Skip to main content

Electron Transfer Partners of Cytochrome P450

  • Chapter
  • First Online:
Cytochrome P450

Abstract

NADPH-cytochrome P450 oxidoreductase (POR) is the obligatory flavoprotein electron donor to microsomal cytochromes P450 (P450). POR is a diflavin protein containing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). It functions to transfer electrons from NADPH via FAD and FMN to an electron acceptor, the heme group of P450 enzymes. The domain structure of POR is consistent with evolution of POR, as a fusion between two proteins related to flavodoxin and ferredoxin-NADP+ reductase, joined by a flexible hinge and the connecting domain. The catalytic steps are discussed, including hydride transfer from NADPH to FAD, interflavin electron transfer, and FMN to heme electron transfer. Recent crystallographic and solution studies reveal that the two flavin domains undergo various conformational changes throughout the catalytic cycle, ranging from movements of specific amino acid residues and local loops to large scale domain movements. It has been proposed that these movements are tightly coordinated with the binding and release of NADP(H) and with the redox state of the enzyme. A plausible scenario of these motions along the electron transfer path from NADPH to acceptors is presented.

Cytochrome b 5 (cyt b 5 ) is a membrane-bound heme protein that reduces oxyferrous microsomal P450s. It does not reduce ferric P450. Cyt b 5 may stimulate, inhibit, or have no effect on the activity of P450 as measured both in vitro and in vivo in humans and genetically engineered mice. This chapter will also discuss the biochemical basis of these varied effects of cyt b 5 and apocyt b 5 (cyt b 5 lacking heme) on the activity of P450 enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

POR:

NADPH-cytochrome P450 oxidoreductase

POR :

POR gene

P450:

Cytochrome P450

cyt c :

Cytochrome c

cyt b 5 :

Cytochrome b 5

NOS:

Nitric oxide synthase

FNR:

Ferredoxin-NADP+ reductase

Fld:

Flavodoxin

FMN domain:

FMN-containing flavodoxin-like domain

FAD domain:

FAD-containing FNR-like domain plus the connecting domain

P450BM3:

Bacillus megaterium flavocytochrome P450BM3

MS:

Methionine synthase

MSR:

Methionine synthase reductase

ER:

Endoplasmic reticulum

HO:

Heme oxygenase

References

  1. Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83

    CAS  PubMed  Google Scholar 

  2. Roman LJ, Masters BS (2010) The cytochromes P450 and nitric oxide synthases. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations, 7th edn. Wiley, New York, pp 425–456

    Google Scholar 

  3. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    CAS  PubMed  Google Scholar 

  4. Stuehr DJ, Tejero J, Haque MM (2009) Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 276:3959–3974

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Daff S (2010) NO synthase: structures and mechanisms. Nitric Oxide Biol Chem 23:1–11

    CAS  Google Scholar 

  6. Feng C (2012) Mechanism of nitric oxide synthase regulation: electron transfer and interdomain interactions. Coord Chem Rev 256:393–411

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Iyanagi T, Xia C, Kim JJ (2012) NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 528:72–89

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Ruettinger RT, Wen LP, Fulco AJ (1989) Coding nucleotide, 5ʹ regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264:10987–10995

    CAS  PubMed  Google Scholar 

  9. Ostrowski J, Barber MJ, Rueger DC, Miller BE, Siegel LM, Kredich NM (1989) Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem 264:15796–15808

    CAS  PubMed  Google Scholar 

  10. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A 95:3059–3064

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Olteanu H, Benerjee R (2001) Human methionine synthase reductase, a soluble P450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. J Biol Chem 276:35558–35563

    CAS  PubMed  Google Scholar 

  12. Wolthers KR, Lou X, Toogood HS, Leys D, Scrutton NS (2007) Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry. Biochemistry 46:11833–11844

    CAS  PubMed  Google Scholar 

  13. Paine MJ, Garner AP, Powell D, Sibbald J, Sales M, Pratt N, Smith T, Tew DG, Wolf CR (2000) Cloning and characterization of a novel human dual flavin reductase. J Biol Chem 275:1471–1478

    CAS  PubMed  Google Scholar 

  14. Inui H, Yamaji R, Saidoh H, Miyatake K, Nakano Y, Kitaoka S (1991) Pyruvate:NADP+ oxidoreductase from Euglena gracilis: limited proteolysis of the enzyme with trypsin. Arch Biochem Biophys 286:270–276

    CAS  PubMed  Google Scholar 

  15. Nakazawa M, Inui H, Yamaji R, Yamamoto T, Takenaka S, Ueda M, Nakano Y, Miyatake K (2000) The origin of pyruvate: NADP+ oxidoreductase in mitochondria of Euglena gracilis. FEBS Lett 479:155–156

    CAS  PubMed  Google Scholar 

  16. Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol 6:758–765

    CAS  PubMed  Google Scholar 

  17. Schacter BA, Nelson EB, Marver HS, Masters BS (1972) Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system. J Biol Chem 247:3601–3607

    CAS  PubMed  Google Scholar 

  18. Guengerich FP (2005) Reduction of cytochrome b5 by NADPH-cytochrome P450 reductase. Arch Biochem Biophys 440:204–211

    CAS  PubMed  Google Scholar 

  19. Ono T, Takahashi K, Odani S, Konno H, Imai Y (1980) Purification of squalene epoxidase from rat liver microsomes. Biochem Biophys Res Comm 96:522–528

    CAS  PubMed  Google Scholar 

  20. Pearson JT, Siu S, Meininger DP, Wienkers LC, Rock DA (2010) In vitro modulation of cytochrome P450 reductase supported indoleamine 2,3-dioxygenase activity by allosteric effectors cytochrome b 5 and methylene blue. Biochemistry 49:2647–2656

    CAS  PubMed  Google Scholar 

  21. Petersen JA, Ebel RE, O’Keeffe DH, Matsubara T, Estabrook RW (1976) Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase:cytochrome P-450 interaction. J Biol Chem 251:4010–4016

    Google Scholar 

  22. Shephard EA, Phillips IR, Bayney RM, Pike SF, Rabin BR (1983) Quantification of NADPH: cytochrome P-450 reductase in liver microsomes by a specific radioimmunoassay technique. Biochem J 211:333–340

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Backes WL, Kelley RW (2003) Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharmacol Ther 98:221–233

    CAS  PubMed  Google Scholar 

  24. Johnson EF, Stout CD (2005) Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochem Biophys Res Comm 338:331–336

    CAS  PubMed  Google Scholar 

  25. Johnson EF, Stout CD (2013) Structural diversity of eukaryotic membrane cytochrome P450s. J Biol Chem 288:17082–17090

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Iyanagi T, Mason HS (1973) Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochemistry 12:2297–2308

    CAS  PubMed  Google Scholar 

  27. Iyanagi T, Makino R, Anan FK (1981) Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase. Biochemistry 20:1722–1730

    CAS  PubMed  Google Scholar 

  28. Iyanagi T, Makino N, Mason HS (1974) Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases. Biochemistry 13:1701–1710

    CAS  PubMed  Google Scholar 

  29. Das A, Sligar SG (2009) Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. Biochemistry 48:12104–12112

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Brenner S, Hay S, Munro AW, Scrutton NS (2008) Inter-flavin electron transfer in cytochrome P450 reductase—effects of solvent and pH identify hidden complexity in mechanism. FEBS J 275:4540–4557

    CAS  PubMed  Google Scholar 

  31. Munro AW, Noble MA, Robledo L, Daff SN, Chapman SK (2001) Determination of the redox properties of human NADPH-cytochrome P450 reductase. Biochemistry 40:1956–1963

    CAS  PubMed  Google Scholar 

  32. Vermilion JL, Coon MJ (1978) Identification of the high and low potential flavins of liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 253(24):8812–8819

    CAS  PubMed  Google Scholar 

  33. Oprian DD, Coon MJ (1982) Oxidation-reduction states of FMN and FAD in NADPH-cytochrome P-450 reductase during reduction by NADPH. J Biol Chem 257:8935–8944

    CAS  PubMed  Google Scholar 

  34. Oprian DD, Gorsky LD, Coon MJ (1983) Properties of the oxygenated form of liver microsomal cytochrome P-450. J Biol Chem 258:8684–8691

    CAS  PubMed  Google Scholar 

  35. Porter TD, Kasper CB (1986) NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry 25:682–1687

    Google Scholar 

  36. Wang M, Roberts DL, Paschke R, Shea TM, Masters BS, Kim JJ (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci U S A 94:8411–8416

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Karplus PA, Daniels MJ, Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251:60–66

    CAS  PubMed  Google Scholar 

  38. Smith GC, Tew DG, Wolf CR (1994) Dissection of NADPH-cytochrome P450 oxidoreductase into distinct functional domains. Proc Natl Acad Sci U S A 91:8710–8714

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Hodgson AV, Strobel HW (1996) Characterization of the FAD binding domain of cytochrome P450 reductase. Arch Biochem Biophys 325:99–106

    CAS  PubMed  Google Scholar 

  40. Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA, Getzoff ED (2004) Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase. J Biol Chem 279:37918–37927

    CAS  PubMed  Google Scholar 

  41. Black SD, Coon MJ (1982) Structural features of liver microsomal NADPH-cytochrome P-450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region. J Biol Chem 257:5929–5938

    CAS  PubMed  Google Scholar 

  42. Porter TD, Kasper CB (1985) Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains. Proc Natl Acad Sci U S A 82:973–977

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Taniguchi H, Imai Y, Iyanagi T, Sato R (1979) Interaction between NADPH-cytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles. Biochim Biophys Acta 550:341–356

    CAS  PubMed  Google Scholar 

  44. Black S, French JS, Williams JH Jr, Coon MJ (1979) Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM. Biochem Biophys Res Comm 91:1528–1535

    CAS  PubMed  Google Scholar 

  45. Cojocaru V, Balali-Mood K, Sansom MS, Wade RC (2012) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7: e1002152

    Google Scholar 

  46. Gilep A, Guryev OL, Usanov SA, Estabrook RW (2001) An enzymatically active chimeric protein containing the hydrophilic form of NADPH-cytochrome P450 reductase fused to the membrane-binding domain of cytochrome b5. Biochem Biophys Res Comm 284:937–941

    CAS  PubMed  Google Scholar 

  47. Venkateswarlu K, Lamb DC, Kelly DE, Manning NJ, Kelly SL (1998) The N-terminal membrane domain of yeast NADPH-cytochrome P450 CYP, oxidoreductase is not required for catalytic activity in sterol biosynthesis or in reconstitution of CYP activity. J Biol Chem 273:4492–4496

    CAS  PubMed  Google Scholar 

  48. Blanck J, Smettan G, Ristau O, Ingelman-Sundberg M, Ruckpaul K (1984) Mechanism of rate control of the NADPH-dependent reduction of cytochrome P-450 by lipids in reconstituted phospholipid vesicles. Eur J Biochem 144:509–513

    CAS  PubMed  Google Scholar 

  49. Vermilion JL, Ballou DP, Massey V, Coon MJ (1981) Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 256:266–277

    CAS  PubMed  Google Scholar 

  50. Shen AL, Porter TD, Wilson TE, Kasper CB (1989) Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. J Biol Chem 264:7584–7589

    CAS  PubMed  Google Scholar 

  51. Marohnic CC, Panda SP, McCammon K, Rueff J, Masters BS, Kranendonk M (2010) Human cytochrome P450 oxidoreductase deficiency caused by the Y181D mutation: molecular consequences and rescue of defect. Drug Metab Disp 38:332–340

    CAS  Google Scholar 

  52. Nicolo C, Fluck CE, Mullis PE, Pandey AV (2010) Restoration of mutant cytochrome P450 reductase activity by external flavin. Mol Cell Endo 321:245–252

    CAS  Google Scholar 

  53. Hamdane D, Xia C, Im SC, Zhang H, Kim JJ, Waskell L (2009) Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 284:11374–11384

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Bridges A, Gruenke L, Chang YT, Vakser IA, Loew G, Waskell L (1998) Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase. J Biol Chem 273:17036–17049

    CAS  PubMed  Google Scholar 

  55. Im SC, Waskell L (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b 5 . Arch Biochem Biophys 507:144–153

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Johnson EF, Wester MR, Stout CD (2002) The structure of microsomal cytochrome P450 2C5: a steroid and drug metabolizing enzyme. Endo Res 28:435–441

    CAS  Google Scholar 

  57. Nisimoto Y (1986) Localization of cytochrome c-binding domain on NADPH-cytochrome P-450 reductase. J Biol Chem 261:14232–14239

    CAS  PubMed  Google Scholar 

  58. Nisimoto Y, Otsuka-Murakami H (1988) Cytochrome b5, cytochrome c, and cytochrome P-450 interactions with NADPH cytochrome P-450 reductase in phospholipid vesicles. Biochemistry 27:5869–5876

    CAS  PubMed  Google Scholar 

  59. Shen AL, Kasper CB (1995) Role of acidic residues in the interaction of NADPH-cytochrome P450 oxidoreductase with cytochrome P450 and cytochrome c. J Biol Chem 270:27475–27480

    CAS  PubMed  Google Scholar 

  60. Strobel HW, Hodgson AV, Shen SJ (1995) NADPH cytochrome P450 reductase and its structural and functional domains. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biocheimstry, 2nd edn. Plenum, New York

    Google Scholar 

  61. Jang HH, Jamakhandi AP, Sullivan SZ, Yun CH, Hollenberg PF, Miller GP (2010) Beta sheet 2-alpha helix C loop of cytochrome P450 reductase serves as a docking site for redox partners. Biochim Biophys Acta 1804:1285–1293

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Hlavica P, Schulze J, Lewis DFV (2003) Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 96:279–297

    CAS  PubMed  Google Scholar 

  63. Huang WC, Ellis J, Moody PC, Raven EL, Roberts GC (2013) Redox-linked domain movements in the catalytic cycle of cytochrome P450 reductase. Structure 21:1581–1589

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Kenaan C, Zhang H, Shea EV, Hollenberg PF (2011) Uncovering the role of hydrophobic residues in cytochrome P450-cytochrome P450 reductase interactions. Biochemistry 50:3957–3967

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Miwa GT, West SB, Huang MT, Lu AY (1979) Studies on the association of cytochrome P-450 and NADPH cytochrome c reductase during catalysis in a reconstituted hydroxylating system. J Biol Chem 254:5695–5700

    CAS  PubMed  Google Scholar 

  66. Jamakhandi AP, Kuzmic P, Sanders DE, Miller GP (2007) Global analysis of protein-protein interactions reveals multiple CYP2E1-reductase complexes. Biochemistry 46:10192–10201

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Reed JR, Cawley GF, Backes WL (2011) Inhibition of cytochrome P450 1A2-mediated metabolism and production of reactive oxygen species by heme oxygenase-1 in rat liver microsomes. Drug Metab Lett 5:6–16

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Kurzban GP, Strobel HW (1986) Purification of flavin mononucleotide-dependent and flavin-adenine dinucleotide-dependent reduced nicotinamide-adenine dinucleotide phosphate-cytochrome P-450 reductase by high-performance liquid chromatography on hydroxyapatite. J Chromatogr 358:296–301

    CAS  PubMed  Google Scholar 

  69. Narayanasami R, Nishimura JS, McMillan K, Roman LJ, Shea TM, Robida AM, Horowitz PM, Masters BS (1997) The influence of chaotropic reagents on neuronal nitric oxide synthase and its flavoprotein module. Urea and guanidine hydrochloride stimulate NADPH-cytochrome c reductase activity of both proteins. Nitric oxide Biol Chem 1:39–49

    Google Scholar 

  70. Narayanasami R, Horowitz PM, Masters BS (1995) Flavin-binding and protein structural integrity studies on NADPH-cytochrome P450 reductase are consistent with the presence of distinct domain. Arch Biochem Biophys 316:267–274

    CAS  PubMed  Google Scholar 

  71. Shen AL, Kasper CB (2000) Differential contributions of NADPH-cytochrome P450 oxidoreductase FAD binding site residues to flavin binding and catalysis. J Biol Chem 275:41087–41091

    CAS  PubMed  Google Scholar 

  72. Shen AL, Kasper CB (1996) Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential. Biochemistry 35:9451–9459

    CAS  PubMed  Google Scholar 

  73. Shen AL, Sem DS, Kasper CB (1999) Mechanistic studies on the reductive half-reaction of NADPH-cytochrome P450 oxidoreductase. J Biol Chem 274:5391–5398

    CAS  PubMed  Google Scholar 

  74. Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ (2001) NADPH-cytochrome P450 oxidoreductase: structural basis for hydride and electron transfer. J Biol Chem 276:29163–29170

    CAS  PubMed  Google Scholar 

  75. Deng Z, Aliverti A, Zanetti G, Arakaki AK, Ottado J, Orellano EG, Calcaterra NB, Ceccarelli EA, Carrillo N, Karplus PA (1999) A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol 6:847–853

    Google Scholar 

  76. Tejero J, Perez-Dorado I, Maya C, Martinez-Julvez M, Sanz-Aparicio J, Gomez-Moreno C, Hermoso JA, Medina M (2005) C-terminal tyrosine of ferredoxin-NADP+ reductase in hydride transfer processes with NAD(P)+/H. Biochemistry 44:13477–13490

    CAS  PubMed  Google Scholar 

  77. Sem DS, Kasper CB (1993) Interaction with arginine 597 of NADPH-cytochrome P-450 oxidoreductase is a primary source of the uniform binding energy used to discriminate between NADPH and NADH. Biochemistry 32:11548–11558

    CAS  PubMed  Google Scholar 

  78. Gutierrez A, Doehr O, Paine M, Wolf CR, Scrutton NS, Roberts GC (2000) Trp676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases. Biochemistry 39:15990–15999

    CAS  PubMed  Google Scholar 

  79. Elmore CL, Porter TD (2002) Modification of the nucleotide cofactor-binding site of cytochrome P-450 reductase to enhance turnover with NADH in vivo. J Biol Chem 277:48960–48964

    CAS  PubMed  Google Scholar 

  80. Xia C, Hamdane D, Shen AL, Choi V, Kasper CB, Pearl NM, Zhang H, Im SC, Waskell L, Kim JJ (2011) Conformational changes of NADPH-cytochrome P450 oxidoreductase are essential for catalysis and cofactor binding. J Biol Chem 286:16246–16260

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Xia C, Panda SP, Marohnic CC, Martasek P, Masters BS, Kim JJ (2011) Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency. Proc Natl Acad Sci U S A 108:13486–13491

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52

    CAS  PubMed  Google Scholar 

  83. Bhattacharyya AK, Lipka JJ, Waskell L, Tollin G (1991) Laser flash photolysis studies of the reduction kinetics of NADPH:cytochrome P-450 reductase, Biochemistry 30:759–765

    CAS  PubMed  Google Scholar 

  84. Gutierrez A, Paine M, Wolf CR, Scrutton NS, Roberts GC (2002) Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding. Biochemistry 41:4626–4637

    CAS  PubMed  Google Scholar 

  85. Zhao Q, Modi S, Smith G, Paine M, McDonagh PD, Wolf CR, Tew D, Lian LY, Roberts GC, Driessen HP (1999) Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution. Protein Sci 8:298–306

    Google Scholar 

  86. Kim JJ, Shen AL, Xia C (2012) Structure and catalytic mechanism of NADPH-cytochrome P450 oxidoreductase: a prototype of the diflavin oxidoreductase family of enzymes. In: Hille R, Miller S, Palfey B (eds) Handbook of flavoproteins, vol 2. de Gruyter, Berlin, pp 73–101

    Google Scholar 

  87. Schilder J, Ubbink M (2013) Formation of transient protein complexes. Curr Opin Struct Biol 23:911–918

    CAS  PubMed  Google Scholar 

  88. Sem DS, Kasper CB (1995) Effect of ionic strength on the kinetic mechanism and relative rate limitation of steps in the model NADPH-cytochrome P450 oxidoreductase reaction with cytochrome c. Biochemistry 34:12768–12774

    CAS  PubMed  Google Scholar 

  89. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL (1999) Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci U S A 96:1863–1868

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Sugishima M, Sato H, Higashimoto Y, Harada J, Wada K, Fukuyama K, Noguchi M (2014) Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase. Proc Natl Acad Sci U S A 111:2524–2529

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Lamb DC, Kim Y, Yermalitskaya LV, Yermalitsky VN, Lepesheva GI, Kelly SL, Waterman MR, Podust LM (2006) A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases. Structure 14:51–61

    CAS  PubMed  Google Scholar 

  92. Gruez A, Pignol D, Zeghouf M, Coves J, Fontecave M, Ferrer JL, Fontecilla-Camps JC (2000) Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. J Mol Biol 299:199–212

    CAS  PubMed  Google Scholar 

  93. Aigrain L, Pompon D, Morera S, Truan G (2009) Structure of the open conformation of a functional chimeric NADPH cytochrome P450 reductase. EMBO Rep 10:742–747

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Hay S, Brenner S, Khara B, Quinn AM, Rigby SE, Scrutton NS (2010) Nature of the energy landscape for gated electron transfer in a dynamic redox protein. J Am Chem Soc 132:9738–9745

    CAS  PubMed  Google Scholar 

  95. Ellis J, Gutierrez A, Barsukov IL, Huang WC, Grossmann JG, Roberts GC (2009) Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering. J Biol Chem 284:36628–36637

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Vincent B, Morellet N, Fatemi F, Aigrain L, Truan G, Guittet E, Lescop E (2012) The closed and compact domain organization of the 70-kDa human cytochrome P450 reductase in its oxidized state as revealed by NMR. J Mol Biol 420:296–309

    CAS  PubMed  Google Scholar 

  97. Pudney CR, Khara B, Johannissen LO, Scrutton NS (2011) Coupled motions direct electrons along human microsomal P450 chains. PLoS Biol 9:e1001222

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Niedenthal R, Riles L, Guldener U, Klein S, Johnston M, Hegemann J (1999) Systematic analysis of S. cerevisiae chromosome VIII genes. Yeast 15:1775–1796

    CAS  PubMed  Google Scholar 

  99. Benenati G, Penkov S, Müller-Reichert T, Entchev EV, Kurzchalia TV (2009) Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo. Mech Dev 126:382–393

    CAS  PubMed  Google Scholar 

  100. Rappleye CA, Tagawa A, Le Bot N, Ahringer J, Aroian RV (2003) Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC Dev Biol 3:8

    PubMed Central  PubMed  Google Scholar 

  101. Shen AL, O’Leary KA, Kasper CB (2002) Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J Biol Chem 277:6536–6541

    CAS  PubMed  Google Scholar 

  102. Otto DM, Henderson CJ, Carrie D, Davey M, Gundersen TE, Blomhoff R, Adams RH, Tickle C, Wolf CR (2003) Identification of novel roles of the cytochrome P450 system in early embryogenesis: effects on vasculogenesis and retinoic acid homeostasis. Mol Cell Biol 23:6103–6116

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Gu J, Cui H, Behr M, Zhang L, Zhang QY, Yang W, Hinson JA, Ding X (2005) In vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa. Mol Pharm 67:623–630

    CAS  Google Scholar 

  104. Gu J, Weng Y, Zhang QY, Cui H, Behr M, Wu L, Yang W, Zhang L, Ding X (2003) Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J Biol Chem 278:25895–25901

    CAS  PubMed  Google Scholar 

  105. Henderson CJ, Otto DM, Carrie D, Magnuson MA, McLaren AW, Rosewell I, Wolf CR (2003) Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem 278:13480–13486

    CAS  PubMed  Google Scholar 

  106. Stiborová M, Arlt VM, Henderson CJ, Wolf CR, Kotrbová V, Moserová M, Hudecek J, Phillips DH, Frei E (2008) Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: studies with the hepatic NADPH:cytochrome P450 reductase null mouse. Toxic Appl Pharm 226:318–327

    Google Scholar 

  107. Riddick DS, Ding X, Wolf CR, Porter TD, Pandey AV, Zhang QY, Gu J, Finn RD, Ronseaux S, McLaughlin LA, Henderson CJ, Zou L, Fluck CE (2013) NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology. Drug Metab Disp 41:12–23

    CAS  Google Scholar 

  108. Flück CE, Pandey AV, Arlt W, Okuhara K, Verge CF, Jabs EW, Mendonça BB, Fujieda K, Miller WL (2004) Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet 36:228–230

    PubMed  Google Scholar 

  109. Tee MK, Damm I, Miller WL (2011) Transcriptional regulation of the human P450 oxidoreductase gene: hormonal regulation and influence of promoter polymorphisms. Mol Endocrinol 25:715–731

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Soneda S, Yazawa T, Fukami M, Adachi M, Mizota M, Fujieda K, Miyamoto K, Ogata T (2011) Proximal promoter of the cytochrome P450 oxidoreductase gene: identification of microdeletions involving the untranslated exon 1 and critical function of the SP1 binding sites. J Clin Endocrinol Metab 96:E1881–1887

    CAS  PubMed  Google Scholar 

  111. Miller WL, Huang N, Pandey AV, Fluck CE, Agrawal V (2005) P450 oxidoreductase deficiency: a new disorder of steroidogenesis. Ann N Y Acad Sci 1061:100–108

    CAS  PubMed  Google Scholar 

  112. Fluck CE, Pandey AV (2011) Clinical and biochemical consequences of P450 oxidoreductase deficiency. Endo Dev 20:63–79

    CAS  Google Scholar 

  113. Pandey AV, Fluck CE (2013) NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 138:229–254

    CAS  PubMed  Google Scholar 

  114. Fukami M, Horikawa R, Nagai T, Tanaka T, Naiki Y, Sato N, Okuyama T, Nakai H, Soneda S, Tachibana K, Matsuo N, Sato S, Homma K, Nishimura G, Hasegawa T, Ogata T (2005) Cytochrome P450 oxidoreductase gene mutations and Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab 90:414–426

    CAS  PubMed  Google Scholar 

  115. Yanagibashi K, Hall PF (1986) Role of electron transport in the regulation of the lyase activity of C21 side-chain cleavage P-450 from porcine adrenal and testicular microsomes. J Biol Chem 261:8429–8433

    CAS  PubMed  Google Scholar 

  116. Lin D, Black SM, Nagahama Y, Miller WL (1993) Steroid 17 alpha-hydroxylase and 17,20-lyase activities of P450c17: contributions of serine106 and P450 reductase. Endocrinology 132:2498–2506

    CAS  PubMed  Google Scholar 

  117. Panda SP, Guntur AR, Polusani SR, Fajardo RJ, Gakunga PT, Roman LJ, Masters BS (2013) Conditional deletion of cytochrome P450 reductase in osteoprogenitor cells affects long bone and skull development in mice recapitulating Antley-Bixler syndrome: role of a redox enzyme in development. PLoS ONE 8:e75638

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, Jabs EW, Van Vliet G, Sack J, Fluck CE, Miller WL (2005) Diversity and function of mutations in P450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet 76:729–749

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Marohnic CC, Martásek PS, Masters BS (2006) Diminished FAD binding in the Y459H and V492E Antley-Bixler syndrome mutants of human cytochrome P450 reductase. J Biol Chem 281:35975–35982

    CAS  PubMed  Google Scholar 

  120. Hart SN, Nakamoto K, Wesselman C, Li Y, Zhong XB (2008) Genetic polymorphisms in cytochrome P450 oxidoreductase influence microsomal P450-catalyzed drug metabolism. Pharmacogenet Genomics 18:11–24

    CAS  PubMed  Google Scholar 

  121. Gomes AM, Klein K, Turpeinen M, Schaeffeler E, Schwab M, Zanger UM (2009) Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics 10:579–599

    CAS  PubMed  Google Scholar 

  122. Huang N, Agrawal V, Giacomini KM, Miller WL (2008) Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc Natl Acad Sci U S A 105:1733–1738

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Agrawal V, Huang N, Miller WL (2008) Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet Genomics 18:569–576

    CAS  PubMed  Google Scholar 

  124. Agrawal V, Choi JH, Giacomini KM, Miller WL (2010) Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics 20:611–618

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Sandee D, Morrissey K, Agrawal V, Tam HK, Kramer MA, Tracy TS, Giacomini KM, Miller WL (2010) Effects of genetic variants of human P450 oxidoreductase on catalysis by CYP2D6 in vitro. Pharmacogenomics 20:677–686

    CAS  Google Scholar 

  126. Subramanian M, Agrawal V, Sandee D, Tam HK, Miller WL, Tracy TS (2012) Effect of P450 oxidoreductase variants on the metabolism of model substrates mediated by CYP2C9.1, CYP2C9.2, and CYP2C9.3. Pharmacogenet Genomics 22:590–597

    CAS  PubMed  Google Scholar 

  127. Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97:139–152

    CAS  PubMed  Google Scholar 

  128. Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, LeClair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga, RP, Bridges A, Waskell L, Ramamoorthy A (2013) A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 288:22080–22095

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Vergeres G, Waskell L (1995) Cytochrome b5: its function, structure, and membrane topology. Biochimie 77:604–620

    CAS  PubMed  Google Scholar 

  130. Deng B, Parthasarathy S, Wang W-F, Gibney BR, Battaile KP, Lovell S, Benson DR, Zhu H (2010) Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain. J Biol Chem 285:30181–30191

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Plitzko B, Ott G, Reichmann D, Henderson CJ, Wolf CR, Mendel R, Bittner F, Clement B, Havemeyer A (2013) The involvement of mitochondrial amidoxime reducing components 1 and 2 and mitochondrial cytochrome b5 in N-reductive metabolism in human cells. J Biol Chem 288:20228–20237

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Morgan ET, Coon MJ (1984) Effects of cytochrome b5 on cytochrome P-450-catalyzed reactions. Studies with manganese-substituted cytochrome b5. Drug Metab Dispos 12:358–364

    CAS  PubMed  Google Scholar 

  133. Yamazaki H, Shimada T, Martin MV, Guengerich FP (2001) Stimulation of cytochrome P450 reactions by apo-cytochrome b5: evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b5 or heme oxygenase. J Biol Chem 276:30885–30891

    CAS  PubMed  Google Scholar 

  134. Zhao C, Gao Q, Roberts AG, Shaffer SA, Doneanu CE, Xue S, Goodlett DR, Nelson SD, Atkins WM (2012) Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b5. Biochemistry 51:9488–9500

    PubMed Central  CAS  PubMed  Google Scholar 

  135. McLaughlin LA, Ronseaux S, Finn RD, Henderson CJ, Wolf CR (2010) Deletion of microsomal cytochrome b5 profoundly affects hepatic and extrahepatic drug metabolism. Mol Pharmacol 78:269–278

    CAS  PubMed  Google Scholar 

  136. Finn RD, McLaughlin LA, Ronseaux S, Rosewell I, Houston JB, Henderson CJ, Wolf CR (2008) Defining the in vivo role for cytochrome b 5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b 5 . J Biol Chem 283:31385–31393

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Yamazaki H, Gillam EM, Dong MS, Johnson WW, Guengerich FP, Shimada T (1997) Reconstitution of recombinant cytochrome P450 2C10(2C9, and comparison with cytochrome P450 3A4 and other forms: effects of cytochrome P450-P450 and cytochrome P450-b5 interactions. Arch Biochem Biophys 342:329–337

    CAS  PubMed  Google Scholar 

  138. Imai Y, Sato R (1977) The roles of cytochrome b5 in a reconstituted N-demethylase system containing cytochrome P-450. Biochem Biophys Res Commun 75:420–426

    CAS  PubMed  Google Scholar 

  139. Zhang H, Hamdane D, Im SC, Waskell L (2008) Cytochrome b5 inhibits electron transfer from NADPH-cytochrome P450 reductase to ferric cytochrome P450 2B4. J Biol Chem 283:217–5225

    Google Scholar 

  140. Henderson CJ, McLaughlin LA, Finn RD, Ronseaux S, Kapelyukh Y, Wolf CR (2014) A role for cytochrome b 5 in the in vivo disposition of anticancer and cytochrome P450 probe drugs in mice. Drug Metab Dispos 42:1–77

    Google Scholar 

  141. Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys 143:66–79

    CAS  PubMed  Google Scholar 

  142. Page CC, Moser CC, Dutton PL (2003) Mechanism for electron transfer within and between proteins. Curr Opin Chem Biol 7:551–556

    CAS  PubMed  Google Scholar 

  143. Bonsor DA, Sundberg EJ (2011) Dissecting protein-protein interactions using directed evolution. Biochemistry 50:2394–2402

    CAS  PubMed  Google Scholar 

  144. Johansson MP, Blomberg MR, Sundholm D, Wikstrom M (2002) Change in electron and spin density upon electron transfer to haem. Biochim Biophys Acta 1553:183–187

    CAS  PubMed  Google Scholar 

  145. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386

    CAS  PubMed  Google Scholar 

  146. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    CAS  PubMed  Google Scholar 

  147. Crowley PB, Carrondo MA (2004) The architecture of the binding site in redox protein complexes: implications for fast dissociation. Proteins 55:603–612

    CAS  PubMed  Google Scholar 

  148. Correia MA, Mannering GJ (1973) Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. II. Role of the type I drug-binding site of cytochrome P-450. Mol Pharmacol 9:470–485

    CAS  PubMed  Google Scholar 

  149. Zhang H, Gruenke L, Arscott D, Shen A, Kasper CB, Harris DL, Glavanovich M, Johnson R, Waskell L (2003) Determination of the rate of reduction of oxyferrous cytochrome P450 2B4 by 5-deazaFAD T491V cytochrome P450 reductase. Biochemistry 42:11594–11603

    CAS  PubMed  Google Scholar 

  150. Guengerich FP, Ballou DP, Coon MJ (1975) Purified liver microsomal cytochrome P-450. Electron-accepting properties and oxidation-reduction potential. J Biol Chem 250:7405–7414

    CAS  PubMed  Google Scholar 

  151. Sligar SG, Cinti DL, Gibson GG, Schenkman JB (1979) Spin state control of the hepatic cytochrome P450 redox potential. Biochem Biophys Res Commun 90:925–932

    CAS  PubMed  Google Scholar 

  152. Lewis DF, Hlavica P (2000) Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Biochim Biophy Acta 1460:353–374

    CAS  Google Scholar 

  153. Guengerich FP (1983) Oxidation-reduction properties of rat liver cytochromes P-450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems. Biochemistry 22:2811–2820

    CAS  PubMed  Google Scholar 

  154. Gorsky LD, Coon MJ (1986) Effects of conditions for reconstitution with cytochrome b5 on the formation of products in cytochrome P-450-catalyzed reactions. Drug Metab Dispos 14:89–96

    CAS  PubMed  Google Scholar 

  155. Auchus RJ, Lee TC, Miller WL (1998) Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem 273:3158–3165

    CAS  PubMed  Google Scholar 

  156. Yamazaki H, Johnson WW, Ueng YF, Shimada T, Guengerich FP (1996) Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5. J Biol Chem 271:27438–27444

    CAS  PubMed  Google Scholar 

  157. Gruenke LD, Konopka K, Cadieu M, Waskell L (1995) The stoichiometry of the cytochrome P-450-catalyzed metabolism of methoxyflurane and benzphetamine in the presence and absence of cytochrome b5. J Biol Chem 270:24707–24718

    CAS  PubMed  Google Scholar 

  158. Perret A, Pompon D (1998) Electron shuttle between membrane-bound cytochome P450 3A4 and b5 rules uncoupling mechanisms. Biochemistry 37:11412–11424

    CAS  PubMed  Google Scholar 

  159. Gilep AA, Guryev OL, Usanov SA, Estabrook RW (2001) Expression, purification, and physical properties of recombinant flavocytochrome fusion proteins containing rat cytochrome b5 linked to NADPH-cytochrome P450 reductase by different membrane-binding segments. Arch Biochem Biophys 390:222–234

    CAS  PubMed  Google Scholar 

  160. Akhtar MK, Kelly SL, Kaderbhai MA (2005) Cytochrome b5 modulation of 17{alpha} hydroxylase and 17–20 lyase CYP17, activities in steroidogenesis. J Endocrinol 187:267–274

    CAS  PubMed  Google Scholar 

  161. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3:41–62

    CAS  PubMed  Google Scholar 

  162. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700

    CAS  PubMed  Google Scholar 

  163. Scott EE, White MA, He YA, Johnson EF, Stout CD, Halpert JR (2004) Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9 A{angstrom} resolution: insight into the range of P450 conformations and coordination of redox partner binding. J Biol Chem 279:27294–27301

    CAS  PubMed  Google Scholar 

  164. Estrada DF, Skinner AL, Laurence JS, Scott EE (2014) Human cytochrome P450 17A1 conformational selection: modulation by ligand and cytochrome b5. J Biol Chem 289:14310–14320

    CAS  PubMed  Google Scholar 

  165. Estrada DF, Laurence JS, Scott EE (2013) Substrate-modulated cytochrome P450 17A1 and cytochrome b 5 interactions revealed by NMR. J Biol Chem 288:17008–17018

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Gao Q, Doneanu CE, Shaffer SA, Adman ET, Goodlett DR, Nelson SD (2006) Identification of the interactions between cytochrome P450 2E1 and cytochrome b5 by mass spectrometry and site-directed mutagenesis. J Biol Chem 281:20404–20417

    CAS  PubMed  Google Scholar 

  167. Koga H, Sagara Y, Yaoi T, Tsujimura M, Nakamura K, Sekimizu K, Makino R, Shimada H, Ishimura Y, Yura K, Go M, Ikeguchi I, Horiuchi T (1993) Essential role of the Arg112 residue of cytochrome P450cam for electron transfer from reduced putidaredoxin. FEBS Lett 331:109–113

    CAS  PubMed  Google Scholar 

  168. Tripathi S, Li H, Poulos TL (2013) Structural basis for effector control and redox partner recognition in cytochrome P450. Science 340:1227–1230

    CAS  PubMed  Google Scholar 

  169. Stayton PS, Sligar SG (1990) The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling. Biochemistry 29:7381–7386

    CAS  PubMed  Google Scholar 

  170. Rui L, Pochapsky SS, Pochapsky T (2006) Comparison of the complexes formed by cytochrome P450CAM with cytochrome b 5 and putidaredoxin, two effectors of camphor hydroxylase activity. Biochemistry 45:3887–3897

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Noble MA, Girvan HM, Smith SJ, Smith WE, Murataliev M, Guzov VM, Feyereisen R, Munro AW (2007) Analysis of the interactions of cytochrome b5 with flavocytochrome P450 BM3 and its domains. Drug Metab Rev 39:599–617

    CAS  PubMed  Google Scholar 

  172. Stayton PS, Poulos TL, Sligar SG (1989) Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: a proposed molecular model for a cytochrome P-450cam electron-transfer complex. Biochemistry 28:8201–8205

    CAS  PubMed  Google Scholar 

  173. Jenkins CM, Waterman MR (1999) Flavodoxin as a model for the P450-interacting domain of NADPH cytochrome P450 reductase. Drug Metab Rev 31:195–203

    CAS  PubMed  Google Scholar 

  174. Geller DH, Auchus RJ, Mendonca BB, Miller WL (1997) The genetic and functional basis of isolated 17,20-lyase deficiency. Nat Genet 17:201–205

    CAS  PubMed  Google Scholar 

  175. Hong Y, Rashid R, Chen S (2011) Binding features of steroidal and nonsteroidal inhibitors. Steroids 76:802–806

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Kaspera R, Naraharisetti SB, Evangelista EA, Marciante KD, Psaty BM, Totah RA (2011) Drug metabolism by CYP2C8.3 is determined by substrate dependent interactions with cytochrome P450 reductase and cytochrome b5. Biochem Pharmacol 82:681–691

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Nikfarjam L, Izumi S, Yamazaki T, Kominami S (2006) The interaction of cytochrome P450 17alpha with NADPH-cytochrome P450 reductase, investigated using chemical modification and MALDI-TOF mass spectrometry. Biochim Biophys Acta 1764:1126–1131

    CAS  PubMed  Google Scholar 

  178. Furuya H, Shimizu T, Hirano K, Hatano M, Fujii-Kuriyama Y, Raag R, Poulos TL (1989) Site-directed mutageneses of rat liver cytochrome P-450d: catalytic activities toward benzphetamine and 7-ethoxycoumarin. Biochemistry 28:6848–6857

    CAS  PubMed  Google Scholar 

  179. Shimizu T, Tateishi T, Hatano M, Fujii-Kuriyama Y (1991) Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. Interaction with NADPH-cytochrome P450 reductase. J Biol Chem 266:3372–3375

    CAS  PubMed  Google Scholar 

  180. Shen S, Strobel HW (1992) The role of cytochrome P450 lysine residues in the interaction between cytochrome P450IA1 and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 294:83–90

    CAS  PubMed  Google Scholar 

  181. Shen S, Strobel HW (1993) Role of lysine and arginine residues of cytochrome P450 in the interaction between cytochrome P4502B1 and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 304:257–265

    CAS  PubMed  Google Scholar 

  182. Nakamura K, Horiuchi T, Yasukochi T, Sekimizu K, Hara T, Sagara Y (1994) Significant contribution of arginine-112 and its positive charge of Pseudomonas putida cytochrome P-450cam in the electron transport from putidaredoxin. Biochim Biophys Acta 1207:40–48

    CAS  PubMed  Google Scholar 

  183. Stayton PS, Sligar SG (1991) Structural microheterogeneity of a tryptophan residue required for efficient biological electron transfer between putidaredoxin and cytochrome P-450cam. Biochemistry 30:1845–1851

    CAS  PubMed  Google Scholar 

  184. Lee MY, Borgiani P, Johansson I, Oteri F, Mkrtchian S, Falconi M, Ingelman-Sundberg M (2013) High warfarin sensitivity in carriers of CYP2C9*35 is determined by the impaired interaction with P450 oxidoreductase. Pharmacogenomics J Epub prior to publication, 12/10/14. doi:10.1038/tpj.2013.41

    Google Scholar 

  185. Mao W, Rupasinghe SG, Zangerl AR, Berenbaum MR, Schuler MA (2007) Allelic variation in the Depressaria pastinacella CYP6AB3 protein enhances metabolism of plant allelochemicals by altering a proximal surface residue and potential interactions with cytochrome P450 reductase. J Biol Chem 282:10544–10552

    CAS  PubMed  Google Scholar 

  186. Scott EE, He YA, Wester MR, White MA, Chin CC, Halpert JR, Johnson EF, Stout CD (2003) An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proc Natl Acad Sci U S A 100:13196–13201

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Wilderman PR, Gay SC, Jang, H-H, Zhang Q, Stout CD, Halpert JR (2012) Investigation by site-directed mutagenesis of the role of cytochrome P450 2B4 non-active-site residues in protein-ligand interactions based on crystal structures of the ligand-bound enzyme. FEBS J 279:1607–1620

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Lee-Robichaud P, Akhtar ME, Wright JN, Sheikh QI, Akhtar M (2004) The cationic charges on Arg347, Arg358 and Arg449 of human cytochrome P450c17 CYP17, are essential for the enzyme’s cytochrome b5-dependent acyl-carbon cleavage activities. J Steroid Biochem Mol Biol 92:119–130

    CAS  PubMed  Google Scholar 

  189. Ozols J (1989) Structure of cytochrome b5 and its topology in the microsomal membrane. Biochim Biophys Acta 997:121–130

    CAS  PubMed  Google Scholar 

  190. Gostincar C, Turk M, Gunde-Cimerman N (2010) The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J Memb Biol 233:63–72

    CAS  Google Scholar 

  191. Peng HM, Auchus RJ (2013) The action of cytochrome b5 on CYP2E1 and CYP2C19 activities requires anionic residues D58 and D65. Biochemistry 52:210–220

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Peng HM, Auchus RJ (2014) Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries. Arch Biochem Biophys 541:53–60

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Naffin-Olivos JL, Auchus RJ (2006) Human cytochrome b5 requires residues E48 and E49 to stimulate the 17,20-lyase activity of cytochrome P450c17. Biochemistry 45:755–762

    CAS  PubMed  Google Scholar 

  194. Chudaev MV, Gilep AA, Usanov SA (2001) Site-directed mutagenesis of cytochrome b5 for studies of its interaction with cytochrome P450. Biochemistry (Moscow) 66:667–681

    CAS  Google Scholar 

  195. Peterson JA, Ebel RE, O’Keeffe DH, Matsubara T, Estabrook RW (1976) Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase:cytochrome P-450 interaction. J Biol Chem 251:4010–4016

    CAS  PubMed  Google Scholar 

  196. Zhang H, Im S-C, Waskell L (2007) Cytochrome b 5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. J Biol Chem 282:29766–29776

    CAS  PubMed  Google Scholar 

  197. Murataliev MB, Guzov VM, Walker FA, Feyereisen R (2008) P450 reductase and cytochrome b5 interactions with cytochrome P450: effects on house fly CYP6A1 catalysis. Insect Biochem Mol Biol 38:1008–1015

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Pompon D, Coon MJ (1984) On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5. J Biol Chem 259:15377–15385

    CAS  PubMed  Google Scholar 

  199. Bonfils C, Balny C, Maurel P (1981) Direct vidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver microsomal cytochrome P-450 LM2. J Biol Chem 256:9457–9465

    CAS  PubMed  Google Scholar 

  200. Tamburini PP, Schenkman JB (1987) Purification to homogeneity and enzymological characterization of a functional covalent complex composed of cytochromes P-450 isozyme 2 and b5 from rabbit liver. Proc Natl Acad Sci U S A 84:11–15

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Yamazaki H, Nakamura M, Komatsu T, Ohyama K, Hatanaka N, Asahi S, Shimada N, Guengerich FP, Shimada T, Nakajima M, Yokoi T (2002) Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr Purif 24:329–337

    CAS  PubMed  Google Scholar 

  202. Moore CD, Al-Misky ON, Lecomte JTJ (1991) Similarities in structure between holocytochrome b 5 and apocytochrome b 5: NMR studies of the histidine residues. Biochemistry 30:8357–8365

    CAS  PubMed  Google Scholar 

  203. Canova-Davis E, Waskell L (1984) The identification of the heat-stable microsomal protein required for methoxyflurane metabolism as cytochrome b5. J Biol Chem 259:2541–2546

    CAS  PubMed  Google Scholar 

  204. Gilep AA, Guryev OL, Usanov SA, Estabrook RW (2001) Apo-cytochrome b5 as an indicator of changes in heme accessability: preliminary studies with cytochrome P450 3A4. J Inorg Biochem 87:237–244

    CAS  PubMed  Google Scholar 

  205. Guryev OL, Gilep AA, Usanov SA, Estabrook RW (2001) Interaction of apo-cytochrome b5 with cytochromes P4503A4 and A: relevance of heme transfer reactions. Biochemistry 40:5018–5031

    CAS  PubMed  Google Scholar 

  206. Canova-Davis E, Chiang JY, Waskell L (1985) Obligatory role of cytochrome b5 in the microsomal metabolism of methoxyflurane. Biochem Pharmacol 34:1907–1912

    CAS  PubMed  Google Scholar 

  207. Reed JR, Hollenberg PF (2003) Examining the mechanism of stimulation of cytochrome P450 by cytochrome b5: the effect of cytochrome b5 on the interaction between cytochrome P450 2B4 and P450 reductase. J Inorg Biochem 97:265–275

    CAS  PubMed  Google Scholar 

  208. Idkowiak J, Randell T, Dhir V, Patel P, Shackleton CH, Taylor NF, Krone N, Arlt W (2012) A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency. J Clin Endo Metab 97:E465–475

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank all investigators who have studied the interaction of P450 with its redox partner s. We regret it has not been possible to cite all publications. We wish to acknowledge Sangchoul Im, Yuting Yang, and Chuanwu Xia for the preparation of the figures. The work was supported by a Veterans Affairs Merit Review grant and NIH grants GM094209 to LW and GM097031 to JJK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy Waskell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waskell, L., Kim, JJ. (2015). Electron Transfer Partners of Cytochrome P450. In: Ortiz de Montellano, P. (eds) Cytochrome P450. Springer, Cham. https://doi.org/10.1007/978-3-319-12108-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12108-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12107-9

  • Online ISBN: 978-3-319-12108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics