J Biol Inorg Chem 15:159–174

    CAS  PubMed  Google Scholar 

  134. Chen CK, Shokhireva T, Berry RE, Zhang H, Walker FA (2008) The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. J Biol Inorg Chem 13:813–824

    CAS  PubMed  Google Scholar 

  135. Otey CR, Landwehr M, Endelman JB, Hiraga K, Bloom JD, Arnold FH (2006) Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol 4:e112

    PubMed Central  PubMed  Google Scholar 

  136. Li Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 25:1051–1056

    CAS  PubMed  Google Scholar 

  137. Kang JY, Ryu SH, Park SH, Cha GS, Kim DH, Kim KH, Hong AW, Ahn T, Pan JG, Joung YH, Kang HS, Yun CH (2014) Chimeric cytochromes P450 engineered by domain swapping and random mutagenesis for producing human metabolites of drugs. Biotechnol Bioeng 111:1313–1322. doi:10.1002/bit.25202

    CAS  PubMed  Google Scholar 

  138. Lisurek M, Simgen B, Antes I, Bernhardt R (2008) Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Chembiochem 9:1439–1449

    CAS  PubMed  Google Scholar 

  139. Nguyen KT, Virus C, Gunnewich N, Hannemann F, Bernhardt R (2012) Changing the regioselectivity of a P450 from C15 to C11 hydroxylation of progesterone. Chembiochem 13:1161–1166

    CAS  PubMed  Google Scholar 

  140. Seifert A, Pleiss J (2009) Identification of selectivity-determining residues in cytochrome P450 monooxygenases: a systematic analysis of the substrate recognition site 5. Proteins 74:1028–1035

    CAS  PubMed  Google Scholar 

  141. Seifert A, Vomund S, Grohmann K, Kriening S, Urlacher VB, Laschat S, Pleiss J (2009) Rational design of a minimal and highly enriched CYP102A1 mutant library with improved regio-, stereo- and chemoselectivity. Chembiochem 10:853–861

    CAS  PubMed  Google Scholar 

  142. Weber E, Seifert A, Antonovici M, Geinitz C, Pleiss J, Urlacher VB (2011) Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes. Chem Commun (Camb) 47:944–946

    CAS  Google Scholar 

  143. Kille S, Zilly FE, Acevedo JP, Reetz MT (2011) Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 3:738–743

    CAS  PubMed  Google Scholar 

  144. Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta. Angew Chem Int Ed Engl 46:3656–3659

    CAS  PubMed  Google Scholar 

  145. Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y (2010) Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. J Biol Inorg Chem 15:1331–1339

    CAS  PubMed  Google Scholar 

  146. Kawakami N, Shoji O, Watanabe Y (2011) Use of perfluorocarboxylic acids to trick cytochrome P450 BM3 into initiating the hydroxylation of gaseous alkanes. Angew Chem Int Ed Engl 50:5315–5318

    CAS  PubMed  Google Scholar 

  147. Zilly FE, Acevedo JP, Augustyniak W, Deege A, Hausig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem Int Ed Engl 50:2720–2724

    CAS  PubMed  Google Scholar 

  148. Sadeghi SJ, Gilardi G (2013) Chimeric P450 enzymes: activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 60:102–110

    CAS  PubMed  Google Scholar 

  149. Gilardi G, Meharenna YT, Tsotsou GE, Sadeghi SJ, Fairhead M, Giannini S (2002) Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology. Biosens Bioelectron 17:133–145

    CAS  PubMed  Google Scholar 

  150. Sadeghi SJ, Meharenna YT, Fantuzzi A, Valetti F, Gilardi G (2000) Engineering artificial redox chains by molecular ‘Lego’. Faraday Discuss 116:135–153

    CAS  PubMed  Google Scholar 

  151. Sabbadin F, Grogan G, Bruce NC (2013) LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochromes P450. Methods Mol Biol 987:239–249

    CAS  PubMed  Google Scholar 

  152. Sabbadin F, Hyde R, Robin A, Hilgarth EM, Delenne M, Flitsch S, Turner N, Grogan G, Bruce NC (2010) LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s. Chembiochem 11:987–994

    CAS  PubMed  Google Scholar 

  153. Hirakawa H, Nagamune T (2010) Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. Chembiochem 11:1517–1520

    CAS  PubMed  Google Scholar 

  154. Haga T, Hirakawa H, Nagamune T (2013) Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker. PLoS One 8:e75114

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Fairhead M, Giannini S, Gillam EM, Gilardi G (2005) Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego. J Biol Inorg Chem 10:842–853

    CAS  PubMed  Google Scholar 

  156. Munro AW, Girvan HM, Mason AE, Dunford AJ, McLean KJ (2013) What makes a P450 tick? Trends Biochem Sci 38:140–150

    CAS  PubMed  Google Scholar 

  157. Lewis DF, Watson E, Lake BG (1998) Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. Mutat Res 410:245–270

    CAS  PubMed  Google Scholar 

  158. Munro AW, Girvan HM, McLean KJ (2007) Variations on a (t)heme-novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609

    CAS  PubMed  Google Scholar 

  159. Wang LH, Kulmacz RJ (2002) Thromboxane synthase: structure and function of protein and gene. Prostaglandins Other Lipid Mediat 68–69:409–422

    PubMed  Google Scholar 

  160. Grechkin AN (2002) Hydroperoxide lyase and divinyl ether synthase. Prostaglandins Other Lipid Mediat 68–69:457–470

    PubMed  Google Scholar 

  161. Tijet N, Brash AR (2002) Allene oxide synthases and allene oxides. Prostaglandins Other Lipid Mediat 68–69:423–431

    PubMed  Google Scholar 

  162. McLean KJ, Sabri M, Marshall KR, Lawson RJ, Lewis DG, Clift D, Balding PR, Dunford AJ, Warman AJ, McVey JP, Quinn AM, Sutcliffe MJ, Scrutton NS, Munro AW (2005) Biodiversity of cytochrome P450 redox systems. Biochem Soc Trans 33:796–801

    CAS  PubMed  Google Scholar 

  163. Peterson JA, Lorence MC, Amarneh B (1990) Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination, heterologous expression of the proteins. J Biol Chem 265:6066–6073

    CAS  PubMed  Google Scholar 

  164. Lambeth JD, Stevens VL (1984) Cytochrome P-450scc: enzymology, and the regulation of intramitochondrial cholesterol delivery to the enzyme. Endocr Res 10:283–309

    CAS  PubMed  Google Scholar 

  165. Serizawa N, Matsuoka T (1991) A two component-type cytochrome P450 monooxygenase system in a prokaryote that catalyzes hydroxylation of ML-236B to pravastatin, a tissue-selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochim Biophys Acta 1084:35–40

    CAS  PubMed  Google Scholar 

  166. Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97:139–152

    CAS  PubMed  Google Scholar 

  167. Hawkes DB, Adams GW, Burlingame AL, Ortiz de Montellano PR, De Voss JJ (2002) Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization. J Biol Chem 277:27725–27732

    CAS  PubMed  Google Scholar 

  168. Meharenna YT, Li H, Hawkes DB, Pearson AG, De Voss J, Poulos TL (2004) Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam. Biochemistry 43:9487–9494

    PubMed  Google Scholar 

  169. Wright RL, Harris K, Solow B, White RH, Kennelly PJ (1996) Cloning of a potential cytochrome P450 from the archaeon Sulfolobus solfataricus. FEBS Lett 384:235–239

    CAS  PubMed  Google Scholar 

  170. Jackson CJ, Lamb DC, Marczylo TH, Warrilow AG, Manning NJ, Lowe DJ, Kelly DE, Kelly SL (2002) A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J Biol Chem 277:46959–46965

    CAS  PubMed  Google Scholar 

  171. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    CAS  PubMed  Google Scholar 

  172. De Mot R, Parret AH (2002) A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. Trends Microbiol 10:502–508

    CAS  PubMed  Google Scholar 

  173. Roberts GA, Celik A, Hunter DJ, Ost TW, White JH, Chapman SK, Turner NJ, Flitsch SL (2003) A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a [2Fe-2S] redox center. J Biol Chem 278:48914–48920

    CAS  PubMed  Google Scholar 

  174. Warman AJ, Roitel O, Neeli R, Girvan HM, Seward HE, Murray SA, McLean KJ, Joyce MG, Toogood H, Holt RA, Leys D, Scrutton NS, Munro AW (2005) Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochem Soc Trans 33:747–753

    CAS  PubMed  Google Scholar 

  175. Ruettinger RT, Wen LP, Fulco AJ (1989) Coding nucleotide, 5ʹ regulatory, and deduced amino acid sequences of P450 BM3, a single peptide cytochrome P450:NADPH-P450 reductase from Bacillus megaterium. J Biol Chem 264:10987–10995

    CAS  PubMed  Google Scholar 

  176. Narhi LO, Fulco AJ (1987) Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 262:6683–6690

    CAS  PubMed  Google Scholar 

  177. Miles JS, Munro AW, Rospendowski BN, Smith WE, McKnight J, Thomson AJ (1992) Domains of the catalytically self-sufficient cytochrome P450 BM3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem J 288:503–509

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119:435–440

    CAS  PubMed  Google Scholar 

  179. Kitazume T, Takaya N, Nakayama N, Shoun H (2000) Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem 275:39734–39740

    CAS  PubMed  Google Scholar 

  180. Daiber A, Shoun H, Ullrich V (2005) Nitric oxide reductase (P450nor) from Fusarium oxysporum. J Inorg Biochem 99:185–193

    CAS  PubMed  Google Scholar 

  181. Munro AW, Girvan HM, McLean KJ (2007) Cytochrome P450-redox partner fusion enzymes. Biochim Biophys Acta 1770:345–359

    CAS  PubMed  Google Scholar 

  182. Hlavica P, Lehnerer M (2010) Oxidative biotransformation of fatty acids by cytochromes P450: predicted key structural elements orchestrating substrate specificity, regioselectivity and catalytic efficiency. Curr Drug Metab 11:85–104

    CAS  PubMed  Google Scholar 

  183. Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184:3898–3908

    PubMed Central  CAS  PubMed  Google Scholar 

  184. George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15:871–879

    CAS  PubMed  Google Scholar 

  185. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211:943–958

    CAS  PubMed  Google Scholar 

  187. Bai Y, Shen WC (2006) Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharm Res 23:2116–2121

    CAS  PubMed  Google Scholar 

  188. Bergeron LM, Gomez L, Whitehead TA, Clark DS (2009) Self-renaturing enzymes: design of an enzyme-chaperone chimera as a new approach to enzyme stabilization. Biotechnol Bioeng 102:1316–1322

    CAS  PubMed  Google Scholar 

  189. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85:5879–5883

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Zhao HL, Yao XQ, Xue C, Wang Y, Xiong XH, Liu ZM (2008) Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering. Protein Expr Purif 61:73–77

    CAS  PubMed  Google Scholar 

  191. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14:529–532

    CAS  PubMed  Google Scholar 

  192. Marqusee S, Baldwin RL (1987) Helix stabilization by Glu-…Lys + salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A 84:8898–8902

    PubMed Central  CAS  PubMed  Google Scholar 

  193. McCormick AL, Thomas MS, Heath AW (2001) Immunization with an interferon-gamma-gp120 fusion protein induces enhanced immune responses to human immunodeficiency virus gp120. J Infect Dis 184:1423–1430

    CAS  PubMed  Google Scholar 

  194. Goyal A, Batra JK (2000) Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins. Biochem J 345(Pt 2):247–254

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Vessillier S, Adams G, Chernajovsky Y (2004) Latent cytokines: development of novel cleavage sites and kinetic analysis of their differential sensitivity to MMP-1 and MMP-3. Protein Eng Des Sel 17:829–835

    CAS  PubMed  Google Scholar 

  196. Hlavica P (2009) Assembly of non-natural electron transfer conduits in the cytochrome P450 system: a critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 27:103–121

    CAS  PubMed  Google Scholar 

  197. Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H (1987) A genetically engineered P450 monooxygenase: construction of the functional fused enzyme between rat cytochrome P450c and NADPH-cytochrome P450 reductase. DNA 6:189–197

    CAS  PubMed  Google Scholar 

  198. Shibata M, Sakaki T, Yabusaki Y, Murakami H, Ohkawa H (1990) Genetically engineered P450 monooxygenases: construction of bovine P450c17/yeast reductase fused enzymes. DNA Cell Biol 9:27–36

    CAS  PubMed  Google Scholar 

  199. Sakaki T, Shibata M, Yabusaki Y, Murakami H, Ohkawa H (1990) Expression of bovine cytochrome P450c21 and its fused enzymes with yeast NADPH-cytochrome P450 reductase in Saccharomyces cerevisiae. DNA Cell Biol 9:603–614

    CAS  PubMed  Google Scholar 

  200. Shet MS, Fisher CW, Arlotto MP, Shackleton CH, Holmans PL, Martin-Wixtrom CA, Saeki Y, Estabrook RW (1994) Purification and enzymatic properties of a recombinant fusion protein expressed in Escherichia coli containing the domains of bovine P450 17A and rat NADPH-P450 reductase. Arch Biochem Biophys 311:402–417

    CAS  PubMed  Google Scholar 

  201. Schroder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schroder J (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102

    CAS  PubMed  Google Scholar 

  202. Lamb DC, Kelly DE, Hanley SZ, Mehmood Z, Kelly SL (1998) Glyphosate is an inhibitor of plant cytochrome P450: functional expression of Thlaspi arvensae cytochrome P45071B1/reductase fusion protein in Escherichia coli. Biochem Biophys Res Commun 244:110–114

    CAS  PubMed  Google Scholar 

  203. Lamb SB, Lamb DC, Kelly SL, Stuckey DC (1998) Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis. FEBS Lett 431:343–346

    CAS  PubMed  Google Scholar 

  204. Didierjean L, Gondet L, Perkins R, Lau SM, Schaller H, O’Keefe DP, Werck-Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Sibbesen O, De Voss JJ, Montellano PR (1996) Putidaredoxin reductase-putidaredoxin-cytochrome P450cam triple fusion protein. Construction of a self-sufficient Escherichia coli catalytic system. J Biol Chem 271:22462–22469

    CAS  PubMed  Google Scholar 

  206. Nodate M, Kubota M, Misawa N (2005) Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp. NCIMB 9784. Appl Microbiol Biotechnol 71:455–462

    PubMed  Google Scholar 

  207. Robin A, Roberts GA, Kisch J, Sabbadin F, Grogan G, Bruce N, Turner NJ, Flitsch SL (2009) Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chem Commun (Camb) 14:2478–2480

    Google Scholar 

  208. Dodhia VR, Fantuzzi A, Gilardi G (2006) Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego. J Biol Inorg Chem 11:903–916

    CAS  PubMed  Google Scholar 

  209. Fuziwara S, Sagami I, Rozhkova E, Craig D, Noble MA, Munro AW, Chapman SK, Shimizu T (2002) Catalytically functional flavocytochrome chimeras of P450 BM3 and nitric oxide synthase. J Inorg Biochem 91:515–526

    CAS  PubMed  Google Scholar 

  210. Schuckel J, Rylott EL, Grogan G, Bruce NC (2012) A gene-fusion approach to enabling plant cytochromes P450 for biocatalysis. Chembiochem 13:2758–2763

    PubMed  Google Scholar 

  211. Peterson JA, Boddupalli SS (1992) P450 BM3: reduction by NADPH and sodium dithionite. Arch Biochem Biophys 294:654–661

    CAS  PubMed  Google Scholar 

  212. Fang X, Halpert JR (1996) Dithionite-supported hydroxylation of palmitic acid by cytochrome P450 BM-3. Drug Metab Dispos 24:1282–1285

    CAS  PubMed  Google Scholar 

  213. Hrycay EG, Bandiera SM (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 522:71–89

    CAS  PubMed  Google Scholar 

  214. Niraula NP, Kanth BK, Sohng JK, Oh TJ (2011) Hydrogen peroxide-mediated dealkylation of 7-ethoxycoumarin by cytochrome P450 (CYP107AJ1) from Streptomyces peucetius ATCC27952. Enzyme Microb Technol 48:181–186

    CAS  PubMed  Google Scholar 

  215. Ogura H, Nishida CR, Hoch UR, Perera R, Dawson JH, Ortiz de Montellano PR (2004) EpoK, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones A and B. Substrate-mediated rescue of a P450 enzyme. Biochemistry 43:14712–14721

    CAS  PubMed  Google Scholar 

  216. Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed Engl 42:3299–3301

    CAS  PubMed  Google Scholar 

  217. Cirino PC, Tang Y, Takahashi K, Tirrell DA, Arnold FH (2003) Global incorporation of norleucine in place of methionine in cytochrome P450 BM3 heme domain increases peroxygenase activity. Biotechnol Bioeng 83:729–734

    CAS  PubMed  Google Scholar 

  218. Gutteridge JM (1989) Iron and oxygen: a biologically damaging mixture. Acta Paediatr Scand Suppl 361:78–85

    CAS  PubMed  Google Scholar 

  219. Gutteridge JM (1990) Superoxide-dependent formation of hydroxyl radicals from ferric-complexes and hydrogen peroxide: an evaluation of fourteen iron chelators. Free Radic Res Commun 9:119–125

    CAS  PubMed  Google Scholar 

  220. Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K (1997) Molecular cloning and expression of fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. J Biol Chem 272:23592–23596

    CAS  PubMed  Google Scholar 

  221. Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450. Lipids 34:841–846

    CAS  PubMed  Google Scholar 

  222. Girhard M, Schuster S, Dietrich M, Durre P, Urlacher VB (2007) Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new alpha-fatty acid hydroxylase. Biochem Biophys Res Commun 362:114–119

    CAS  PubMed  Google Scholar 

  223. Fleming BD, Tian Y, Bell SG, Wong LL, Urlacher V, Hill HA (2003) Redox properties of cytochrome P450 BM3 measured by direct methods. Eur J Biochem 270:4082–4088

    CAS  PubMed  Google Scholar 

  224. Schneider E, Clark DS (2012) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron 39:1–13

    PubMed  Google Scholar 

  225. Shumyantseva V, Bulko T, Archakov A (2005) Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors. J Inorg Biochem 99:1051–1063

    CAS  PubMed  Google Scholar 

  226. Bistolas N, Wollenberger U, Jung C, Scheller F (2005) Cytochrome P450 biosensors—a review. Biosens Bioelectron 20:2408–2423

    CAS  PubMed  Google Scholar 

  227. Udit A, Gray H (2005) Electrochemistry of heme-thiolate proteins. Biochem Biophys Res Commun 338:470–476

    CAS  PubMed  Google Scholar 

  228. Mayhew MP, Reipa V, Holden MJ, Vilker VL (2000) Improving the cytochrome P450 enzyme system for electrode-driven biocatalysis of styrene epoxidation. Biotechnol Prog 16:610–616

    CAS  PubMed  Google Scholar 

  229. Reipa V, Mayhew MP, Holden MJ, Vilker VL (2002) Redox control of the P450cam catalytic cycle: effects of Y96F active site mutation and binding of a non-natural substrate. Chem Commun (Camb) 4:318–319

    Google Scholar 

  230. Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci U S A 94:13554–13558

    PubMed Central  CAS  PubMed  Google Scholar 

  231. Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol 272:44–51

    CAS  PubMed  Google Scholar 

  232. Estabrook RW, Shet MS, Fisher CW, Jenkins CM, Waterman MR (1996) The interaction of NADPH-P450 reductase with P450: an electrochemical study of the role of the flavin mononucleotide-binding domain. Arch Biochem Biophys 333:308–315

    CAS  PubMed  Google Scholar 

  233. Faulkner KM, Shet MS, Fisher CW, Estabrook RW (1995) Electrocatalytically driven omega-hydroxylation of fatty acids using cytochrome P450 4A1. Proc Natl Acad Sci U S A 92:7705–7709

    Google Scholar 

  234. Udit AK, Arnold FH, Gray HB (2004) Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450 BM3. J Inorg Biochem 98:1547–1550

    CAS  PubMed  Google Scholar 

  235. Shumyantseva VV, Bulko TV, Usanov SA, Schmid RD, Nicolini C, Archakov AI (2001) Construction and characterization of bioelectrocatalytic sensors based on cytochromes P450. J Inorg Biochem 87:185–190

    CAS  PubMed  Google Scholar 

  236. Sadeghi SJ, Fantuzzi A, Gilardi G (2011) Breakthrough in P450 bioelectrochemistry and future perspectives. Biochim Biophys Acta 1814:237–248

    CAS  PubMed  Google Scholar 

  237. Kazlauskaite J, Westlake ACG, Wong L-L, Hill HAO (1996) Direct electrochemistry of cytochrome P450cam. Chem Commun (Camb) 18: 2189–2190

    Google Scholar 

  238. Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561

    CAS  PubMed  Google Scholar 

  239. Shumyantseva VV, Ivanov YD, Bistolas N, Scheller FW, Archakov AI, Wollenberger U (2004) Direct electron transfer of cytochrome P450 2B4 at electrodes modified with nonionic detergent and colloidal clay nanoparticles. Anal Chem 76:6046–6052

    CAS  PubMed  Google Scholar 

  240. Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosens Bioelectron 14:443–456

    CAS  PubMed  Google Scholar 

  241. Schuhmann W, Wohlschlager H, Huber J, Schmidt HL, Stadler H (1995) Development of an extremely flexible automatic analyzer with integrated biosensors for online control of fermentation processes. Anal Chim Acta 315:113–122

    CAS  Google Scholar 

  242. Antonini M, Ghisellini P, Pastorino L, Paternolli C, Nicolini C (2003) Preliminary electrochemical characterisation of cytochrome P4501A2-clozapine interaction. IEE Proc Nanobiotechnol 150:31–34

    CAS  PubMed  Google Scholar 

  243. Guo YZ, Dong SJ (1997) Organic phase enzyme electrodes based on organohydrogel. Anal Chem 69:1904–1908

    CAS  Google Scholar 

  244. Rusling JF (1998) Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363–369

    CAS  Google Scholar 

  245. Zu X, Lu Z, Zhang Z, Schenkman JB, Rusling JF (1999) Electroenzyme catalyzed oxidation of styrene and cis-β-methylstyrene using thin films of cytochrome P450cam and myoglobin. Langmuir 15:7372–7377

    CAS  Google Scholar 

  246. Munge B, Estavillo C, Schenkman JB, Rusling JF (2003) Optimization of electrochemical and peroxide-driven oxidation of styrene with ultrathin polyion films containing cytochrome P450cam and myoglobin. Chembiochem 4:82–89

    CAS  PubMed  Google Scholar 

  247. Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF (1998) Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J Amer Chem Soc 120:4073–4080

    CAS  Google Scholar 

  248. Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF (2003) Epoxidation of styrene by human cyt P450 1A2 by thin film electrolysis and peroxide activation compared to solution reactions. Biophys Chem 104:291–296

    CAS  PubMed  Google Scholar 

  249. Holtmann D, Mangold KM, Schrader J (2009) Entrapment of cytochrome P450 BM3 in polypyrrole for electrochemically-driven biocatalysis. Biotechnol Lett 31:765–770

    CAS  PubMed  Google Scholar 

  250. Blair E, Greaves J, Farmer PJ (2004) High-temperature electrocatalysis using thermophilic P450 CYP119: dehalogenation of CCl4 to CH4. J Am Chem Soc 126:8632–8633

    CAS  PubMed  Google Scholar 

  251. Sultana N, Schenkman JB, Rusling JF (2005) Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases. J Am Chem Soc 127:13460–13461

    CAS  PubMed  Google Scholar 

  252. Iwuoha EI, Joseph S, Zhang Z, Smyth MR, Fuhr U, Ortiz de Montellano PR (1998) Drug metabolism biosensors: electrochemical reactivities of cytochrome P450cam immobilised in synthetic vesicular systems. J Pharm Biomed Anal 17:1101–1110

    CAS  PubMed  Google Scholar 

  253. Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65:1817–1826

    CAS  PubMed  Google Scholar 

  254. Ferrero VE, Andolfi L, Di Nardo G, Sadeghi SJ, Fantuzzi A, Cannistraro S, Gilardi G (2008) Protein and electrode engineering for the covalent immobilization of P450 BMP on gold. Anal Chem 80:8438–8446

    CAS  PubMed  Google Scholar 

  255. Shumyantseva VV, Bulko TV, Kuznetsova GP, Samenkova NF, Archakov AI (2009) Electrochemistry of cytochromes P450: analysis of current-voltage characteristics of electrodes with immobilized cytochromes P450 for the screening of substrates and inhibitors. Biochemistry (Mosc) 74:438–444

    CAS  Google Scholar 

  256. Fantuzzi A, Capria E, Mak LH, Dodhia VR, Sadeghi SJ, Collins S, Somers G, Huq E, Gilardi G (2010) An electrochemical microfluidic platform for human P450 drug metabolism profiling. Anal Chem 82:10222–10227

    CAS  PubMed  Google Scholar 

  257. Panicco P, Dodhia VR, Fantuzzi A, Gilardi G (2011) Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal Chem 83:2179–2186

    CAS  PubMed  Google Scholar 

  258. Fantuzzi A, Mak LH, Capria E, Dodhia V, Panicco P, Collins S, Gilardi G (2011) A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450. Anal Chem 83:3831–3839

    CAS  PubMed  Google Scholar 

  259. Sadeghi SJ, Ferrero S, Di Nardo G, Gilardi G (2012) Drug-drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4. Bioelectrochemistry 86:87–91

    CAS  PubMed  Google Scholar 

  260. Bommarius AS, Schwarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. J Mol Catal B Enzym 5:1–11

    CAS  Google Scholar 

  261. Falck JR, Reddy YK, Haines DC, Reddy KM, Krishna UM, Graham S, Murry B, Peterson JA (2001) Practical, enantiospecific synthesis of 14,15-EET and leukotoxin B (vernolic acid). Tetrahedron Lett 42:4131–4133

    CAS  Google Scholar 

  262. Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23:89–110

    CAS  PubMed  Google Scholar 

  263. Tishkov VI, Galkin AG, Marchenko GN, Egorova OA, Sheluho DV, Kulakova LB, Dementieva LA, Egorov AM (1993) Catalytic properties and stability of a Pseudomonas sp.101 formate dehydrogenase mutants containing Cys-255-Ser and Cys-255-Met replacements. Biochem Biophys Res Commun 192:976–981

    CAS  PubMed  Google Scholar 

  264. Andreadeli A, Platis D, Tishkov V, Popov V, Labrou NE (2008) Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+. FEBS J 275:3859–3869

    CAS  PubMed  Google Scholar 

  265. Maurer S, Urlacher V, Schulze H, Schmid RD (2003) Immobilisation of P450 BM3 and an NADP+ cofactor recycling system: towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Adv Synth Catal 345:802–810

    CAS  Google Scholar 

  266. Kuehnel K, Maurer SC, Galeyeva Y, Frey W, Laschat S, Urlacher VB (2007) Hydroxylation of dodecanoic acid and (2R,4R,6R,8R)-tetramethyldecanol on a preparative scale using an NADH-dependent CYP102A1 mutant. Adv Synth Catal 349:1451–1461

    CAS  Google Scholar 

  267. Maurer SC, Kuhnel K, Kaysser LA, Eiben S, Schmid RD, Urlacher VB (2005) Catalytic hydroxylation in biphasic systems using CYP102A1 mutants. Adv Synth Catal 347:1090–1098

    CAS  Google Scholar 

  268. Michizoe J, Ichinose H, Kamiya N, Maruyama T, Goto M (2005) Functionalization of the cytochrome P450cam monooxygenase system in the cell-like aqueous compartments of water-in-oil emulsions. J Biosci Bioeng 99:12–17

    CAS  PubMed  Google Scholar 

  269. Kubo T, Peters MW, Meinhold P, Arnold FH (2006) Enantioselective epoxidation of terminal alkenes to ( R)- and ( S)-epoxides by engineered cytochromes P450 BM3. Chemistry 12:1216–1220

    CAS  PubMed  Google Scholar 

  270. Mouri T, Shimizu T, Kamiya N, Goto M, Ichinose H (2009) Design of a cytochrome P450 BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase. Biotechnol Prog 25:1372–1378

    CAS  PubMed  Google Scholar 

  271. Denard CA, Huang H, Bartlett MJ, Lu L, Tan Y, Zhao H, Hartwig JF (2014) Cooperative tandem catalysis by an organometallic complex and a metalloenzyme. Angew Chem Int Ed Engl 53:465–469

    CAS  PubMed  Google Scholar 

  272. Relyea HA, van der Donk WA (2005) Mechanism and applications of phosphite dehydrogenase. Bioorg Chem 33:171–189

    CAS  PubMed  Google Scholar 

  273. Vrtis JM, White AK, Metcalf WW, van der Donk WA (2002) Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew Chem Int Ed Engl 41:3257–3259

    CAS  PubMed  Google Scholar 

  274. Woodyer R, van der Donk WA, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604–11614

    CAS  PubMed  Google Scholar 

  275. Shumyantseva VV, Bulko TV, Schmid RD, Archakov AI (2002) Photochemical properties of a riboflavins/cytochrome P450 2B4 complex. Biosens Bioelectron 17:233–238

    CAS  PubMed  Google Scholar 

  276. Girhard M, Kunigk E, Tihovsky S, Shumyantseva VV, Urlacher VB (2013) Light-driven biocatalysis with cytochrome P450 peroxygenases. Biotechnol Appl Biochem 60:111–118

    CAS  PubMed  Google Scholar 

  277. Hu YZ, Tsukiji S, Shinkai S, Oishi S, Hamachi I (2000) Construction of artificial photosynthetic reaction centers on a protein surface: vectorial, multistep, and proton-coupled electron transfer for long-lived charge separation. J Am Chem Soc 122:241–253

    CAS  Google Scholar 

  278. Immoos CE, Di Bilio AJ, Cohen MS, Van der Veer W, Gray HB, Farmer PJ (2004) Electron-transfer chemistry of Ru-linker-(Heme)-modified myoglobin: rapid intraprotein reduction of a photogenerated porphyrin cation radical. Inorg Chem 43:3593–3596

    CAS  PubMed  Google Scholar 

  279. Ener ME, Lee YT, Winkler JR, Gray HB, Cheruzel L (2010) Photooxidation of cytochrome P450 BM3. Proc Natl Acad Sci U S A 107:18783–18786

    PubMed Central  CAS  PubMed  Google Scholar 

  280. Tran NH, Nguyen D, Dwaraknath S, Mahadevan S, Chavez G, Nguyen A, Dao T, Mullen S, Nguyen TA, Cheruzel LE (2013) An efficient light-driven P450 BM3 biocatalyst. J Am Chem Soc 135:14484–14487

    PubMed Central  CAS  PubMed  Google Scholar 

  281. Kim Y-S, Hara M, Ikebukuro K, Miyake J, Ohkawa H, Karube I (1996) Photo-induced activation of cytochrome P450/reductase fusion enzyme coupled with spinach chloroplasts. Biotechnol Tech 10:717–720

    CAS  Google Scholar 

  282. Hara M, Iazvovskaia S, Ohkawa H, Asada Y, Miyake J (1999) Immobilization of P450 monooxygenase and chloroplast for use in light-driven bioreactors. J Biosci Bioeng 87:793–797

    CAS  PubMed  Google Scholar 

  283. Jensen K, Jensen PE, Moller BL (2011) Light-driven cytochrome P450 hydroxylations. ACS Chem Biol 6:533–539

    CAS  PubMed  Google Scholar 

  284. Jensen K, Johnston JB, de Montellano PR, Moller BL (2012) Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor: terminal hydroxylation of branched hydrocarbon chains. Biotechnol Lett 34:239–245

    PubMed Central  CAS  PubMed  Google Scholar 

  285. Jensen K, Jensen PE, Moller BL (2012) Light-driven chemical synthesis. Trends Plant Sci 17:60–63

    CAS  PubMed  Google Scholar 

  286. Meyer D, Buhler B, Schmid A (2006) Process and catalyst design objectives for specific redox biocatalysis. Adv Appl Microbiol 59:53–91

    CAS  PubMed  Google Scholar 

  287. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    CAS  PubMed  Google Scholar 

  288. Guengerich FP (2003) Cytochromes P450, drugs, and diseases. Mol Interv 3:194–204

    CAS  PubMed  Google Scholar 

  289. Gillam EM (2007) Extending the capabilities of nature’s most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Arch Biochem Biophys 464:176–186

    CAS  PubMed  Google Scholar 

  290. Gillam EM, Guo Z, Martin MV, Jenkins CM, Guengerich FP (1995) Expression of cytochrome P450 2D6 in Escherichia coli, purification, and spectral and catalytic characterization. Arch Biochem Biophys 319:540–550

    CAS  PubMed  Google Scholar 

  291. Purnapatre K, Khattar SK, Saini KS (2008) Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 259:1–15

    CAS  PubMed  Google Scholar 

  292. Barnes HJ, Arlotto MP, Waterman MR (1991) Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc Natl Acad Sci U S A 88:5597–5601

    PubMed Central  CAS  PubMed  Google Scholar 

  293. Pernecky SJ, Larson JR, Philpot RM, Coon MJ (1993) Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: influence of NH2-terminal region on localization in cytosol and membranes. Proc Natl Acad Sci U S A 90:2651–2655

    PubMed Central  CAS  PubMed  Google Scholar 

  294. Pikuleva IA, Bjorkhem I, Waterman MR (1997) Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys 343:123–130

    CAS  PubMed  Google Scholar 

  295. von Wachenfeldt C, Richardson TH, Cosme J, Johnson EF (1997) Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia coli following modifications of its N-terminus. Arch Biochem Biophys 339:107–114

    CAS  PubMed  Google Scholar 

  296. Wu ZL, Bartleson CJ, Ham AJ, Guengerich FP (2006) Heterologous expression, purification, and properties of human cytochrome P450 27C1. Arch Biochem Biophys 445:138–146

    CAS  PubMed  Google Scholar 

  297. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.0 angstrom resolution. Drug Metab Rev 36:345–345

    Google Scholar 

  298. Yip SSM, Coulombe RA (2006) Molecular cloning and expression of a novel cytochrome P450 from turkey liver with aflatoxin B-1 oxidizing activity. Chem Res Toxicol 19:30–37

    CAS  PubMed  Google Scholar 

  299. Pritchard MP, Ossetian R, Li DN, Henderson CJ, Burchell B, Wolf CR, Friedberg T (1997) A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: expression of CYP3A4, CYP2A6, and CYP2E1. Arch Biochem Biophys 345:342–354

    CAS  PubMed  Google Scholar 

  300. Cosme J, Johnson EF (2000) Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J Biol Chem 275:2545–2553

    CAS  PubMed  Google Scholar 

  301. Kumar S, Halpert JR (2005) Use of directed evolution of mammalian cytochromes P450 for investigating the molecular basis of enzyme function and generating novel biocatalysts. Biochem Biophys Res Commun 338:456–464

    CAS  PubMed  Google Scholar 

  302. Kumar S, Zhao Y, Sun L, Negi SS, Halpert JR, Muralidhara BK (2007) Rational engineering of human cytochrome P450 2B6 for enhanced expression and stability: importance of a Leu264Phe substitution. Mol Pharmacol 72:1191–1199

    CAS  PubMed  Google Scholar 

  303. Schroer K, Kittelmann M, Lutz S (2010) Recombinant human cytochrome P450 monooxygenases for drug metabolite synthesis. Biotechnol Bioeng 106:699–706

    CAS  PubMed  Google Scholar 

  304. Rushmore TH, Reider PJ, Slaughter D, Assang C, Shou M (2000) Bioreactor systems in drug metabolism: synthesis of cytochrome P450-generated metabolites. Metab Eng 2:115–125

    CAS  PubMed  Google Scholar 

  305. Guengerich FP (2002) Cytochrome P450 enzymes in the generation of commercial products. Nat Rev Drug Discov 1:359–366

    CAS  PubMed  Google Scholar 

  306. Hanlon SP, Friedberg T, Wolf CR, Ghisalba O, Kittelmann M (2007) Recombinant yeast and bacteria that express human P450s: Bioreactors for drug discovery, development and biotechnology. In: Schmid RD, Urlacher VB (eds) Modern biooxidations. Enzymes, reactions and applications. Wiley, Weinheim, pp 233–252

    Google Scholar 

  307. Zollner A, Buchheit D, Meyer MR, Maurer HH, Peters FT, Bureik M (2010) Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes. Bioanalysis 2:1277–1290

    PubMed  Google Scholar 

  308. Neunzig I, Widjaja M, Peters FT, Maurer HH, Hehn A, Bourgaud F, Bureik M (2013) Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe. Appl Biochem Biotechnol 170:1751–1766

    CAS  PubMed  Google Scholar 

  309. Ghisalba O, Kittelmann M (2007) Preparation of drug metabolites using fungal and bacterial strains. In: Schmid RD, Urlacher VB (eds) Modern biooxidation. Wiley, Weinheim, pp 211–232

    Google Scholar 

  310. Di Nardo G, Gilardi G (2012) Optimization of the bacterial cytochrome P450 BM3 system for the production of human drug metabolites. Int J Mol Sci 13:15901–15924

    PubMed Central  CAS  PubMed  Google Scholar 

  311. Lussenburg BM, Babel LC, Vermeulen NP, Commandeur JN (2005) Evaluation of alkoxyresorufins as fluorescent substrates for cytochrome P450 BM3 and site-directed mutants. Anal Biochem 341:148–155

    CAS  PubMed  Google Scholar 

  312. Sawayama AM, Chen MM, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH (2009) A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chemistry 15:11723–11729

    PubMed Central  CAS  PubMed  Google Scholar 

  313. Boerma JS, Vermeulen NP, Commandeur JN (2011) Application of CYP102A1M11H as a tool for the generation of protein adducts of reactive drug metabolites. Chem Res Toxicol 24:1263–1274

    CAS  PubMed  Google Scholar 

  314. Reinen J, van Leeuwen JS, Li Y, Sun L, Grootenhuis PD, Decker CJ, Saunders J, Vermeulen NP, Commandeur JN (2011) Efficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space. Drug Metab Dispos 39:1568–1576

    CAS  PubMed  Google Scholar 

  315. Vottero E, Rea V, Lastdrager J, Honing M, Vermeulen NP, Commandeur JN (2011) Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11. J Biol Inorg Chem 16:899–912

    PubMed Central  CAS  PubMed  Google Scholar 

  316. Kleser M, Hannemann F, Hutter M, Zapp J, Bernhardt R (2012) CYP105A1 mediated 3-hydroxylation of glimepiride and glibenclamide using a recombinant Bacillus megaterium whole-cell catalyst. J Biotechnol 157:405–412

    CAS  PubMed  Google Scholar 

  317. Weis R, Winkler M, Schittmayer M, Kambourakis S, Vink M, Rozzell JD, Glieder A (2009) A diversified library of bacterial and fungal bifunctional cytochrome P450 enzymes for drug metabolite synthesis. Adv Synth Catal 351:2140–2146

    CAS  Google Scholar 

  318. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    CAS  PubMed  Google Scholar 

  319. Baker ME (2011) Origin and diversification of steroids: co-evolution of enzymes and nuclear receptors. Mol Cell Endocrinol 334:14–20

    CAS  PubMed  Google Scholar 

  320. Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28:139–168

    CAS  PubMed  Google Scholar 

  321. Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R (2011) Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 191:55–77

    CAS  PubMed  Google Scholar 

  322. Peterson DH, Murray HC, Eppstein SH, Reineke LM, Weintraub A, Meister PD, Leigh HM (1952) Microbiological transformations of steroids.1. Introduction of oxygen at carbon-11 of progesterone. J Am Chem Soc 74:5933–5936

    CAS  Google Scholar 

  323. Hogg JA (1992) Steroids, the steroid community, and Upjohn in perspective: a profile of innovation. Steroids 57:593–616

    CAS  PubMed  Google Scholar 

  324. Petzoldt K, Annen K, Laurent H, Wiechert R (1982) Process for the preparation of 11-beta-hydroxy steroids. Berlin, Germany (Patent 4,353,985, Schering Aktiengesellschaft)

    Google Scholar 

  325. Hanson JR (2005) Steroids: reactions and partial synthesis. Nat Prod Rep 22:104–110

    CAS  PubMed  Google Scholar 

  326. Laveaga GS (2005) Uncommon trajectories: steroid hormones, Mexican peasants, and the search for a wild yam. Stud Hist Philos Biol Biomed Sci 36:743–760

    PubMed  Google Scholar 

  327. Agematu H, Matsumoto N, Fujii Y, Kabumoto H, Doi S, Machida K, Ishikawa J, Arisawa A (2006) Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci Biotechnol Biochem 70:307–311

    CAS  PubMed  Google Scholar 

  328. Arisawa A, Agematu H (2007) A modular approach to biotransformation using microbial cytochrome P450 monooxygenases. In: Schmid RD, Urlacher VB (eds) Modern biooxidation, 1st edn. Wiley-VCH, Weinheim, pp 177–192

    Google Scholar 

  329. Uhia I, Galan B, Kendall SL, Stoker NG, Garcia JL (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Rep 4:168–182

    CAS  PubMed  Google Scholar 

  330. van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104:1947–1952

    PubMed Central  PubMed  Google Scholar 

  331. Bracco P, Janssen DB, Schallmey A (2013) Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb Cell Fact 12:95

    PubMed Central  PubMed  Google Scholar 

  332. Makino T, Katsuyama Y, Otomatsu T, Misawa N, Ohnishi Y (2014) Regio- and stereospecific hydroxylation of various steroids at the 16alpha position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl Environ Microbiol 80:1371–1379

    PubMed Central  CAS  PubMed  Google Scholar 

  333. Geier M, Braun A, Fladischer P, Stepniak P, Rudroff F, Hametner C, Mihovilovic MD, Glieder A (2013) Double site saturation mutagenesis of the human cytochrome P450 2D6 results in regioselective steroid hydroxylation. FEBS J 280:3094–3108

    CAS  PubMed  Google Scholar 

  334. Goetschel R, Bar R (1992) Formation of mixed crystals in microbial conversion of sterols and steroids. Enzyme Microb Technol 14:462–469

    CAS  Google Scholar 

  335. Manosroi A, Saowakhon S, Manosroi J (2008) Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-beta-cyclodextrin complexation technique. J Steroid Biochem Mol Biol 108:132–136

    CAS  PubMed  Google Scholar 

  336. Roglic U, Znidarsic-Plazl P, Plazl I (2005) The influence of beta-cyclodextrin on the kinetics of progesterone transformation by Rhizopus nigricans. Biocatal Biotransform 23:299–305

    CAS  Google Scholar 

  337. Lam KS (2010) Application of whole-cell biotransformation in the pharmaceutical industry. In: Tao J, Lin G-Q, Liese A (eds) Biocatalysis for the pharmaceutical industry: discovery, development, and manufacturing. Wiley, New York, pp 213–227

    Google Scholar 

  338. Braun A, Geier M, Buhler B, Schmid A, Mauersberger S, Glieder A (2012) Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb Cell Fact 11:106

    PubMed Central  CAS  PubMed  Google Scholar 

  339. Duport C, Spagnoli R, Degryse E, Pompon D (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16:186–189

    CAS  PubMed  Google Scholar 

  340. Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    CAS  PubMed  Google Scholar 

  341. Serizawa N (1997) Development of two-step fermentation-based production of pravastatin, a HMG-CoA reductase. J Synth Org Chem Jpn 55:334–338

    CAS  Google Scholar 

  342. Watanabe I, Nara F, Serizawa N (1995) Cloning, characterization and expression of the gene encoding cytochrome P-450sca-2 from Streptomyces carbophilus involved in production of pravastatin, a specific HMG-CoA reductase inhibitor. Gene 163:81–85

    CAS  PubMed  Google Scholar 

  343. Sakaki T (2012) Practical application of cytochrome P450. Biol Pharm Bull 35:844–849

    CAS  PubMed  Google Scholar 

  344. Watanabe I, Serizawa N (1998) Molecular approaches for production of pravastatin, a HMG-CoA reductase inhibitor: transcriptional regulation of the cytochrome p450sca gene from Streptomyces carbophilus by ML-236B sodium salt and phenobarbital. Gene 210:109–116

    CAS  PubMed  Google Scholar 

  345. Hosobuchi M, Kurosawa K, Yoshikawa H (1993) Application of computer to monitoring and control of fermentation process: microbial conversion of ML-236B Na to pravastatin. Biotechnol Bioeng 42:815–820

    CAS  PubMed  Google Scholar 

  346. Park JW, Lee JK, Kwon TJ, Yi DH, Kim YJ, Moon SH, Suh HH, Kang SM, Park YI (2003) Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnol Lett 25:1827–1831

    CAS  PubMed  Google Scholar 

  347. Peng Y, Yashphe J, Demain AL (1997) Biotransformation of compactin to pravastatin by Actinomadura sp. 2966. J Antibiot (Tokyo) 50:1032–1035

    CAS  Google Scholar 

  348. Chen CH, Hu HY, Cho YC, Hsu WH (2006) Screening of compactin-resistant microorganisms capable of converting compactin to pravastatin. Curr Microbiol 53:108–112

    CAS  PubMed  Google Scholar 

  349. Ba L, Li P, Zhang H, Duan Y, Lin Z (2013) Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: insights into the important role of electron transfer. Biotechnol Bioeng 110:2815–2825

    CAS  PubMed  Google Scholar 

  350. Fujii T, Fujii Y, Machida K, Ochiai A, Ito M (2009) Efficient biotransformations using Escherichia coli with tolC acrAB mutations expressing cytochrome P450 genes. Biosci Biotechnol Biochem 73:805–810

    CAS  PubMed  Google Scholar 

  351. Grant C, Woodley JM, Baganz F (2011) Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli. Enzyme Microb Technol 48:480–486

    CAS  PubMed  Google Scholar 

  352. Schneider S, Wubbolts MG, Sanglard D, Witholt B (1998) Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for In vivo application of cytochrome P450 BM3 monooxygenase. Appl Environ Microbiol 64:3784–3790

    PubMed Central  CAS  PubMed  Google Scholar 

  353. Julsing MK, Schrewe M, Cornelissen S, Hermann I, Schmid A, Buhler B (2012) Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Appl Environ Microbiol 78:5724–5733

    PubMed Central  CAS  PubMed  Google Scholar 

  354. Cornelissen S, Julsing MK, Volmer J, Riechert O, Schmid A, Buhler B (2013) Whole-cell-based CYP153A6-catalyzed ( S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnol Bioeng 110:1282–1292

    CAS  PubMed  Google Scholar 

  355. Scheps D, Honda Malca S, Richter SM, Marisch K, Nestl BM, Hauer B (2013) Synthesis of omega-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microb Biotechnol 6:694–707

    PubMed Central  CAS  PubMed  Google Scholar 

  356. Ruijssenaars HJ, Sperling EM, Wiegerinck PH, Brands FT, Wery J, de Bont JA (2007) Testosterone 15beta-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 131:205–208

    CAS  PubMed  Google Scholar 

  357. Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, Ohtake H, Kato J, Ogawa J, Shimizu S, Urlacher VB, Schmid RD, Pongtharangkul T (2012) Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl Microbiol Biotechnol 95:357–367

    CAS  PubMed  Google Scholar 

  358. Gavira C, Hofer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D (2013) Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metab Eng 18:25–35

    CAS  PubMed  Google Scholar 

  359. Girhard M, Machida K, Itoh M, Schmid RD, Arisawa A, Urlacher VB (2009) Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microb Cell Fact 8:36, 1–13

    PubMed Central  PubMed  Google Scholar 

  360. Buhler B, Park JB, Blank LM, Schmid A (2008) NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Appl Environ Microbiol 74:1436–1446

    PubMed Central  PubMed  Google Scholar 

  361. Mouri T, Michizoe J, Ichinose H, Kamiya N, Goto M (2006) A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration. Appl Microbiol Biotechnol 2:514–520

    Google Scholar 

  362. Schewe H, Kaup BA, Schrader J (2008) Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl Microbiol Biotechnol 78:55–65

    CAS  PubMed  Google Scholar 

  363. Schewe H, Holtmann D, Schrader J (2009) P450(BM3)-catalyzed whole-cell biotransformation of alpha-pinene with recombinant Escherichia coli in an aqueous-organic two-phase system. Appl Microbiol Biotechnol 83:849–857

    CAS  PubMed  Google Scholar 

  364. Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lutz S (2010) Towards preparative scale steroid hydroxylation with cytochrome P450 monooxygenase CYP106A2. Chembiochem 11:713–721

    CAS  PubMed  Google Scholar 

  365. Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3:360–366

    CAS  PubMed  Google Scholar 

  366. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    PubMed Central  CAS  PubMed  Google Scholar 

  367. Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19:597–605

    CAS  PubMed  Google Scholar 

  368. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    CAS  PubMed  Google Scholar 

  369. Mora-Pale M, Sanchez-Rodriguez SP, Linhardt RJ, Dordick JS, Koffas MAG (2014) Biochemical strategies for enhancing the in vivo production of natural products with pharmaceutical potential. Curr Opin Biotechnol 25:86–94

    CAS  PubMed  Google Scholar 

  370. Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170

    CAS  PubMed  Google Scholar 

  371. Newhouse T, Baran PS, Hoffmann RW (2009) The economies of synthesis. Chem Soc Rev 38:3010–3021

    PubMed Central  CAS  PubMed  Google Scholar 

  372. Nelson D, Werck-Reichhart D (2011) A P450—centric view of plant evolution. Plant J 66:194–211

    CAS  PubMed  Google Scholar 

  373. Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro D-K, Sensen CW, Storms R, Martin VJJ, Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30:127–131

    Google Scholar 

  374. Heinig U, Jennewein S (2009) Taxol: a complex diterpenoid natural product with an evolutionarily obscure origin. Afr J Biotechnol 8:1370–1385

    CAS  Google Scholar 

  375. Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    CAS  PubMed  Google Scholar 

  376. Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200:27–43

    CAS  PubMed  Google Scholar 

  377. Duan H, Schuler M (2006) Heterologous expression and strategies for encapsulation of membrane-localized plant P450s. Phytochem Rev 5:507–523

    CAS  Google Scholar 

  378. Weitzel C, Simonsen H (2013) Cytochrome P450 enzymes involved in the biosynthesis of mono- and sesquiterpenes. Phytochem Rev doi:10.1007/s11101-013-9280-x

    Google Scholar 

  379. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13–19

    CAS  PubMed  Google Scholar 

  380. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61

    CAS  PubMed  Google Scholar 

  381. Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O (2013) In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Fact 12:84

    PubMed Central  PubMed  Google Scholar 

  382. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotech 21:796–802

    CAS  Google Scholar 

  383. Morrone D, Lowry L, Determan M, Hershey D, Xu M, Peters R (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol 85:1893–1906

    PubMed Central  CAS  PubMed  Google Scholar 

  384. Partow S, Siewers V, Daviet L, Schalk M, Nielsen J (2012) Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae. PLoS One 7:e52498

    PubMed Central  CAS  PubMed  Google Scholar 

  385. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    CAS  PubMed  Google Scholar 

  386. Yuan LZ, Rouvière PE, LaRossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90

    CAS  PubMed  Google Scholar 

  387. Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64:425–433

    CAS  PubMed  Google Scholar 

  388. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    CAS  PubMed  Google Scholar 

  389. Mau CJD, Karp F, Ito M, Honda G, Croteau RB (2010) A candidate cDNA clone for (−)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry 71:373–379

    CAS  PubMed  Google Scholar 

  390. Cankar K, van Houwelingen A, Bosch D, Sonke T, Bouwmeester H, Beekwilder J (2011) A chicory cytochrome P450 monooxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett 585:178–182

    CAS  PubMed  Google Scholar 

  391. Cankar K, van Houwelingen A, Goedbloed M, Renirie R, de Jong RM, Bouwmeester H, Bosch D, Sonke T, Beekwilder J (2014) Valencene oxidase CYP706M1 from Alaska cedar ( Callitropsis nootkatensis). FEBS Lett 588:1001–1007

    CAS  PubMed  Google Scholar 

  392. Harada H, Shindo K, Iki K, Teraoka A, Okamoto S, Yu F, Hattan J-i, Utsumi R, Misawa N (2011) Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis. Appl Microbiol Biotechnol 90:467–476

    CAS  PubMed  Google Scholar 

  393. Yu F, Okamoto S, Harada H, Yamasaki K, Misawa N, Utsumi R (2011) Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cell Mol Life Sci 68:1033–1040

    CAS  PubMed  Google Scholar 

  394. WHO (2006) Guidelines for the treatment of malaria. World Health Organization, Geneva

    Google Scholar 

  395. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    CAS  PubMed  Google Scholar 

  396. Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642

    CAS  Google Scholar 

  397. Cyr A, Wilderman PR, Determan M, Peters RJ (2007) A modular approach for facile biosynthesis of labdane-related diterpenes. J Am Chem Soc 129:6684–6685

    PubMed Central  CAS  PubMed  Google Scholar 

  398. Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ (2009) CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21:3315–3325

    PubMed Central  CAS  PubMed  Google Scholar 

  399. Wang Q, Hillwig ML, Peters RJ (2011) CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J 65:87–95

    PubMed Central  CAS  PubMed  Google Scholar 

  400. Wu Y, Hillwig ML, Wang Q, Peters RJ (2011) Parsing a multifunctional biosynthetic gene cluster from rice: biochemical characterization of CYP71Z6 & 7. FEBS Lett 585:3446–3451

    PubMed Central  CAS  PubMed  Google Scholar 

  401. Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L (2013) CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci U S A 110:12108–12113

    PubMed Central  CAS  PubMed  Google Scholar 

  402. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    PubMed Central  CAS  PubMed  Google Scholar 

  403. Jiang M, Stephanopoulos G, Pfeifer B (2012) Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 94:841–849

    CAS  PubMed  Google Scholar 

  404. Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–369

    CAS  PubMed  Google Scholar 

  405. Fukushima EO, Seki H, Ohyama K, Ono E, Umemoto N, Mizutani M, Saito K, Muranaka T (2011) CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol 52:2050–2061

    CAS  PubMed  Google Scholar 

  406. Fukushima EO, Seki H, Sawai S, Suzuki M, Ohyama K, Saito K, Muranaka T (2013) Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast. Plant Cell Physiol 54:740–749

    CAS  PubMed  Google Scholar 

  407. Castillo DA, Kolesnikova MD, Matsuda SPT (2013) An effective strategy for exploring unknown metabolic pathways by genome mining. J Am Chem Soc 135:5885–5894

    CAS  PubMed  Google Scholar 

  408. Dai Z, Wang B, Liu Y, Shi M, Wang D, Zhang X, Liu T, Huang L, Zhang X (2014) Producing aglycons of ginsenosides in bakers’ yeast. Sci Rep 4:3698. doi:10.1038/srep0369

    PubMed Central  PubMed  Google Scholar 

  409. Quinlan RF, Jaradat TT, Wurtzel ET (2007) Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases. Arch Biochem Biophys 458:146–157

    PubMed Central  CAS  PubMed  Google Scholar 

  410. Yan Y, Kohli A, Koffas MAG (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610–5613

    PubMed Central  CAS  PubMed  Google Scholar 

  411. Leonard E, Yan Y, Lim KH, Koffas MAG (2005) Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8241–8248

    PubMed Central  CAS  PubMed  Google Scholar 

  412. Leonard E, Yan Y, Koffas MAG (2006) Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab Eng 8:172–181

    CAS  PubMed  Google Scholar 

  413. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    CAS  PubMed  Google Scholar 

  414. Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14:104–111

    CAS  PubMed  Google Scholar 

  415. Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4:564–573

    PubMed Central  CAS  PubMed  Google Scholar 

  416. Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret J-P, Beaudoin GAW, Facchini PJ, Martin VJJ (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun 5:3283. doi:10.1038/ncomms4283

    PubMed  Google Scholar 

  417. Minami H, Kim J-S, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 105:7393–7398

    PubMed Central  CAS  PubMed  Google Scholar 

  418. Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1:708–717

    CAS  PubMed  Google Scholar 

  419. Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci U S A 97:6287–629

    PubMed Central  CAS  PubMed  Google Scholar 

  420. Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY, Meilan R, Strauss SH, Wilkerson J, Farin F, Strand SE (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci U S A 104:16816–16821

    PubMed Central  CAS  PubMed  Google Scholar 

  421. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2003) Transgenic rice plants expressing human CYP1A1 exude herbicide metabolites from their roots. Plant Sci 165:373–381

    CAS  Google Scholar 

  422. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J Agric Food Chem 54:2985–2991

    CAS  PubMed  Google Scholar 

  423. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2005) Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. J Agric Food Chem 53:8557–8564

    CAS  PubMed  Google Scholar 

  424. Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 104:16822–16827

    PubMed Central  CAS  PubMed  Google Scholar 

  425. Gavilano LB, Coleman NP, Burnley L-E, Bowman ML, Kalengamaliro NE, Hayes A, Bush L, Siminszky B (2006) Genetic engineering of Nicotiana tabacum for reduced nornicotine content. J Agric Food Chem 54:9071–9078

    CAS  PubMed  Google Scholar 

  426. Lewis RS, Bowen SW, Keogh MR, Dewey RE (2010) Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: functional characterization of the CYP82E10 gene. Phytochemistry 71:1988–1998

    CAS  PubMed  Google Scholar 

  427. Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341:175–179

    CAS  PubMed  Google Scholar 

  428. Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Philos Trans R Soc Lond B Biol Sci 368

    Google Scholar 

  429. Holton TA (1996) Plant transgenosis with flavanoid pathway enzyme gene in genetic engineering of altered flower color. WO9636716A1, International Flower Developments Pty. Ltd., Australia

    Google Scholar 

  430. Brugliera F, Tanaka Y, Mason J (2004) Flavonoid 3ʹ,5ʹ-hydroxylase genes of flowering plants and their use in manipulation of flower color. WO2004020637A1, International Flower Developments Pty. Ltd., Australia

    Google Scholar 

  431. Brugliera F (2009) Nucleotide sequences of flavonoid 3ʹ,5ʹ-hydroxylase and dihydroflavonol-4-reductase encoding gene and genetically modified plants with altered inflorescence. WO2009062259A1, International Flower Developments Pty. Ltd., Australia

    Google Scholar 

  432. Brugliera F (2010) Methods for engineering carnations with altered inflorescence color by expressing Viola and Salvia flavonoid 3ʹ,5ʹ-hydroxylase gene and Petunia dihydroflavonol-4-reductase gene. WO2010069004A1, International Flower Developments Pty. Ltd., Australia

    Google Scholar 

  433. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G-Q, Nehra NS, Lu C-Y, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    CAS  PubMed  Google Scholar 

  434. Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    CAS  PubMed  Google Scholar 

  435. Julsing MK, Cornelissen S, Buhler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12:177–186

    CAS  PubMed  Google Scholar 

  436. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109:E111–118

    Google Scholar 

  437. Guidelines for the treatment of malaria (2010) World Health Organization, Geneva, Switzerland

    Google Scholar 

  438. Guidance for industry—safety testing of drug metabolites (2008) UCM079266, US Department of health and human services, Silver Spring, Maryland, USA

    Google Scholar 

  439. Smith DA, Obach RS (2009) Metabolites in safety testing (MIST): considerations of mechanisms of toxicity with dose, abundance, and duration of treatment. Chem Res Toxicol 22:267–279

    CAS  PubMed  Google Scholar 

  440. Guideline on the investigation of drug interactions (2012) CPMP/EWP/560/95/Rev.1, European medicines agency, London, UK

    Google Scholar 

  441. 2007–2011 Flavor & fragrance industry leaders (2012) Leffingwell & Associates. http://www.leffingwell.com/top_10.htm; 2014/03/20

  442. Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlada B. Urlacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Girhard, M., Bakkes, P., Mahmoud, O., Urlacher, V. (2015). P450 Biotechnology. In: Ortiz de Montellano, P. (eds) Cytochrome P450. Springer, Cham. https://doi.org/10.1007/978-3-319-12108-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12108-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12107-9

  • Online ISBN: 978-3-319-12108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics